Planetary Formation Near Bright Stars: Fast or Rare?

Henry Throop John Bally Larry Esposito

University of Colorado, Boulder

Mark McCaughrean

Astrophys. Institut Potsdam

- Where Do Most Stars Form?
- Observations of Young Disks; Evidence for Grain Growth
 - * HST
 - * OVRO
- Evolutionary Modeling of Young Disks
 - * Physical Processes in Externally-Illuminated Environments
- Conclusions

Where Do Most Stars Form?

- Dense, Bright Clusters Orion Nebula
- * $20,000 \text{ stars in last } 10^7 \text{ yr}$
- * Luminosity $10^5 L_{\odot}$ from massive O & B stars at core
- Cool Dark Clouds Taurus
- * Few 10^2 stars formed in last 10^7 yr
- * Regions are common, well-studied, but small
- Majority of stars in our galaxy form in dense, bright clusters like Orion, not small, isolated regions like Taurus.
- To look at disk and planetary formation, need to consider environment!

HST Observations of Orion Disks

- ~ 50 dark disks seen in silhouette; $\lambda = 0.2 1.9 \ \mu \mathrm{m}$
- Apparent disk size is independent of wavelength!
- * Disks dominated by large particles

114-426 Disk

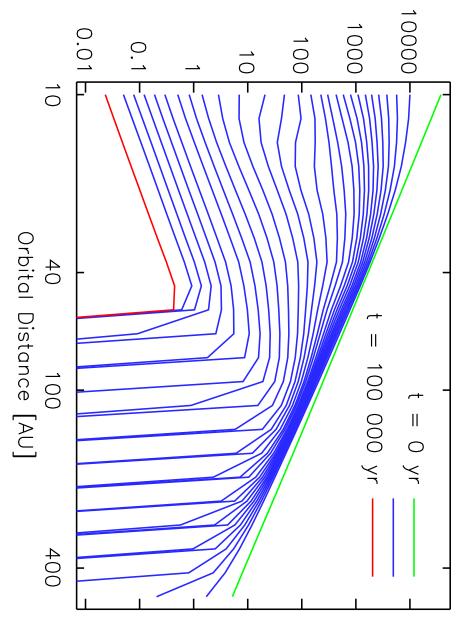
WFPC2 H α

- Translucent NE ansa nearly identical at 0.65 μ m, 1.87 μ m!
- * Large particles: $r \gtrsim 5 \mu \text{m}$.

Grain Properties From OVRO Observations

- Observations of Bally et al. 1998 of six Orion disks
- No 1.3 mm continuum or line emission detected
- Optically thick 50K disk would be visible
- Non-detections imply disk is optically thin
- * $r \gtrsim$ few cm * low τ requires low mass opacity k_{ν} i.e., large particles
- Non-detection is difficult to explain without large particles.
- * Alternate explanation: Disk masses very low $(M < 0.02 M_{\odot})$
- Requires k_{ν} inconsistent with modeling results

FUV EUV IIH, MOIT NOISE SINOI Photoevaporation of Orion Disks Outflow, HI + dust, 1000 K Disk, H2, 50 K Nebular Background, HII, 50 K


 $ig({
m Johnstone} \ {
m et} \ {
m al.} \ 1998; \ {
m St\"{o}rzer} \ \& \ {
m Hollenbach} \ 1999, \ {
m Henney} \ \& \ {
m O'Dell} \ 1999)$

Evolutionary Modeling of Orion Disks

Numerical Model (PAPADUM)

- Tracks state vector n(r, R, t) of ice, silicate, H₂
- Integrate from initial conditions until gas disk is lost or convection stops
- Physical processes in externally-illuminated environments
- * Grain growth
- Turbulent collision velocities $\sim \text{cm s}^{-1}$, Mizuno 1988
- * Photoevaporation of gas and entrainment of small grains
- $-M \simeq 10^{-6} M_{\odot} \text{ yr}^{-1}; \quad r_{\text{entrain}} \sim v_0^2 n_0 R^2$
- * Photosputtering
- $(dr/dt)_{\rm ice} \sim \mu {
 m m \ yr}^{-1}$

Normal Optical Depth

Optical Depth Profiles, Orion Disk Models

 $\Sigma \sim R^{-3}, \ t_{\rm UV} = 0 \ {\rm yr}$

Evolutionary Modeling of Orion Disks

Results:

- Grain growth is rapid: meter-sized particles in 10^5 yr at $10~\mathrm{AU}$
- Disk is removed outward of $\sim 100 \text{ AU}$
- Disk outer edge is sharp, populated with large particles
- Gas, all small particles lost in $\sim 10^5 \text{ yr}$
- Formation of planets in bright, dense Orion-like regions:
- * Terrestrial planets unaffected
- * Jovian planets difficult
- * Large EKB difficult

Conclusions

- Three lines of evidence suggest large particles in the
- * Lack of color in disks implies particles >

Orion disks:

- Non-detection at mm implies low optical depth, particles > mm
- Numerical modeling shows grains grow quickly throughout
- We are witnessing very earliest stages of planetary formation
- Difficult to form Jupiters before disks are destroyed
- Planetary formation near bright stars is hazardous
- Planets must be formed rapidly or rarely.