Sandcastles in the Wind: Particle Growth in Externally Illuminated Young Circumstellar Disks

> Henry Throop (U. Colorado / LASP) John Bally (U. Colorado / CASA) Larry Esposito (U. Colorado / LASP)

January 12, 2000 / AAS Atlanta

- Majority of circumstellar disks in Orion are observed to be photoevaporating
- Majority of stars form in Orion-like regions, in externally-illuminated environments (e.g., Lada 1998, Hillenbrand et al 1998)
- Disk evolution models have not previously considered UV photoevaporation effects
- Q: Can we evolve from disk to planets in presence of a strong UV field?

Disk Evolution Model

We model evolution of grain size distribution in large, young circumstellar disks in Orion under processes of:

Grain Growth

- Grain coagulation with collisional velocities of Mizuno et al 1988
 - Velocities determined by turbulent convection
 - Fully-sticking particles

Grain Loss

- Photosputtering
 - UV photons eject ice molecules, $(dr/dt)_{ice} \sim \mu m/year$ (Westley et al 1995)
- Photoevaporation (Johnstone, Hollenbach, Bally 1998)
 - Heated 10³ K gas Jeans-escapes disk, entraining small particles in outflow
 - Large particles are safe against entrainment
 - r_{entrain} = 100 μm at 100 AU

Three-component disk composition

• H_2 + silicate + ices; $m_{gas} / m_{dust} = 100$

- Disk is vertically, azimuthally homogeneous
- Turbulence maintained by vertical thermal gradient; shuts off for thermal opacity < 1
 - $$\begin{split} \Sigma &\sim R^{-2} & R = 10 400 \text{ AU} & L_{UV} = 10^5 \text{ }L_{\text{sun}} & \alpha = 10^{-2} \\ T &\sim R^{-3/2} & n(t_0) = n(\text{ISM}) & D_{UV} = 0.15 \text{ pc} & d = 450 \text{ pc} \end{split}$$

• Observed age of disks ~ 10^{5-6} yr (Hillenbrand et al 1998)

- Observed age of UV source Θ_1 Ori C ~ 10^{4-5} (Bally et al 1998)
- Integrate n(r, R, t) numerically
- Turn on UV source after delay time t_{UV}

Results of Numerical Models

- Outer edges are truncated by loss processes
 - Consistent with steep mass distributions ($\Sigma \sim R^{4-5}$) observed at outer edge
 - Particle growth is slower at outer edge, $r_{peak} \sim t^2 R^{1/2}$
- Entire gas disk blown away in t $\sim 10^6$ yr

Ices are depleted at outer edge

- Disk must have 'head start' time of ~ 10⁴ years to inhibit significant loss at outer edges
- Particles inward of 100 AU grow to > 0.1 mm in 10⁴ years and are safe against loss
- High optical depth, fast evolution protects particles inward of 100 AU
- Simultaneous formation of O stars, disk-bearing stars is inconsistent with planet formation in outer edges

Conclusions

- Disks evolution cannot be considered only in isolated environments
 Majority of solar-type stars may form in OB associations
- UV processes significantly affect disk evolution, and make growth of large particles in large disks difficult
- Steeply-terminated outer disk edges due to photoevaporation are consistent with observations of Orion disks (McCaughrean & O'Dell 1996)
- Timescales are consistent with observations of large particles in Orion disks (Throop et al 1998)
- Timing between the start of coagulation and the onset of photoevaporation is critical to disk survival & evolution