Planetary Formation Near Bright Stars: Fast or Rare? #### Henry Throop John Bally Larry Esposito University of Colorado, Boulder #### Mark McCaughrean Astrophys. Institut Potsdam - Where Do Most Stars Form? - Observations of Young Disks; Evidence for Grain Growth - * HST - * OVRO - Evolutionary Modeling of Young Disks - * Physical Processes in Externally-Illuminated Environments - Conclusions # Where Do Most Stars Form? - Dense, Bright Clusters Orion Nebula - * $20,000 \text{ stars in last } 10^7 \text{ yr}$ - * Luminosity $10^5 L_{\odot}$ from massive O & B stars at core - Cool Dark Clouds Taurus - * Few 10^2 stars formed in last 10^7 yr - * Regions are common, well-studied, but small - Majority of stars in our galaxy form in dense, bright clusters like Orion, not small, isolated regions like Taurus. - To look at disk and planetary formation, need to consider environment! # **HST Observations of Orion Disks** - ~ 50 dark disks seen in silhouette; $\lambda = 0.2 1.9 \ \mu \mathrm{m}$ - Apparent disk size is independent of wavelength! - * Disks dominated by large particles ## 114-426 Disk ### WFPC2 H α - Translucent NE ansa nearly identical at 0.65 μ m, 1.87 μ m! - * Large particles: $r \gtrsim 5 \mu \text{m}$. # Grain Properties From OVRO Observations - Observations of Bally et al. 1998 of six Orion disks - No 1.3 mm continuum or line emission detected - Optically thick 50K disk would be visible - Non-detections imply disk is optically thin - * $r \gtrsim$ few cm * low τ requires low mass opacity k_{ν} i.e., large particles - Non-detection is difficult to explain without large particles. - * Alternate explanation: Disk masses very low $(M < 0.02 M_{\odot})$ - Requires k_{ν} inconsistent with modeling results ### FUV EUV IIH, MOIT NOISE SINOI Photoevaporation of Orion Disks Outflow, HI + dust, 1000 K Disk, H2, 50 K Nebular Background, HII, 50 K $ig({ m Johnstone} \ { m et} \ { m al.} \ 1998; \ { m St\"{o}rzer} \ \& \ { m Hollenbach} \ 1999, \ { m Henney} \ \& \ { m O'Dell} \ 1999)$ # Evolutionary Modeling of Orion Disks ## Numerical Model (PAPADUM) - Tracks state vector n(r, R, t) of ice, silicate, H₂ - Integrate from initial conditions until gas disk is lost or convection stops - Physical processes in externally-illuminated environments - * Grain growth - Turbulent collision velocities $\sim \text{cm s}^{-1}$, Mizuno 1988 - * Photoevaporation of gas and entrainment of small grains - $-M \simeq 10^{-6} M_{\odot} \text{ yr}^{-1}; \quad r_{\text{entrain}} \sim v_0^2 n_0 R^2$ - * Photosputtering - $(dr/dt)_{\rm ice} \sim \mu { m m \ yr}^{-1}$ #### Normal Optical Depth Optical Depth Profiles, Orion Disk Models $\Sigma \sim R^{-3}, \ t_{\rm UV} = 0 \ {\rm yr}$ # **Evolutionary Modeling of Orion Disks** ### Results: - Grain growth is rapid: meter-sized particles in 10^5 yr at $10~\mathrm{AU}$ - Disk is removed outward of $\sim 100 \text{ AU}$ - Disk outer edge is sharp, populated with large particles - Gas, all small particles lost in $\sim 10^5 \text{ yr}$ - Formation of planets in bright, dense Orion-like regions: - * Terrestrial planets unaffected - * Jovian planets difficult - * Large EKB difficult ### Conclusions - Three lines of evidence suggest large particles in the - * Lack of color in disks implies particles > Orion disks: - Non-detection at mm implies low optical depth, particles > mm - Numerical modeling shows grains grow quickly throughout - We are witnessing very earliest stages of planetary formation - Difficult to form Jupiters before disks are destroyed - Planetary formation near bright stars is hazardous - Planets must be formed rapidly or rarely.