Experimental Measurement of Sub-micron Ejecta from Hypervelocity Impact into Meteorites

Henry Throop (PSI) Daniel Durda (SwRI) Anthony Shu (LASP) Roy Geiss (CO State)

David James (LASP) Brendan Tompkins (CO State) Katie Rice

Dusty Jovian / Saturnian Rings

Problem:

The Solar System has large quantities of sub-micron dust in planetary rings and the zodiacal cloud, presumed to be created by hypervelocity impacts into silicates. **But virtually no laboratory work has ever measured the production function in this regime directly, and nearly all models for this dust's distribution and abundance extrapolate from larger sizes.**

Challenges to measuring n(r), v(r) in laboratory at sub-um sizes

1) Impactors: Need large number of micron-sized impactors

2) Ejecta: Need way to count and analyze ejecta particles down to 0.1 um

IMPACT dust accelerator (U. Colorado)

- 0.1 1 µm Fe grains, accelerated electrostatically
- ~1 particle/second
- v = 0.5 50 km/sec

For science runs, we place foils to intercept ejecta in chamber to measure ejecta size. For calibration runs, we place foils directly in beamline to measure particle:hole size ratio.

Thin Foil Targets

- 3 mm diameter Cu mesh discs ('TEM microscopy grids')
- We vapor-deposit 0.1 um Au atop grids' existing 0.005 µm C substrate. Particles penetrate Au and we measure holes.
- 400-mesh grid can be easily imaged in SEM
- Nominal SEM scan resolution 0.1 µm = 1600x; higher for features of interest.

Each foil mapped at 30,000 x 30,000 pixels (1 Gpx)

Typical calibration run after several hours of beam exposure, 100,000 particles

Several large impact holes visible, plus dozens of smaller holes not visible here

Preliminary Size Distribution Results

ZOO OF IMPÀCT MORPHOLOGIES...

Flaps

Large fraction of puncture holes show irregular 'flap,' connected or nearby. Flap is often found on side facing incoming particles.

0.1 µm

Craters

Impact into 0.1 µm Au foil + thick Cu

Penetration of 0.1 µm Au foil by two Fe spheres

Central peak on 70 nm-diameter crater into Cu

Irregular Holes

Despite impactor population of v > 10 km/sec, many holes are irregular, not circular.

We don't understand formation of these, but they are common and don't appear on our unexposed grids. Does not look like a rip/tear.

Impacts into Meteoritic Target

Three possible impact sites into meteorite from Fe spheres, v ~ 10 km/ sec.

Very little ejecta; preliminary results show there is more at 20 km/ sec.

Embedded Grains

Two Fe grains embedded into Cu mesh. Image width = 4 μ m.

At velocities < 5 km/sec, nearly all impacts into our meteoritic surface are embedded or bounce back, with zero ejecta.

Meteoritic ejecta captured into Cu wire on TEM grid. Image width = 10 um.

Ejecta diameter > impactor diameter.

Glass target

Test shots into Al-coated glass mirror. Impact sites are much larger than in metallic targets for same energy. Throop *et al*, LPSC 2015, #46.2258

Conclusions

- We are well on our way to a measurement of the sub-micron size distribution for hypervelocity impacts.
- Preliminary results suggest a broad continuation of existing n(r) to 0.2 µm.
- Understanding sub-micron impact morphologies (flaps, irregularities, embedded grains) will keep us busy...