Young Solar Systems in the Orion Nebula: **Observations and Evolution**

Henry Throop University of Colorado, Boulder

July 24, 2000

- Observations of Young Disks; Evidence for Grain Growth
- * HST
- * OVRO
- Evolutionary Modeling of Young Disks
- * Physical Processes in Externally-Illuminated Environments
- Conclusions & Predictions

HST Observations of Orion Disks

- ~ 50 dark disks seen in silhouette; $\lambda = 0.2 1.9 \ \mu m$
- Apparent disk size is independent of wavelength!
- * Radial extinction profiles show no measurable reddening!
- * Disks consistent with $R = A_V / E(B V) \gtrsim 50$, vs R = 3 - 5 for ISM.
- * Disks dominated by large particles?!

СЛ

Normalized intensity 0 . 0 О . Л O 0.0 0.2 Projected Radius [arcsec] 0. 4 0. . 0 0 . 00 SUM $\overset{\bigcirc}{=} \overset{\Box}{=} \overset{\Box}{\cong} \overset{\bigcirc}{\cong} \overset{\bigcirc}{=}$

Radial Intensity Profiles, HST 16 Disk

 ∞

HST Observations of Orion Disks

- Translucent outer edge is \sim PSF scale need to be careful!
- Determine particle sizes, disk properties using BASIL model
- * 9-parameter 3D disk model; forward-convolve to create model images
- * Consider all wavelengths simultaneously
- * Use Monte Carlo approach: minimize χ^2 over large number of randomly-generated disks
- * Determine best-fit $\chi^2 < 1$ parameter ranges and cross-correlations

Best Fit Model Results

HST Observations of Orion Disks

Results of 3D Monte Carlo disk modeling:

- Disks have sharply terminated outer edges
- Disks are consistent with large particles at outer edges
- Edge-on, face-on disk structural parameters constrained
- Observational limitations are spatial resolution, optical depth

- Observations of Bally et al. 1998 of two Orion fields, 1.8" beam
- 1.3 mm continuum, line emission not detected, F < 21 mJy

Modeling of OVRO Disk Observations

- Optically thick 50K disk would be visible
- Non-detection at 21 mJy implies disk is optically thin
- * $r \gtrsim \text{ few cm}$ * low τ requires low mass opacity k_{ν} *i.e.*, large particles
- HL Tau: At 450 pc, would detect 100 mJy at 1.3 mm continuum (Beckwith et al. 1990)
- * Orion disks slightly older, more evolved than Taurus?
- * Orion small particles removed by evaporative flow?
- Non-detection is difficult to explain without large particles.
- * Alternate explanation: Disk masses very low $(M < 0.02 M_{\odot})$
- Requires k_{ν} inconsistent with modeling results

	Dis	sk Sca	ling	Regir	nes	
	Galaxy	Proplyds	β Pic	EKB	Asteroid Belt	Planetary Rings
Optically Thick?		\checkmark				
Dynamically Young?	<	<				
Collisionally Active?		<	<	<	<	<
Grav. Interactions?	<			<	<	<
Massive Disk?	<	<				
		<				
Rapidly Destroyed?	Intrinsic	External	Central	Central	Central	External

Evolutionary Modeling of Orion Disks

- Orion nebula environment:
- * Trapezium stars \rightarrow violent place
- * Disk evolution cannot be modeled in isolation from environment!
- * Existing Solar Nebula models are not valid for Orion
- Use physical, evolutionary model and knowledge of environment to probe disks deeper than by data alone
- Predict disks' past and future states in addition to present-day
- * Prospects for planetary formation; insight into our own SS

Evolutionary Modeling of Orion Disks

Numerical Model (PAPADUM)

- Tracks state vector n(r, R, t) of ice, silicate, H₂
- Integrate from initial conditions until gas disk is lost or convection stops
- Physical processes in externally-illuminated environments
- * Grain growth
- Turbulent collision velocities $\sim \text{ cm s}^{-1}$, Mizuno 1988
- * Photoevaporation of gas and entrainment of small grains $-M \simeq 10^{-6} M_{\odot} {
 m yr}^{-1}; \ r_{
 m entrain} \sim v_0^2 \, n_0 \, R^2$
- * Photosputtering
- $(dr/dt)_{\rm ice} \sim \mu {
 m m yr}^{-1}$

PAPADUM Model Flowchart

r [cm] 10⁻² 10-4 10⁰ 10² 10⁴ F 10 Particle Size Evolution, Steep Case 102 R = 10 AU R = 500 AU $\Sigma \sim R^{-3}, t_{\rm UV} = 0 {
m yr}$ 10³ t [yr] 10 5 106

Evolutionary Modeling of Orion Disks

Results:

- Grain growth is rapid: meter-sized particles in 10^5 yr at 10 AU
- Disk is removed outward of $\sim 100 \text{ AU}$
- Disk outer edge is sharp, populated with large particles
- Gas, all small particles lost in $\sim 10^5$ yr
- Formation of planets:
- * Terrestrial planets unaffected
- * Jovian planets difficult
- * Large EKB difficult

Three lines of evidence suggest large particles in the

Orion disks:

- * Lack of color in disks; fits to 3D models are consistent with large particles
- Non-detection at mm suggest optical depth is low, and thus large particles
- * disks Numerical modeling shows grains grow quickly throughout
- We are witnessing very earliest stages of planetary formation (!)
- Difficult to form Jupiters before disks are destroyed
- Terrestrial planet formation only minimally affected
- Results sensitive to initial mass distribution, mass loss rate, sticking properties, UV 'ignition' time

- organics also makes them ideal places for life. Terrestrial planets are common in OB associations; UV production of
- Jovian planets are rare in OB associations unless they form rapidly.
- Jupiter's existence indicates our Solar System did not form in OB association; therefore, Kuiper Belt may extend to 100's of AU
- ISM is populated with large, aggregate particles caused by grain growth followed by photoevaporation.
- Stars in Orion with no visible disks have already formed giant planets which can be detected by infalling planetesimals (vsv. β Pic).
- Photoevaporation causes a **positive correlation** between **stellar** metallicity and the existence of planets surrounding a star.
- Our Solar System has an anomalously large cometary reservoir, and we should not expect an extra-solar cometary visit soon