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1. Introduction

The model has been described and quanti�ed in papers by Wilson and Devinney (1971) and by Wilson (1979, 1990,
1993) that include its main theory, organization, and concepts, as well as much of the mathematics. The reader is referred
to those papers for background. Since it would be impractical to cover the programming ideas within a reasonable length,
only the 1993 paper goes signi�cantly into programming, and there only in abbreviated form. This booklet also is not an
explanation of programming ideas - its purpose is to tell how to use the model.
The overall program consists of a main FORTRAN program (LC) for generating light and radial velocity curves and

spectral line pro�les, a di�erential corrections main program (DC) for parameter adjustment of light and velocity curves
by the least squares criterion, and somewhat over two dozen subroutines used by both main programs. [In this monograph,
program and subprogram names are in boldface type (e.g. LC), and FORTRAN variable names are in the sans serif style
(e.g. XINCL)]. The present program has grown over the years from much simpler beginnings. Growth has consisted of
occasional improvements in regard to generality, speed, and elimination of bugs, perhaps about every 6 months, punctuated
by three revisions. The revision of 1982 introduced eccentric orbits, asynchronous rotation, capacities to do several new
kinds of constrained solutions, computation of velocity curves (with proximity and eclipse e�ects), simultaneous light and
radial velocity solutions, and a simple star spot capability. Most features of the 1982 version are described in Wilson
(1979). The revision of 1992 had options for detailed reection and non-linear (logarithmic) limb darkening, adjustment
of spot parameters, an optional provision for spots to move with the rotating surface, capability for following light curve
development over large numbers of orbits, and greater speed. At that time an accuracy improvement was expected for
the near term, but insu�cient resources have been available for completion of that project, which is still on the "back
burner". Instead, this third revision (1998) includes semi-transparent circumstellar clouds, a simple spectral line pro�le
capability for fast-rotating stars, inclusion of the Marquardt � factor in di�erential corrections solutions, generation of
sky coordinates for images, an option to work with either observed times or phases, additional solution parameters (T0,
P0, dP=dt, and d!=dt), conversion of the entire program to double precision, and some other improvements that are listed
near the end of the booklet. An accuracy improvement still is expected, but the e�ective date is hard to predict.

2. Running the Programs

To make things simple, the light and velocity curve program (LC) and the di�erential corrections program (DC) are
supplied complete with sample input data sets, so that all one needs to do to get started is to run the programs with the
input data. There should be few, if any, machine-dependent problems, as those have been eliminated via feedback from
users. If such a problem is found, please communicate it to R.E.W. However there may be a trivial problem with the
arc sine and arc cosine routines, which are DASIN and DACOS on some systems and DARSIN and DARCOS on others.
That problem can easily be �xed. Then just change the numbers to run a particular binary star problem. Be sure to
keep at least one copy of the supplied sample data in case the input formatting gets scrambled or shifted. Of course, one
always can re-construct the correct format by comparing the program's READ and FORMAT statements with the input
lines, but save the original data anyway in the interest of keeping things simple. It is not recommended to change the
programs, but if you must, be sure to keep a copy of the original version for comparison. Tinkering can introduce a bug
that may not show up in particular cases, but jumps out at you later on.
When compiling the programs, the simplest procedure is to form separate executable modules for LC and DC. The

programs are supplied in one large �le, with the �rst few hundred lines being the LC main program, the next roughly 1500
lines being the DC main program, and the rest being the two dozen or so subroutines used by both main programs. The
light-velocity-line pro�le module should contain LC and all of the subroutines except SQUAR, which it does not need.
Of course, no harm is done by including unnecessary subroutines. The di�erential corrections module should contain DC
and all of the subroutines except MLRG, which it does not need.
The type of output produced by LC is determined by control integer MPAGE and can be light curves (MPAGE=1),

radial velocity curves (MPAGE=2), spectral line pro�les (MPAGE=3), star dimensions (MPAGE=4), or sky coordinates for
producing images (MPAGE=5).



For MPAGE=1 (light curves), the �rst four columns contain time (col. 1), phase (col. 2), separate light for stars 1 and
2 (cols. 3, 4), and the combined system light from stars 1 and 2 plus third light (col. 5). Star 1 is, by de�nition,
the one at superior conjunction near phase zero when parameter PSHIFT is entered as zero. It will be the
one eclipsed near phase zero if there are eclipses. Light is in the program unit, which is explained in Wilson (1993). The
program unit is, in a sense, an absolute unit of observable ux because it can be converted to absolute ux if de�nite
star luminosities and a de�nite observer distance are speci�ed. Light (observable ux) is discussed in section 4. Column
6 contains the light of column 5 re-scaled (normalized) to a speci�ed input value (labeled FACTOR) at a speci�ed input
phase (labeled PHN). For example, one can require that the normalized light be 1.2000 at phase 0.1500. This re-scaling
provision is only for convenience in working with graphs, and has no relevance to di�erential corrections solutions. That
is, the DC program works only with absolute ux (column 5 of LC output) and does not even know about normalized
light. Column 7 is the star separation, with the unit being the relative orbital semi-major axis (a = a1 + a2). Column 8 is
the system brightness expressed in magnitudes, with a user-speci�ed zero point (labeled MZERO). For example, if MZERO
is +7.300, column 8 will read 7.300 at the phase of normalization (PHN), which is the same phase of normalization used
for column 6.
For MPAGE=2 (radial velocities), the �rst two output columns are again time and phase. Columns 3 and 4 are

dimensionless radial velocities for the two stars (in circular relative orbit circumference [2�a] per orbit period). Columns 5
and 6 are the eclipse-proximity corrections corresponding to columns 3 and 4, respectively, and in the same dimensionless
unit. Columns 7 and 8 are velocities in kilometers per second (if VUNIT was entered as 1.00, or in general the velocities
in unit VUNIT).
For MPAGE=3 (spectral line pro�les). The output is by blocks according to phase, with results for stars 1 and 2

given �rst and second, respectively, within each phase block. Column 1 is the equivalent velocity di�erence between the
reference wavelength and the wavelength of the pro�le point, in unit VUNIT. Column 2 is the corresponding wavelength
di�erence, in microns. The reference wavelength is that entered with the main binary star parameters (labeled "wv lth"
in the output). Column 3 has the actual wavelengths of the pro�le points, in microns. Column 4 is the pro�le in terms
of a at continuum at ux 1.0000000. Column 5 is the pro�le in terms of a continuum that can be shifted vertically and
can have a slope. Guard against generating excessive output with MPAGE=3 (usually one does only one phase at a time).
Input for MPAGE=3 operation is described in Section 6.
For MPAGE=4 (star �gures), LC lists the pole, point, side, and back radii of each star vs. time and phase. This

provision can be useful for eccentric orbit cases, as it shows the variation of �gure with phase.
For MPAGE=5 (binary star images), LC produces only two output columns for each time/phase (beyond the usual

header information, essentially composed of the input quantities and their labels). Those columns are ysky and zsky
rectangular plane of sky coordinates of the projected surface elements of the two stars. A picture of the binary at a given
phase can be made by sending just those two columns to a plot program such as GNUPLOT, MONGO, etc. Any spots
or parts of spots that may be in view will show in the pictures, although there is no distinction in the pictures between
bright and dark spots. The images show only spot location, not spot surface brightness (there is no gray scale). The
origin [0; 0] of the image coordinates is at the system center of mass.
Adjustment of parameters while �tting light and velocity curves normally involves both subjective (LC) and objective

(DC) iteration. It is assumed here that the user has reasonable background knowledge of binary stars and can show good
judgment in deciding which parameters to �x from theory, which to �x from other kinds of observations, and which to
adjust. Solution constraints, if there are to be any, must also be decided upon. In most situations, some of the decisions
are obvious while others are debatable, and seldom will two persons make the same set of choices, even if given exactly
the same circumstances. Therefore this section goes only into the "mechanics" of solutions, which means how to use the
LC and DC programs.
Most persons will want to begin with a quick graphical �t, so as to be somewhere near to a proper solution. It is a good

idea to interface LC to a graphics package to facilitate eye inspections. The following discussion speci�cally concerns
light curves (MPAGE=1 in LC), although radial velocities (MPAGE=2) would be �tted in much the same way. It is best
to be ready to feed either column 5 (light in program units) or column 6 (normalized light) to the graph. Remember that
the normalized light column has no counterpart in DC, so after a few �rst cuts with normalized light (to reach rough
agreement with the observations) switch from use of column 6 to use of column 5. At this point one should e�ect a correct
transfer such that the column 5 numbers will be approximately the same as the column 6 (normalized) numbers that
have been made to �t the light curve(s). This little problem involves the estimation of a scaling constant, or sometimes
more than one. Please consult section "Luminosity vs. Light (Flux)" at this point if you are not conversant with
the distinction between "light" or "ux" on the one hand (an output quantity), and "luminosity" on the other (an input
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quantity). This will sound trickier than it is, but do not be concerned with making a perfect transfer from column 6 to
column 5 output, because you are iterating anyway and only need to get close. Remember that the light of each star scales
with its luminosity, while third light (l3) is just a direct add-on. Also remember that in all modes of program operation
except modes 0 and -1, the luminosity of star 2 (L2) is computed by the program and scales with that of star 1 (L1),
assuming �xed values for all other parameters. Therefore the main, or perhaps only, scaling parameter in most situations
is L1. The simplest case is in mode 1, 2, 3, 4, 5, or 6 with no third light. Then, for example, doubling L1 will double
column 5 output light. If there is third light, that also should be doubled if column 5 light (l1 + l2 + l3) is supposed to
double. In mode 0, L2 does not scale with L1, so L2 also would then need to be doubled. In mode -1, L1 has only minor
inuence (through reection heating), so L2 and l3 mostly control the scaling, although L1 also needs to be scaled in the
general case. So to make column 5 agree with column 6, bump L1 and l3 (most modes) or L1, L2, and l3 (modes 0 and
-1) up or down by a �xed factor.
When you use normalized output the idea is to select some phase where you make the synthesized curve match the

observed curve essentially exactly, so that you can concentrate on form rather than the absolute scale. Usually one
chooses some innocuous phase outside eclipse where the brightness is not changing very fast. Vertical shifts of the whole
normalized curve are made by changing input quantity FACTOR, if working in direct light, or MZERO if working in
magnitudes. After you switch to column 5 output (getting ready for DC), control of vertical scaling passes to L1, L2,
and l3, as explained above. After gaining some experience with LC, you will be using the normalized output only for a
few preliminary runs and staying with program-unit light thereafter.
To start running DC, begin with the sample data, which contains control integers, initial parameter estimates, radial

velocity curves for a primary and a secondary star, and light curves for the sample binary at three e�ective wavelengths.
The sample data �le is set up to do a simultaneous solution of the two velocity curves and the three light curves. Run
DC and inspect the output to be sure you understand everything. You may want to change a few things in the input to
verify that the output responds as expected.
To begin a solution with your own data, change the sample input numbers to those appropriate to the observed binary,

being careful to keep the original format. By this time you should have made a reasonable number of �tting experiments
with LC, decided on the mode of program operation, decided on the parameter set and subsets to be adjusted, and
estimated the SIGMA's (standard deviations) of the observed curves (see below). If you will be �tting normal points, they
should have been formed. You should also give a reasonable amount of thought to the sizes of the increments (DEL's)
used in forming the numerical derivatives. It is easy to fall into the error of trusting the DEL's in the sample data to be
appropriate for your binary, and sometimes they will be, but you cannot rely on that assumption. For example, suppose
the mass ratio DEL is 0.01 and you just leave that value in for two binaries with mass ratios of 5.00 and 0.10. The
increment for the �rst binary is one part in 500 (probably too small), while that for the second is one part in 10 (grossly
too large, of course). Also remember not to try star spots that are unduly small in angular radius, because there are
no fractional areas to the spots - they have staircase-like boundaries where their idealized circular outlines encounter
the �nite grid elements. Of course, the roughness of this simple treatment becomes particularly troublesome for small
spots, and very small spots might not show up at all. Di�erential correction of spot parameters requires �ne grids and
considerable patience.
DC writes a table of numbers that are useful for estimating the SIGMA's (standard deviations=�'s) of the 1 or 2

velocity curves and NLC light curves. The table is labeled "Sums of squares of residuals for separate curves, including
only individual weights", which is exactly what is listed (neither curve-dependent nor level-dependent weights are included).
The sums of squares are just listed in the order their curves occur in the input. To form SIGMA's, calculate

� =

r
�Wr2

n�m

where n is the number of data points in a curve and m is the number of adjusted parameters in the subset of primary
interest. Usually n is much larger than m, so that the actual value of m makes little di�erence. The SIGMA's are used
by DC to calculate curve-dependent weights - that is, to control the relative inuences of the various curves. One can
enter rough guesses for the SIGMA's in the �rst few iterations, then calculate them properly for the middle runs and �ne
tuning runs. The rough guesses can be made by putting a straight line through a representative section of the data.

3



3. Modes of Program Operation (Solution Constraints)

Imagine that you know or are convinced of something about possible parameter values, and your "fact" is not in the
form of a de�nite parameter value, but rather is a functional relationship among parameters. You do not claim to know
the value of parameter c, but if someone tells you the values of parameters a and b, you then can compute c. The most
common example is connected with one of the stars accurately �lling a limiting lobe, as in a semi-detached case. It is
impossible (or anyway, inadvisable) to say in less than a small monograph why we believe in the phenomenon of lobe
�lling and our ability to recognize semi-detached binaries as such. Of course, there are binaries for which we cannot be
sure - the lobe may or may not be �lled - but there are many for which we would "bet the ranch" that they are. In fact,
for more than a few of the classical Algol type binaries, conicts between mass ratios determined from radial velocities
and mass ratios found from a lobe �lling condition (through light curves) were eventually resolved in favor of lobe �lling
and light curves. S Cancri is a good example. For the simple case of a circular orbit and synchronous rotation, the
mass ratio, q, of a semi-detached binary determines the relative size of the lobe �lling star, Rlobe/a. Since the model
expresses star size via the 
 potential energy function, only q or 
 (but not both) should freely be adjusted. If we have
lobe �lling with non-synchronous rotation there is a functional relation among three parameters (now also F to express
the rotation rate), and we add parameters e and ! if the orbit is eccentric. In general, application of the lobe �lling
condition, or another condition, reduces the number of free parameters by one. Now because every parameter enlarges
and complicates the parameter correlation matrix and thus weakens the solution, we should take advantage of every
opportunity to eliminate free parameters. Essentially we thereby introduce information from sources external to the light
and velocity curves, and we tell the least squares program "here is something about the binary that you cannot �gure out
from the data, but we are letting you know so that you can eliminate a whole dimension of incorrect solutions". Each
such condition can be represented as a constraint among possible parameter values, and a constraint or set of constraints
is identi�ed with a particular operation mode of LC and DC. Parameters that are set by constraints are no longer free
parameters. The program computes them from the constraint relations and ignores their input values. Of course, they
cannot be adjusted. Unfortunately, a few authors have failed to understand the idea of constrained solutions and have
made comments something like "our program allows each star to have the radius that gives the best �t to the light curve,
so that application of a lobe �lling constraint is unnecessary". This is akin to saying "we amputate the legs so as to make
walking unnecessary".
Mode -1: This mode is for X-ray binaries for which the eclipse duration of a compact object is known from X-ray

observations. The compact star must be star 1. The applied constraint is that the surface potential of the ordinary star
(star 2) must be such as to produce the observed X-ray eclipse duration. Therefore the program computes the 
2 potential
from the input q, F2, e, !, i, and X-ray eclipse semi-duration, �e (FORTRAN name is THE). Note that solutions are not
limited to circular orbits or synchronous rotation - any e between 0 and 1 is allowed, as is any F2. Note also that lobe
�lling is not implied.
Mode 0: No constraints are applied in mode 0, and the component luminosity ratio is not even required to be consistent

with the surface temperatures. That is, the program uses L1 and L2 as supplied, and does not re-compute L2, based on
the input temperatures. A star may even be larger than its Roche lobe in mode 0 (and will then have a hole in one end).
Among the various modes, mode 0 is the closest analog to the Russell model.
Mode 1: This is a mode for overcontact binaries, such as W UMa stars. Seven constraints are applied. The �rst is

that the surface potential of star 2 is equal to that of star 1 (
2 = 
1). Another is that the polar temperature of star
2 is set by the gravity brightening law of the entire common envelope. This is done via equation 8 of Wilson (1979).
Other constraints are that the gravity brightening, bolometric albedo, and limb darkening parameters of star 2 are the
same as those of star 1. Finally, the luminosity of star 2 is computed from the other parameters via black body or stellar
atmosphere radiation formulas. Therefore the seven parameters 
2, T2, g2, A2, L2, x2, and y2 are not free in mode
1. A consequence of mode 1 operation is that there is a smooth variation of surface brightness over the entire common
envelope with no discontinuity where the stars join together and thus one continuous gravity brightening law. In mode 1
light curve �tting experiments, there will be essentially no freedom to change the relative primary and secondary eclipse
depths, which will be set almost entirely by geometry (although a little by gravity brightening, limb darkening, etc.).
Mode 2: This is for detached binaries with no constraints on the potentials. The only constraint is that the secondary

luminosity, L2, is computed from the other parameters via the speci�ed radiation prescription (black body or approximate
stellar atmosphere). That is, L2 is coupled to the temperatures. The temperature-luminosity coupling can be severed by
setting control integer IPB to 1 (normal value = 0). Mode 2 is the same as mode 0 except for the one constraint, and is
exactly like mode 0 if IPB is set to 1.
Mode 3: This is for overcontact binaries and is the same as mode 1, except that the constraint on T2 is not applied.
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The other six constraints of mode 1 are applied in mode 3, but T2 is a free parameter and can be adjusted. The stars can
be overcontact in mode 3, yet have much di�erent surface brightnesses. In structural language, they can be in geometrical
contact without being in thermal contact.
Mode 4: This is for semi-detached binaries with star 1 accurately �lling its limiting lobe, which is the classical Roche

lobe for synchronous rotation and a circular orbit, but is di�erent from the Roche lobe for non-synchronous and eccentric
cases. The applied constraints are that 
1 has the lobe �lling value and that L2 is coupled to the temperatures (unless
IPB=1).
Mode 5: The same as mode 4, except that it is star 2 that �lls its limiting lobe. This is the usual mode for Algol type

binaries.
Mode 6: This is for double contact binaries, in which both stars accurately �ll their limiting lobes (Wilson, 1979).

Astrophysically this makes sense only if at least one of the stars rotates non-synchronously. Mode 6 applies the surface
potential constraints of modes 4 and 5 together.
Note on lobe �lling: The program operates under a general de�nition of a limiting lobe that applies for non-

synchronous as well as synchronous rotation and for eccentric as well as circular orbits. The classical Roche lobe is a
special case that obtains for the synchronous, circular orbit case. In the general de�nition, a limiting lobe is an equipotential
for which the e�ective gravity is zero on the line of star centers at periastron. In a strict sense, equipotentials do not exist
in the eccentric orbit case, but in essence the concept of equipotentials still is useful in most realistic situations (Avni,
1976; Wilson, 1979).

4. Luminosity vs. Light (Flux)

It is essential to emphasize the very important, yet commonly ignored, distinction between "light" or "ux" on the
one hand, and luminosity on the other. As simple as this is, it has led to remarkable confusion in the literature. The
problem has its roots in the non-spherical models of past decades that could have made the distinction but did not,
and it has carried over into the general binary star literature of today. A luminosity as discussed here is characterized
by an e�ective wavelength and other bandpass properties, and usually is described "monochromatic" in common usage,
although "polychromatic" would be a more logical term. Where it is necessary to refer to a bolometric luminosity, the
quali�er "bolometric" can speci�cally be attached. In some papers, unquali�ed luminosity means bolometric luminosity,
but in this document unquali�ed luminosity means monochromatic luminosity.
A discussion of this point is in the description of subroutine LUM in Wilson (1993). The main thing to remember

is that luminosity is a global quantity, represented by a single number for each star and bandpass. It does not depend
on aspect (neither on inclination nor on phase). Some authors write of "normalizing luminosities by the sum of the
luminosities outside eclipse". However, luminosity has nothing to do with eclipses or their absence, nor with any other
aspect-dependent variation. Flux (or, in more relaxed terminology, "light") is a directly observable (aspect-dependent)
quantity, while luminosity is a model parameter that cannot be observed directly but must be inferred as part of a
photometric solution. The star luminosities, L1 and L2, still can be normalized by their sum (a common and reasonable
practice) but two points need to be kept in mind. The �rst is that the normalization must be made only after completion
of a solution, not during its progress. The reason is that the luminosities are the main handles for scaling of (output)
ux. As such they need to oat freely so that the model is able to match the observed uxes, which almost always are in
an arbitrary unit, since the measurements are made with respect to the ux from a comparison star. The second point is
that L1 and L2 are not the same kind of quantity as third light (a ux), and are not to be compared directly with third
light. This is important because many papers have listed values of third light with no indication of what the number
means. Not only is the printed l3 thereby rendered useless, but strictly speaking the entire solution is made meaningless
because l3 usually is signi�cantly correlated with other parameters. An estimate of third luminosity, based on third light,
involves an assumption about the direction dependence of the radiation of the third source. If that radiation is emitted
isotropically, then third luminosity, L3, will be 4� times l3, which is per 1=4� of the area of a sphere centered on the
binary ("a steradian's worth of area"). That L3 value is to be compared with the un-normalized L1 and L2. A meaningful
way to specify the unit of a published l3 is to express it in the light (relative ux) of the multiple star system at a de�nite
phase. For example, suppose the solution output light is 1.0500 at reference phase 0.2500 for a particular light curve.
Then divide l3 and its error estimate by 1.0500, list those numbers, not the direct l3 program output, and tell the reference
phase in a footnote to the table of results.
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5. Circumstellar Light-Attenuating Regions

The light curves of some interacting binaries show e�ects of attenuation of star light by circumstellar matter. Most
such matter is gaseous, although dust attenuation may be signi�cant in a few cases. The attenuation may be due to
Thomson scattering, Rayleigh scattering, another scattering process, or true absorption. Since circumstellar matter
follows dynamical trajectories, one might expect there to be little interest in attenuating regions that are �xed in a
coordinate frame that rotates with the binary, but such is not entirely the case. A few binaries (e.g. RZ Sct, AX Mon)
have approximately stationary loci of circumstellar gas that distort their light curves. The loci may be stream-stream,
stream-disk, or stream-wind interaction regions. E�orts to represent such light curve distortions via bright or dark star
spots sometimes can rule out a spot explanation and point to essentially �xed attenuation regions (hereafter "clouds",
for brevity). The model includes n spherical semi-transparent clouds speci�ed by their locations (x; y; z) [in a rectangular
frame that co-rotates with the stars], cloud radius (r), density (�), electron density (ne), and mean molecular weight per
free electron (�e). The x coordinate is zero at the center of star 1 and increases toward star 2, reaching +D at the center
of star 2. The x; y; z system is right handed and serves for the entire binary system. The part of the line of sight that
passes through the various clouds is computed individually for the lines of sight to all surface points and individually for
all clouds. Regions of variable density can be made by nesting individual clouds. Regions of non-spherical shape can be
approximated by overlapping spherical clouds. Each cloud is allowed its own attenuation law, whose general form is

d�

ds
= �ene + (�� + �sb) � (1)

where � is optical thickness, �e is the Thomson scattering cross section per electron, s is distance along the line of sight
(in cm), �� is a wavelength-dependent opacity, and �sb is an additional opacity for a speci�c bandpass (� in cm2=g). The
�sb term might represent, for example, opacity due to absorption lines averaged over a particular bandpass. The �� term
is

�� = �0�
� (2)

where �0 and � are input quantities. Each cloud has its individual �0, �, and �sb. However to make it easy to change
the �sb's of all clouds together, the �sb's are not entered directly as individual numbers. Instead one enters an overall �sb
and the fraction of it that applies for each cloud. Thus

�sb = fi�sb0 (3)

where all the fi can be unity if �sb is to be the same for all clouds, or non-unity if �sb is to di�er from cloud to cloud.
The program �gures absolute lengths from the system geometry, including the orbital semi-major axis.
At present the clouds only attenuate starlight that passes through them, but they may be made to scatter starlight

toward the observer in a future program version.

6. Spectral line pro�les

Pro�les of absorption and emission lines are generated when input integer MPAGE is set to 3. The pro�les are for
rotation only, although other broadening mechanisms will be added later. Blending is incorporated, including blending
of mixed absorption and emission lines. Lines can originate either from an entire star or from designated sub-areas of
the surface, as explained below. Only LC (not DC) computes line pro�les at present. Spectra are formed by binning,
with the spectra of the two stars formed separately. The user can add them (weighted by observable ux) if spectra of
the binary are needed. Computations for each star are characterized by four quantities related to spectral and accuracy
characteristics (BINWM1, SC1, SL1, NF1 for star 1 and BINWM2, SC2, SL2, NF2 for star 2), that have the following
meanings:
BINWM1(2): The bin width in microns. Too small a bin width gives noisy pro�les. Too large a bin width gives

insu�cient spectral resolution.
SC1(2): The continuum scale (continuum ux at the reference wavelength). The unit is decided by the user.
SL1(2): The continuum slope in ux units per micron.
NF1(2): Grid �neness for micro-integration on each surface element. NF1(2)=1 means that there is no micro-integration.

NF1(2)=n breaks each surface element into n2 pieces, thus improving integration accuracy.
With MPAGE = 3, an LC input line with the above quantities is required for each star, even if one of the stars is

assigned no spectral lines (see sample input �le LCIN.DAT3). DC program input does not have the analogous data lines
at present.
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Following the star-dependent input are data for individual spectral lines in two sets (for star 1, then star 2). The
quantities are (FORTRAN names):
WLL1(2): The line wavelength in microns for a line of star 1 or (2).
EWID1(2): The line equivalent width, in microns - the traditional measure of line strength, for a line of star 1 or (2).
DEPTH1(2): Rectangular line depth for a line of star 1 or (2). Line pro�les are formed by binning of Doppler shifted

elements that have rectangular pro�les, each with a depth and a width. The user supplies the depth and the program
then calculates the width needed to reproduce the speci�ed equivalent width. The depth is relative to a unit continuum,
so 0.80000 means that 80 percent of the continuum ux is missing within the rectangular pro�le element, or that the
residual ux is 20 percent of the continuum. Negative depths correspond to emission lines, so -0.50000 means 50 percent
above the continuum.
KKS: This integer speci�es a surface region associated with a given spectral line. If KKS=0, the line is not speci�c to

a location but applies to the entire star. If KKS=1, then the line applies only to the �rst spot on that star; if KKS=2
it applies only to the second spot, and so on. Naturally the star must have spots for this scheme to work, but the spots
need not be hot or cool spots - they can have temperature factors of unity. Negative KKS speci�es avoidance of regions.
Thus KKS=-4 means that the spectral line applies everywhere on the star except within spot 4. If you �nd this confusing,
just set KKS=0 and the line applies in the old simple way - everywhere on the star.

7. Model parameters

These are the same for the LC and DC programs, although some of the parameters are not among the 35 that can be
adjusted by the present version of DC. The actual number of parameters subject to adjustment is greater than 35 for two
reasons. First, although DC can adjust the parameters of at most two star spots in any one run (iteration), successive
iterations can adjust the parameters of di�erent spots (viz. de�nitions of KSPA, KSPB, NSPA, and NSPB in Section 9).
Second, curve dependent parameters (limb darkening coe�cients, relative monochromatic luminosities, third light) have
n values for n simultaneously �tted light curves. For example, specifying the adjustment of l3 in a simultaneous solution
of four light curves will produce four l3 corrections, one for each curve. The word "curve" is used here in the sense of
"light curve", "radial velocity curve", etc. Parameters are said to be "curve dependent" or "curve independent" rather
than "wavelength dependent" or "wavelength independent" because DC may sometimes deal with more than one curve
at a given wavelength (for example, wide and narrow band light curves at the same e�ective wavelength). Parameters are
identi�ed below according to their FORTRAN names.

7.1. Curve-independent parameters that cannot be adjusted by DC are:

THE (�e): The semi-duration of primary eclipse in phase units (i.e. range 0 to 1 for a whole cycle). This parameter is
used only in mode -1 and relates only to binaries in which star 1 is a compact object (i.e. has negligible size compared to
the other star). The idea is to �x �e according to X-ray eclipses of a neutron star, black hole, or white dwarf, and require
the overall solution to be consistent with that value. The orbit can be eccentric and rotation can be non-synchronous.
Parameter �e is ignored in all other operation modes. See the explanation of mode -1 in Section 3.
XBOL1, XBOL2 (xbol1, xbol2): The coe�cients of cos  in the bolometric limb darkening law. Used only in computation

of "detailed" reection (Wilson, 1990), with MREF=2. See ybol1, ybol2 below for the complete law and explanation.
YBOL1, YBOL2 (ybol1,ybol2): If control integer LD=2, these are the coe�cients of the cos  (ln cos ) term in the

bolometric logarithmic limb darkening law. The complete logarithmic law is:

I

I0
= 1� x+ x cos  � y cos  (ln cos ) ;

which was advocated by Klinglesmith and Sobieski (1970). If LD=3, they are the coe�cients of the bolometric square
root law. The complete square root law (Diaz-Cordoves and Gimenez, 1992) is:

I

I0
= 1� x+ x cos  � y (1�

p
cos )

Coe�cients for all these darkening laws have been tabulated by Van Hamme (1993).
XCL, YCL, ZCL: Rectangular coordinates of the centers of spherical circumstellar clouds. See above section Circumstellar

Light Attenuating Regions.

7



RCL: Radii of individual circumstellar spherical attenuating regions in unit of a.
EDENS: Electron densities, ne, in cm�3 for individual attenuating clouds. For a given cloud, ne is constant.
XMUE: Mean molecular weight in atomic mass units per free electron, �e, for individual attenuating clouds, and constant

throughout a given cloud.
ENCL: Exponent � in the wavelength-dependent term of the attenuation law for individual attenuating clouds (see

Circumstellar Light Attenuating Regions). The program internally computes densities, �, from ne and �e.

7.2. Curve-dependent parameters that cannot be adjusted by DC are:

WLA: The observational wavelengths in microns of each light or velocity curve. Wavelengths need to be entered for
velocity curves, although they have little e�ect on the output, and any wavelength somewhere near the spectral region of
interest should be adequate.
Y1A, Y2A ( y1, y2): These are the wavelength-speci�c limb darkening coe�cients in the non-linear terms. The laws

have the same forms as for bolometric limb darkening (above). There is one value for each of these coe�cients for each
light or velocity curve or set of line pro�les. Enter integer parameter LD=1 for the linear cosine law (in which case y1 and
y2 are assumed to be zero), LD=2 for the logarithmic law, or LD=3 for the square root law. Although y1 and y2 cannot
be adjusted by the present version of DC, they may be adjustable in a future version.

7.3. Curve-independent parameters that can be adjusted by DC are:

HJD0 (t0): This is the zero point of the orbital ephemeris. Usually one uses Heliocentric Julian Dates, although that is
only a convention and any consistent system of time can be used.
PERIOD (P ): The binary orbit period at the reference time, t0, ordinarily in mean solar days. P a�ects radial velocity

amplitudes and is used to compute phase from time (if JDPHS=1) and time from phase (if JDPHS=2). P can be adjusted
only if JDPHS=1 and observation times (rather than phases) are entered.
DPDT (dP

dt
): The �rst time derivative of the orbital period. Second and higher derivatives are not used in the present

program. DPDT can be adjusted only if JDPHS=1 and observation times (rather than phases) are entered. This quantity
is dimensionless.
E (e): Binary orbital eccentricity.
PERR0 (!0): Initial argument of periastron for star 1. The argument of periastron for star 2 di�ers by � radians.

PERR0 is ! at the reference time of the ephemeris, t0. The program is written so that, as the argument of periastron
changes, both eclipses have excursions in phase in the same way as a real binary. In former versions the input unit was
degrees but the corrections produced by DC were in radians, so one had to convert units to apply the corrections. In the
new version, both the input and the corrections are in radians, which should reduce confusion. The DEL for ! also is in
radians. For circular orbits, the program ignores the input value and sets ! to �=2 radians.
DPERDT (d!

dt
): The �rst time derivative of !. DPERDT can be adjusted only if JDPHS=1 and observation times

(rather than phases) are entered. The instantaneous ! = !0 +
d!
dt
(t� t0). The present program does not consider any

more complicated variations of !. The unit is radians per adopted time unit (usually a mean solar day).
A (a): The length of the semi-major axis of the relative orbital ellipse, in solar radii (6:960 105 km). It is the sum of

the two absolute semi-major axes, so a = a1 + a2.
F1, F2 (F1, F2): The ratio of the (constant) axial rotation rate to the mean orbital rate for stars 1 and 2, respectively.

The angular rotation is assumed to be uniform (not latitude dependent). Value unity represents synchronous rotation
in a circular orbit. In eccentric cases it is expected that rotation will tend to synchronize to the periastron angular rate
because of the strong dependence of the tide raising force on distance. Periastron-synchronized F is given by:

F =

s
1 + e

(1� e)
3
:

The F 's a�ect star �gures, surface brightnesses (gravity e�ect), limiting lobe sizes, and thus both light curves and radial
velocities.
VGA (V): The radial velocity of the binary system center of mass (assumed constant) in the unit (so many km/sec)

speci�ed by the input quantity VUNIT.
PSHIFT (�0): A constant shift applied to computed phases. Usually one enters +0.0000 for �0, but it may be convenient

to shift the phases. For example, a phase shift can e�ectively interchange the star labels (1 vs. 2) without altering the
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observational data. The main purpose of �0 is to allow the DC program to adjust for a zero point error in the ephemeris
used to compute the phases. The unit is an orbital cycle. One should not adjust both PSHIFT and HJD0 because they
will be perfectly correlated.
XINCL (i): The binary orbital inclination to the plane of the sky, in degrees. If the inclination is in the range 0 to 90�,

the binary orbits counter-clockwise as projected onto the plane of the sky, while above 90� it orbits clockwise, according
to the coordinate conventions adopted for the program. Those conventions were di�erent prior to the revision of 1992.
GR1, GR2 (g1, g2): The exponents in the bolometric gravity brightening (a.k.a. darkening) law for stars 1 and 2

respectively. Value 1.000 means that bolometric ux is proportional to local e�ective gravity, while value 0.000 means
that it is constant over the surface (ignoring other e�ects such as spots, reection heating, etc.). The g's are expected to
be unity for radiative envelopes, while they should be smaller for convective envelopes, perhaps about 0.3. Some other
programs use a gravity brightening exponent as expressed in terms of e�ective temperature, for which the usual symbol
is �. The quantities are related by g = 4�.
TAVH, TAVC (T1, T2): The mean surface e�ective temperatures of stars 1 and 2, respectively. The mean is weighted by

the local bolometric ux. The program accepts T1 and T2 as model parameters and converts to local surface temperatures
for internal computations. The conversion between mean and polar temperatures is made via eqn. 8 of Wilson (1979),
and the local surface temperatures are then computed from the polar temperatures and the gravity brightening law. The
unit is 10000 K.
ALB1, ALB2 (A1, A2): The bolometric albedos for reection heating and re-radiation on stars 1 and 2, respectively.

The bolometric albedo is the local ratio of re-radiated bolometric energy to received bolometric energy. It is assumed to
be constant for each star. The expected value for radiative envelopes is 1.00, while for convective envelopes it should be
perhaps 0.5, although observations sometimes indicate values between 0.5 and 1.0.
PHSV, PCSV (
1, 
2): These are the "potentials" for stars 1 and 2, respectively, that originally were de�ned by Kopal

for the synchronous, circular orbit case. They would be actual potentials, except that a term was deleted in Kopal's
convention. The deleted term depends on mass ratio but not on position, so 
 gradients are equivalent to potential
gradients. Fixed 
 speci�es a constant potential energy (gravitational plus centrifugal) over the surface of each star. A
generalized de�ning equation (eqn. 1 of Wilson, 1979), based on contributions by Plavec (1958), Limber (1963), and
Avni (1976), allows the 
's to serve also for non-synchronous rotation and eccentric orbits. Together with the mass ratio,
rotation rate, orbital eccentricity, argument of periastron, and phase, the 
's specify the size, �gure, surface gravity, and
certain other geometric properties of the stars. Special values of the 
's correspond to exact �lling of limiting lobes.
RM (q): The mass ratio, m2=m1, of stars 1 and 2.
XLAT: The "latitude" of a star spot center, measured from 0 radians at the "north" (+z) pole to � radians at the

"south" pole. XLAT's are subscripted by star (1 or 2) and by spot number on a star (viz. explanation of KSPA, NSPA,
KSPB, and NSPB in Section 9.
XLONG: The longitude of a star spot center, measured counter-clockwise (as viewed from above the +z axis) from the

line of star centers from 0 to 2� radians. XLONG is subscripted in the same way as XLAT.
RADSP: The angular radius of a star spot, in radians. The angle is subtended by the spot radius at the center of the

star. RADSP is subscripted in the same way as XLAT.
TEMSP: The "temperature factor" of a spot, that speci�es the local spot temperature compared to the local temperature

that would obtain without the spot. A TEMSP larger or smaller than unity corresponds to the spot being hotter or cooler
than the un-spotted surface, respectively. TEMSP is constant for a given spot, but local temperature will vary over a spot
if the underlying un-spotted temperature varies. TEMSP is subscripted in the same way as XLAT.

7.4. Curve-dependent parameters that can be adjusted by DC are:

HLA, CLA (L1, L2): Monochromatic luminosities for stars 1 and 2, respectively. There has been some confusion about
the units of luminosity and of light, which is partly due to a tradition in the binary star �eld of normalizing luminosity
and light separately, and failing to recognize that they are fundamentally distinct (although connected) quantities (viz.
Section 4). The program luminosity unit is e�ectively user-supplied, and determines the unit of output light (i.e. `1 or `2
monochromatic ux). The output ux will integrate to the luminosity over a sphere at any large distance, centered on the
binary system. The computed uxes will be in the unit 1=4� luminosity units/(steradian's worth of area). Now this may
not sound like correct ux units - with "steradian" in there it sounds like intensity. However that last item, "steradian's
worth of area" is indeed an area, not a solid angle. So to be formally correct, replace "steradian's worth of area" with "d2

cm2", where d is the assumed binary - observer distance in cm. Pictorially, imagine the observer's detecting instrument
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covering 1 steradian (a little on the big side, but one can always re-scale to more practical units). To keep things simple,
imagine that the star radiates isotropically and that we enter a luminosity of 4�, in our chosen unit, for one of the stars.
The program will produce an output ux of 1.000 for that star for all phases and inclinations (outside eclipse), and since
that ux refers to 1 steradian, the 4� steradians surrounding the star would have 4� units, which is just what we entered
as the luminosity. If we speci�ed the luminosity unit to be, say, 1 1033 erg/sec/micron, then the luminosity is 4� 1033

erg/sec/micron and the ux (light) is 1 1033 erg/sec/micron/d2cm2 (constant in this special case).
X1A, X2A (x1, x2): These are the wavelength-speci�c limb darkening coe�cients in the linear terms. The laws have

the same forms as for bolometric limb darkening (above). There is one value for each of these coe�cients for each light
or velocity curve or set of line pro�les.
EL3A (l3): Third light. There is one value for each light curve, but of course no value for a radial velocity curve. The

unit should be the total system light at a speci�ed phase. For example, suppose l3 (program input-output value) for some
particular light curve is 0.0500, the speci�ed phase is chosen to be 0.2500, and the total system light produced by LC at
phase 0.2500 is 1.0400. Then the number to be published for the l3 of that curve would be 0.0500 divided by 1.0400, or
0.0481. The standard deviation printed by DC for l3 also should be divided by 1.0400 for publication. A footnote can be
placed in the publication to tell the reference phase.

8. Parameter Order

The 35 DC parameter channels are assigned as follows:
(1) - Spot 1 latitude
(2) - Spot 1 longitude
(3) - Spot 1 angular radius
(4) - Spot 1 temperature factor
(5) - Spot 2 latitude
(6) - Spot 2 longitude
(7) - Spot 2 angular radius
(8) - Spot 2 temperature factor
(9) - Orbital semi-major axis, a = a1 + a2
(10) - Orbital eccentricity, e
(11) - Initial argument of periastron, !0
(12) - Rotation parameter for star 1, F1

(13) - Rotation parameter for star 2, F2

(14) - Phase shift = phase of primary conjunction (for ! = �=2), �0
(15) - System center of mass radial velocity (systemic velocity), V
(16) - Orbital inclination, i
(17) - Gravity law exponent for star 1, g1
(18) - Gravity law exponent for star 2, g2
(19) - Mean surface temperature of star 1, T1
(20) - Mean surface temperature of star 2, T2
(21) - Bolometric albedo of star 1, A1

(22) - Bolometric albedo of star 2, A2

(23) - Surface "potential" of star 1, 
1

(24) - Surface "potential" of star 2, 
2

(25) - Mass ratio, q = m2=m1

(26) - Reference time in ephemeris (initial epoch, usually Heliocentric JD), t0
(27) - Orbital period at initial epoch, P0

(28) - First time derivative of the orbital period, dP=dt
(29) - First time derivative of the argument of periastron, d!=dt
(30) - Unused channel reserved for future expansion
(31) - Monochromatic luminosity of star 1, L1

(32) - Monochromatic luminosity of star 2, L2

(33) - Monochromatic linear limb darkening coe�cient for star 1, x1
(34) - Monochromatic linear limb darkening coe�cient for star 2, x2
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(35) - Monochromatic third light, l3

9. Control Integers, Units, Scaling Factors, Special Quantities

These numbers control program operation and are assigned according to the aims of the user. They are given here by
their FORTRAN names.

9.1. Those common to LC and DC

JDPHS: This is 1 if the independent variable is time and 2 if it is phase. Setting JDPHS=1 in LC causes time (ordinarily
Heliocentric Julian Date) to be stepped from HJDST to HJDSP in uniform intervals of length HJDIN (see below). Phases
for those times are computed according to the supplied ephemeris. Setting JDPHS=2 in LC causes phase to be stepped
from PHSTRT to PHSTOP in uniform intervals of length PHIN. Times for those phases are computed according to the
supplied ephemeris. Regardless of whether JDPHS is 1 or 2, both time and phase are listed in the output (columns 1 and
2, respectively).
Setting JDPHS=1 causes DC to treat the entered independent variable as time and therefore compute phases from the

input times according to the supplied ephemeris. Setting JDPHS=2 in DC causes it to treat the independent variable as
phase. At present, the ephemeris includes only the initial epoch (t0), the period at that epoch (P0), and the �rst time
derivative of the period, dP=dt.
MODE: This integer can be -1, 0, 1, 2, 3, 4, 5, or 6 according to the constraints or lack of constraints to be applied.

The operation modes are described in Wilson (1993) and in Section 3.
IPB: Assign IPB = 0 for normal MODE 1, 2, 3, 4, 5, or 6 operation in which star 2's luminosity (L2) is to be computed

from temperatures T1 and T2, the luminosity of star 1, and the radiation laws (as well as other information known by the
program about system geometry, etc.). If you want to set L2 independently (perhaps because you have no trust in the
radiation laws in a particular situation), set IPB = 1 and the program will use the input L2 value. Modes 0 and -1 always
accept the input L2, so they operate as if IPB = 1. See Van Hamme and Wilson (1986) for ideas on the use of IPB in
practical situations.
IFAT1, IFAT2: These control whether a black body or an approximate stellar atmosphere formulation is used for

local emission on stars 1 and 2, respectively. Set IFAT1(2) = 0 or 1 for black body or atmosphere, respectively. The
atmosphere corrections are calculated from approximation functions �tted to the Carbon and Gingerich (1969) model
stellar atmospheres. A newer atmosphere routine is available from Milone, Stagg, and Kurucz (1992).
N1, N2: These are the grid size integers for stars 1 and 2, respectively. Each is the number of latitude rows per

hemisphere. The number of surface elements in longitude scales with N1(2) and scales approximately with the sine of the
"latitude" coordinate, which runs from 0 at the "North" (+z) pole to � radians at the "South" (�z) pole.
VUNIT: This is the unit for radial velocity input and output, in km/sec. Usually it is a round number, such as 100

km/sec, of the order of the input velocities for DC.
MREF: The reection e�ect can be handled either in detail (viz. Wilson, 1990) or by the inverse square law, with

corrections for penumbral and ellipsoidal e�ects. The latter method is much faster and is adequate for many realistic
situations. Set MREF = 1 for the simple treatment and MREF = 2 for the detailed treatment. It is not advisable to use
the detailed treatment for eccentric orbit cases because the required computing time will be almost prohibitively long.
Cases for which the detailed treatment is especially recommended include super-synchronous rotators and overcontact
binaries.
NREF: If detailed reection is selected (MREF = 2), then NREF speci�es the number of reections in a multiple reection

e�ect. Set NREF = 1 for 1 reection from each star, NREF = 2 for 2 reections, etc. More reections use more computing
time. If MREF = 1, the value of NREF is irrelevant.
IFSMV1, IFSMV2: These integers tell whether spots on stars 1 and 2, respectively, are to move in longitude due to

asynchronous rotation and orbital eccentricity. For example, if IFSMV1 is set to 0, the spots on star 1 remain at �xed
longitudes, referenced to the line of centers of the two stars. This behavior is expected for hot spots due to an accretion
stream. If IFSMV1 = 1 and the star rotates asynchronously, then the spots on star 1 follow the physical surface as time
progresses. This behavior is expected for magnetic spots. In both cases, there is no motion in latitude.
ICOR1, ICOR2: These integers refer to the proximity and eclipse e�ects on radial velocities for stars 1 and 2, respectively.

Value 0 turns the e�ects o�, 1 turns them on.
LD: This integer sets the limb darkening law. LD = 1 for the linear cosine law, LD = 2 for a logarithmic law, and LD
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= 3 for a square root law.

9.2. Those for LC only

HJDST: The time at which LC is to start computing output points. HJDST and the next two quantities, HJDSP and
HJDIN, are utilized only if JDPHS=1. They are ignored if JDPHS=2.
HJDSP: The time at which LC is to stop computing output points.
HJDIN: The time increment for output points. HJDIN=0.001 will produce output points spaced by 0.001 day.
PHN: The phase of normalization, which is the phase at which the column of normalized light is normalized to the input

value FACTOR and the magnitude column is caused to equal the magnitude zero point, whose name is ZERO.
PHSTRT, PHSTOP: The �rst and last phases at which output points are to be produced. PHSTOP should be larger

than PHSTRT, but neither has to be in the range 0 to 1. For example, PHSTRT = -3.2000, PHSTOP = 27.4422 is a valid
phase range.
PHIN: The phase increment for output points. PHIN = 0.020 will produce output points every 0.020 in phase, within

the range PHSTRT to PHSTOP.
MPAGE: This integer is 1, 2, 3, 4 or 5 according to whether the output is a light curve, radial velocity curves, spectral

line pro�le(s), star radii, or sky image coordinates, respectively.
ZERO: This is the reference point for output magnitudes (the magnitude at phase PHN).
FACTOR: This is the scaling factor for the normalized light column. The number in that column will equal FACTOR at

phase PHN.

9.3. Those for DC only

DEL's: Most of the partial derivatives needed by DC must be computed numerically. The DEL's are the parameter
increments applied when approximating those derivatives by �nite di�erences. A few derivatives can be computed by
scaling relations and require no DEL's. That is why the number of DEL's is smaller than the number of parameters.
However the numerical labels of the DEL's match those of the parameters. The order in which the DEL's appear in the
input lines can be read from the output of DC, where they are labeled by parameter name, or from the DC output
in Appendix Ib, where they are labeled by parameter number. Give some thought to reasonable values for the DEL's.
DEL's that are too large will cause systematic errors in the derivatives, and DEL's that are too small will cause excessive
numerical noise.
KEP or KEEP: These mean the same thing generically. The di�erence in meaning in a programming sense is not

something the user needs to be concerned with. The KEEP's determine which parameters are to be adjusted, and have
only two possible values, 0 to allow adjustment and 1 to keep a �xed value. There are 35 adjustable parameters and
therefore 35 KEEP's in the present program (actually 34 adjustable parameters plus 1 parameter channel reserved for
future expansion, so that 35 KEEP's are entered). They are all entered together on an input line, separated into blocks
so as to be easy to count o�. There is one such input line for the base set, early in the data stream, and a set of n such
input lines at the end of the data stream (for the n subset solutions). The order of appearance within the string of 1's
and 0's is the same as that of the 35 parameters, which is listed in Section 8 and also printed with every run of DC.
IFDER, IFM, IFR: These are three print control integers that follow the KEEP integers on the same input lines. Each

is set to 1 for "yes, print" or to 0 for "do not print". IFDER decides on the printing of the matrix of derivatives and
(O-C) residuals, or observational equations (both the unweighted and the weighted matrices). Usually one would print the
derivatives and residuals only for the base set solution, since the numbers are unchanged in the subset solutions (except
for missing columns). IFM decides on the printing of the matrix of normal equations, the product matrix of the normal
equations times their inverse (which should be an identity matrix), the matrix of correlation coe�cients, and the sum of
absolute values of residuals (a single number) obtained by back-substitution of the answers into the normal equations.
The user may want to see these numbers for all subset solutions or perhaps only for certain solutions. IFR decides on the
printing (after each subset solution) of a block of information about radii, the derivatives of radii with respect to surface
potential and mass ratio, and the standard errors of the radii.
XLAMDA: The Marquardt � multiplier (see next section, subsection "Marquardt �"). XLAMDA is the �nal entry on

the "KEEP" lines and is the only oating point number on those lines.
KSPA, NSPA, KSPB, NSPB: Each of the two stars may have many spots, but DC can adjust the parameters of at most

two spots in any one run. This does not imply a limit to the number of spots adjusted overall, since other spots can be
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adjusted in other runs. Think in terms of spot A and spot B, which may be on the same or di�erent stars. KSPA, NSPA,
KSPB, and NSPB are best understood as a set. Given that some spot parameters are to be adjusted (which is determined
by KEEP's 1 to 4 for spot A and KEEP's 5 to 8 for spot B), the new integers (KSPA, etc.) determine for which of the
(perhaps) many spots on the two stars those parameters will be adjusted. KSPA=1 means that spot A is on star 1, and
KSPA=2 means that it is on star 2. NSPA determines which spot on the thus determined star is spot A. If KSPA=2 and
NSPA=3, then star 2's third spot is spot A. Star 2 might have some large number of of spots, say 10, and spot A will be
the third one. Of course, the program will do something crazy if you ask it to adjust the third spot on a star that has
only two spots - I have not bothered to �nd out what. The order assigned to the spots is just the order in which their
parameters are read in the input lines. Naturally, KSPB and NSPB apply the same way in identifying spot B. If you want
to adjust, say four spots, you can use the MMS (see next section) and adjust two of them in one DC iteration, the other
two in the next iteration, and so on.
IFVC1, IFVC2: These tell DC whether or not to expect a radial velocity curve in the input stream for star 1 and star 2

respectively (0 for no, 1 for yes). Velocity curves precede light curves in the input. So with IFVC1=0 and IFVC2=1, DC
expects the �rst curve it sees to be a velocity curve of star 2.
NLC: This integer is the number of light curves of the binary in the input stream. With IFVC1=1, IFVC2=1, and NLC=3,

DC expects to encounter two velocity curves (the �rst for star 1, the second for star 2) and then 3 light curves. It will
do a simultaneous adjustment (one iteration) of these �ve curves together, producing one correction for each parameter
that is the same for all curves (e.g. mass ratio) and 3 corrections for each parameter that is di�erent for each of the 3
light curves (e.g. limb darkening). The 3 curve-dependent parameter corrections for a given stellar component are printed
in direct succession. Input and output parameters, their di�erences (corrections from input values) and their estimated
standard deviations are listed by parameter number (see list in Section 8). Curve-dependent parameters are listed also
by curve number, according to the input order of the curves. "Curve 0" means "curve-independent".
KO: DC can process multiple parameter subsets in a given run, as explained under the method of multiple subsets

(MMS). Control integer KO provides three options to the user who has established a "scratch pad" data �le on the local
computer. Such a scratch �le should be designated as input-output unit 9. The purpose of this provision is to save
computing time by writing all of the numerical derivatives and residuals on the scratch �le so that they can be read back
for further subset solutions in a later submission of the program (in case you think of some subsets that you �rst thought
were not needed). Di�erent weighting also can be used in the re-submission. The later run(s) then will take extremely
little computing time, since all the hard computation has been done. This feature is much less important than it once
was because of improvements in machine speed and intrinsic program speed, but it is still available. Multiple subsets can
be processed within a given run without using the scratch pad (set KO=2, KDISK=0). KO can be 0, 1, or 2, as follows:
KO=0. Do the base set and stop. Actually KO=0 serves no signi�cant purpose, as simple omission of subsets has the

same result.
KO=1: Read in the derivatives and residuals that were written to the scratch pad in a previous run. Process these

according to the weighting schemes and subsets requested in this run. Do not re-compute any derivatives. A run with
this option should take only a few seconds or less of computing time.
KO=2: Write the derivatives and residuals generated in this run on the scratch pad for future use. KO=2 can be used

with KDISK=0 if the user does not wish to change the present contents of the scratch pad (or if there is no scratch pad).
In this case the program still can process multiple subsets of the parameter list but, of course, cannot come back later to
process the data further.
KDISK: Set KDISK=1 to use the scratch pad, or KDISK=0 not to use it. Caution: the program will crash if no scratch

pad has been set up and you set KDISK=1.
ISYM: DC can carry out its solutions with either asymmetrical (ISYM=0) or symmetrical (ISYM=1) derivatives. So-

lution convergence is somewhat better with symmetrical derivatives, but they take almost twice as long to compute as
asymmetrical derivatives. Because of the improved convergence, fewer iterations may be needed with ISYM=1, but the
individual iterations will take more machine time. Recommendations are to use ISYM=0 for strong (well determined)
solution situations, and ISYM=1 when convergence is a problem or you are in the �nal �ne-tuning stages. Setting ISYM=1
is particularly advisable when large increments (DEL's) are used to compute the numerical derivatives. See Wilson and
Biermann (1976) or Wilson (1979, eqns. 20, 21).
NPPL: (number of points per line) The number of data triplets (time or phase; velocity or light; weight) on each line of

the input data stream. The number of points per output line is the same. NPPL can be as small as 1 or as large as 5.
N1L, N2L: These are the coarse (low) grid integers. As explained under "Special Features", they apply to certain

derivatives for which computing time can be saved by using coarse grids. Otherwise they are just like N1 and N2.
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NOISE: This integer is on the same input lines as the curve-dependent parameters for light curves, so there is one value
for each light curve (no values for velocity curves). Noise speci�es how level-dependent weights are to be applied (see
discussion of weighting in Section "Input Lines, Including Observations and Weights")
SIGMA: The estimated standard deviations of the various observed light and velocity curves. SIGMA speci�es the relative

weights of the curves in the solution (weight is inversely proportional to SIGMA squared). See discussion of weighting in
Section "Input Lines, Including Observations and Weights").

10. Problems with Solution Convergence

There are three main reasons for poor convergence or convergence failure in di�erential corrections solutions, and it is
important to understand all three. The problems can occur in combination, but let us try to understand them separately.
One problem is a broad, shallow minimum in parameter space. This problem can result in slow convergence even when

only a few parameters are being adjusted, if the minimum is very shallow indeed. It is a problem not only for DC, but
for any minimization scheme, since it is intrinsic to parameter space itself. Nothing can be done except to compute with
precision (use a �ne grid) and do many iterations.
A second problem, also easy to understand, is lack of precision in computing residuals and derivatives. Since most

derivatives are computed numerically in DC, we have two obvious sources of error connected with �nite di�erencing,
which approximates the true derivative of a synthesized observable, f , by the slope near to a given operating point, either
by

@f

@pn
=

f (pn + �pn)� f (pn)

�pn

or by
@f

@pn
=

f
�
pn +

1

2
�pn

�
� f

�
pn � 1

2
�pn

�
�pn

:

Here, pn is a parameter and �pn is its increment. Pseudo-random errors arise from lack of accuracy in the computed f
while systematic errors come from approximation of @f=@pn by �f=�pn. A symmetrical derivative is a better representative
of the true derivative, but takes longer to compute. Of course, the systematic error can be reduced by taking smaller �pn,
but the increment should not be too small or errors in computation of f will become important. Inaccuracy in computing
f can be reduced by use of a �ner numerical grid, but at the cost of increased machine time.
The third problem is more subtle - particularly because it is due to a combination of two conditions, neither of which

causes convergence failure when acting alone. It is important to realize that this third problem is quite distinct from the
other two, and can destroy convergence even if the other problems are completely absent. The two interacting conditions
that cause the problem are non-linearity in the appropriate equation of condition and parameter correlation. The �rst of
these conditions can be expressed equivalently by saying that second or even higher order derivatives are required in the
di�erential corrections equation of condition (which normally is written with only �rst derivatives). One way of seeing
into the nature of this problem is to notice that a correct solution algorithm needs to know about parameter correlations,
but a linear least squares algorithm cannot compute them correctly because it has no knowledge of the higher order
derivatives. As a result there will be virtual tradeo�s among the invisible higher order terms that result in incorrect
predictions of parameter corrections. It usually is not practical to add second order terms to the equation of condition for
several reasons, so two procedures that improve convergence greatly while keeping only linear terms will now be discussed.

10.1. Method of Multiple Subsets (MMS)

One realistic remedy for the problem is to break the full parameter set into subsets and thus reduce the complexity of
the correlations in a given iteration (Wilson and Biermann, 1976). This procedure, in which subsets A and B, or A, B,
and C, etc. are solved iteratively in a closed loop has come to be known as the Method of Multiple Subsets (MMS), and it
works very well in practice. It seems that a DC solution has only minor di�culty in dealing with one or two fairly strong
correlations among parameters. The real di�culty comes when there are many large or even moderately large correlations,
and this circumstance accounts for the success of the MMS. Two important points need to be emphasized. First, the
published standard errors should come from a �nal run that includes all adjusted parameters together - not from the the
subset solutions (which will give unrealistically low error estimates because they see only part of the correlation matrix).
It must be said that even the standard errors for the full set will be of questionable accuracy when there is a complicated
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correlation matrix, but they will have to do in the absence of more rigorously computed standard errors. The second point
is that one must resist the temptation to apply the corrections printed in this �nal run (which is for error estimates only).
It is the nature of the problem that, when the MMS is needed, it is needed all the way to the end. Even if you start from
the exactly correct least squares minimum, the correlation problem discussed here will produce relatively large, erroneous
corrections for the full parameter set. This has nothing to do with the accuracy of the derivatives computed by DC,
but only with the form of parameter space. Some persons have misunderstood this point and assumed that correlation
problems occur only away from the correct solution and that they will disappear at the correct solution. Not only do the
problems not then disappear, but they do not even lessen in severity.

10.2. Marquardt �

A very good trick for e�ecting convergence is the Marquardt (1963; see also Levenberg, 1944) procedure, which has been
utilized with excellent success in several binary star solution programs such as those by Hill and Rucinski; by Kallrath,
Milone, and Terrell; and by Djurasevic. The Marquardt algorithm operates on the matrix of normal equations so as to
e�ect a compromise between the ordinary DC corrections (which usually give fast convergence but sometimes lead to
convergence failure) and those of the method of steepest descent (convergent but sometimes slow). The normal equations
are re-scaled (so as to have diagonal elements of unity) in the DC program supplied here, as prescribed by Marquardt,
although it would be possible to apply the procedure without re-scaling. At the heart of the scheme is a quantity �
that is added to each diagonal element of the re-scaled normal equations. A decision faced by all those who adopt the
scheme is that of how to �x the value of �, and various kinds of iterations have been used in the literature to optimize
�, including one in the original Marquardt (1963) reference. The supplied DC program operates on a somewhat di�erent
idea, following experience that - at least in binary star problems - � values over a broad range typically give nearly the
same corrections. Usually such � values are very small, and one �nds results for say � = 10�4; 10�5;or 10�6 that di�er
by so little that the choice is inconsequential. Because the DC program already has been set up to make solutions for
many subsets of the main parameter set, it is easy to do solutions for many � values, so that no iteration on � is needed.
One simply includes a line of data for each such solution. For example, if not sure of the � value to use, just do solutions
(same DC submission) for as many values as deemed potentially interesting, all for the same parameter set or subset.
The lines will look like this:
1111 1111 0111100 01110 11010 11111 01110 0 1 0 1.000d-6
1111 1111 0111100 01110 11010 11111 01110 0 1 0 1.000d-5
1111 1111 0111100 01110 11010 11111 01110 0 1 0 1.000d-4
where the integer 1's and 0's are the KEEP's and print control integers for a subset solution, while the �nal 1.000d-n is

� for that solution. The execution time to do the several solutions (even very many) is negligible. Usually it makes little
di�erence which � value is adopted within such a range, although 10�11or 100 may give much di�erent answers.

10.3. MMS or Marquardt?

Either the MMS or Marquardt algorithm will nicely solve most convergence problems of the correlation - non-linearity
type. The Marquardt algorithm is the more convenient because it does not extend the level of iteration. However
Marquardt alone cannot handle the most severe convergence problems, where a combination of Marquardt and MMS may
be needed.

10.4. Error Distributions and Standard Error Estimates

Estimated standard deviations of parameters are printed along with the parameter corrections for the base set and subset
solutions. Published comments occasionally appear to the e�ect that theDC program produces unrealistic error estimates,
although they are computed from the covariance matrix by the standard method. For example, a 1997 paper comments
about DC: " . . . the estimates of errors of the adjustable parameters are unrealistically small. The reason is partly the
strong correlation between the relatively many parameters, and partly the non-normal distribution of measurement errors".
Such remarks have some formal validity, but are misleading for the following reasons:
"Strong correlation between the relatively many parameters". In signi�cantly non-linear situations the standard devia-

tions will be only approximately right, but that is also the case with all other binary star �tting programs that now exist.
The shortcoming is not peculiar to DC. However an impression that the problem is peculiar to DC obviously has arisen,
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and one can speculate as to why that is so. An obvious point is that some solution programs avoid such complaints by not
computing error estimates at all, or by doing so with invented rules that produce comfortably large estimates. However
some other solution programs do compute standard error estimates, but usually not for adjusted mass ratios. Experience
shows that mass ratios cause most of the problems with �tting and with error computation. This is so because mass ratio
often has major correlations with other parameters, and it also shows particularly non-linear behavior. Programs that
cannot adjust the mass ratio parameter (most programs) will not encounter the problem.
"The non-normal distribution of measurement errors": The cited phrase probably does not literally refer to measure-

ment errors, whose distributions for light curves are as close to Gaussian as one is likely to �nd for any astrophysical
measurements. (Observers measure light with respect to nearby comparison stars whose brightness and color are close to
that of the variable star. They typically expend considerable thought and e�ort to eradicate possible systematic errors).
The phrase more likely refers to non-normal distribution of residuals, which one �nds when a real binary does not match
the model very well (perhaps it has un-recognized spots or circumstellar gas, etc.) or if the solution is at an incorrect local
minimum. If interpreted in this way, the statement is quite correct, although trivially obvious. Under any interpretation,
the comment has nothing to say about DC.
D. Terrell has carried out experiments by solving synthetic light curves by means of DC. The light curves contained

simulated Gaussian errors and, of course, their parameters were known. He found that the parameter errors [solution -
known] agreed with those expected from the standard errors in output from DC.

11. Interactive Branching and the Lack of Automatic Iteration in DC

Many persons have been surprised at having to re-submit the program at each DC iteration. The lack of automatic
iteration is not an oversight, but a way to force users to look at the progress of a solution. Even without automatic
iteration, it is not unusual for users to believe whatever comes out of the machine, even when the results violate common
sense. In this highly non-linear problem, the solution process can indeed get into trouble and produce inappropriate
corrections. To some extent it is possible to have a program detect inconsistent and strange results. There are a few such
kinds of detection and message generation, and further messages about such problems may be worked into future versions.
However until such screening has been made very extensive, the user is encouraged to think about every iteration.
There is another important reason to avoid automatic iteration. In real situations, an experienced user will decide which

parameters to adjust and which to hold �xed as part of a "dynamical" process of interaction with the iterative solution.
Occasionally the set of adjusted parameters will remain unchanged from start to �nish, but usually it will not. Because
of this reality, DC is set up for interactive branching, by which each iteration produces solutions of as many subsets of
the main (base) set as are requested (control integer KO must be set to 2). Notice that the sample input data supplied
with the program requests several subset solutions via extra lines of KEEP's at the end of the data block. There is no
limit to the number of such subset solutions - you can ask for a hundred or more if you like - and they require almost no
machine time (since solving the observational equations takes almost no time compared to generating them). The only
penalty for requesting a large number of subset solutions is the proliferation of output, with possible attendant confusion.
So the idea is to decide, after each iteration, which set of adjustable parameters to follow from that point on (to the next
such change). Interactive branching is discussed in Wilson (1988).
However the most cogent reason for personal monitoring of DC iterations is simply this: There is more to astrophysics

than parameter estimation. Recognition of strange and unusual behavior points the way to the really major insights and
discoveries. Many close binaries are not well represented by even our best generic models, and in some cases the problem is
not due just to approximate computation but to quite unsuspected features. To drive this point home, imagine applying
one's favorite "standard" light curve model automatically to one of the classic strange objects - perhaps one with an
unusual kind of circumstellar disk. Persons familiar with � Lyrae might amuse themselves by imagining the outcome for
that binary. One will get answers (meaningless ones, naturally), but will have at best only a much reduced chance for
insights into the real problems. Often one really needs to get in there and watch things develop.

12. Special Features

Coarse and �ne grids : In order to save computing time, DC uses both coarse and �ne computing grids, and applies
the �ne grids only where accuracy requires them. The �ne grids are for the residuals ([O-C]'s) and for the derivatives
with respect to parameters e, !, F1, F2, �0, i, 
1, 
2, q, spot latitude, spot longitude, and spot radius. Fine grids are
required for parameters that are in some way geometrical. The derivatives of the non-geometrical parameters g1, g2, T1,
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T2, A1, A2, L1, L2, x1, x2, and spot temperature are computed with the coarse grids. The �ne grids are speci�ed by [N1,
N2] and the coarse grids by [N1L, N2L] for stars 1 and 2 respectively.
Synthetic Noise: Light curves with synthetic Gaussian noise can be produced by entering a non-zero value for the input

quantity STDEV [FORTRAN name], which is labeled "fract. sd." in the output. As the label suggests, it is in the unit
of the light at the reference phase (PHN). The way that the noise (scatter) scales with light level is controlled by input
integer NOISE. Scatter is proportional to light level for NOISE = 2, proportional to the square root of the light level for
NOISE = 1, and independent of light level for NOISE = 0. The random number generator needs a seed [FORTRAN name
SEED], labeled "seed" in the output. SEED should be larger than 100000001. and smaller than twice that value. At
present there is no provision for synthetic noise in radial velocity curves or line pro�les. Users who have a favorite random
number generator should �nd it easy to replace the program generator with their own.

13. Simultaneous Solutions

A capability of DC that should be used in most circumstances is that of making simultaneous multi-bandpass light
curve solutions as well as simultaneous (one or two curve) radial velocity and multi-bandpass light curve solutions (Wilson,
1979). The advantages are to avoid inconsistencies among solutions of the separate curves, to reduce the number of free
parameters (no need to have both photometric and spectroscopic mass ratios, nor to have a separate inclination for each
light curve), and to utilize information that is discarded in separate solutions (the knowledge that there is only one true
mass ratio, one true eccentricity, etc.). Weighting is very important in simultaneous solutions and is discussed in Wilson
(1979) and in the next section. The sample data supplied with the program are for a simultaneous solution of two radial
velocity and three light curves. There can be 0, 1, or 2 velocity curves and any number of light curves (the program is
dimensioned for up to 25 light curves, which seems ample for realistic situations). Input integers IFVC1 and IFVC2 tell
the program how many velocity curves to expect, and NLC tells it how many light curves to expect. The DC solution will
produce one correction for each adjusted curve-independent parameter (most of them) and n corrections for each adjusted
curve-dependent parameter (L1, L2, x1, x2, l3). It takes no more (actually somewhat less) machine time for a simultaneous
solution of n curves than for n individual curve solutions, so there really is no reason not to take advantage of this feature.
If one has misgivings about the simultaneous solution, separate solutions always can be carried out in addition. One
particularly illogical practice in a few papers has been to publish averaged parameters from separate solutions and to o�er
the averages as a substitute for a simultaneous solution. However, the average of separate solutions will not be a correct
solution of any of the separate curves. Ask "what is the proper way to take such an average?" The answer is that there
is no self-consistent way - the only way to have the results of a simultaneous solution is to do a simultaneous solution in
the �rst place.

14. Input Lines, Including Observations and Weights

Getting started should only be a matter of running the programs with the supplied sample input data and changing the
numbers to those of particular binaries. Identifying the various input quantities can be done in several ways, for example
via Appendices Ia or Ib, by examining the output where the numbers are printed with labels, or by comparing the input
data lines with the FORTRAN "READ" statements.
For LC, there is a "more or less standard" set of input lines with control integers and parameters for each curve that

is to be computed, and n such sets of lines can be concatenated to produce n output curves. An output curve can be a
light curve, a radial velocity curve, or a spectral region containing mixed absorption and emission spectral lines (perhaps
blended). The "standard set" of input data lines is only "more or less standard" because there can be extra lines to
tell about circumstellar attenuating clouds and/or about bright or dark star spots and/or about spectral lines. For light
or velocity curves, the number of input lines for a given curve is (10 + c + s), where c is the number of circumstellar
clouds and s is the number of star spots for the two stars combined. One of the 10 mandatory lines is the stop line for
clouds and two others are stop lines for star spots, one to follow the lines of spot parameters for each star. The cloud
stop line should contain a number greater than 100. but less than 200. in the �rst �eld, which corresponds to a cloud
"x" coordinate. Each of the two stop lines for spots should contain a number greater than 200. in the �rst �eld, which
corresponds to a spot latitude on the normal spot parameter lines. According to the value of MPAGE, LC computes
a light curve (MPAGE=1), a radial velocity curve (MPAGE=2), a set of spectral regions (MPAGE=3), star dimensions
(MPAGE=4), or plane of sky coordinates for images (MPAGE=5). Spectral line pro�le computation requires extra input
lines to enter the line characteristics. Therefore the sample data includes an input �le for line pro�les (called lcin.dat3 ).
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The sample �les for light curves and velocity curves are called lcin.dat1 and lcin.dat2, respectively. For dimensions and
images they are lcin.dat4 and dat5 respectively. The several sets of input lines need not be of the same binary, since
each curve computation is an independent operation. A �nal line stops execution and should contain integer 9 in the �eld
normally occupied by MPAGE (that �nal line is not counted in the 10+c+s lines of the individual curves).
For DC, three lines of DEL's enter �rst. The next line pertains to the base parameter set and contains 35 KEEP's for

the 34 adjustable parameters and one blank channel, 3 print control integers (IFDER, IFM, and IFR), and the Marquardt
�. Next comes a line of spot identi�cation integers (KSPA, NSPA, KSPB, NSPB), then �ve lines of control integers and
curve-independent parameters, then as many lines of curve-dependent parameters as there are observed curves, then as
many lines of spot parameters as there are spots, then as many lines of circumstellar cloud parameters as there are clouds,
then the observed radial velocities, then the observed light curves, and �nally as many lines of KEEP's for subset solutions
as the user wants. These �nal KEEP lines are of the same format as the KEEP line for the base set and also contain the
3 print control integers and the Marquardt �. Note that the solutions that are triggered by these KEEP, etc. lines can
be for varied � as well as for selected parameter subsets. For example, one can run two solutions for exactly the same
parameters but with di�erent �.
The observed radial velocity curves and light curves of the DC input data stream are entered as triplets (phase; velocity

or light; weight), with up to 5 triplets (i.e. data points) per line. The number of data points per line is set by input
integer NPPL (number of points per line). A possible formatting problem, caused by velocities not being of the same order
of magnitude as light measures, is solved by providing for the separate entry of a convenient sized velocity unit. The (0,
1, or 2) velocity curves and NLC light curves are separated by "data stop lines" that serve two purposes. They identify
the last data line for each velocity or light curve and also tell how many data points are on that last line (1, 2, 3, 4, or
5). The only number on a data stop line should be in the �rst �eld and should be -(10000+k), where k is the number of
data points on the preceding line. Example: if there are 2 data points on the preceding line, the "stop" number should
be -10002. Some computing systems require "something" in the remaining �elds of the line and blanks are suitable, but
there must be at least blanks (not an absence of all characters). No special stop information is to follow the �nal curve
because the program already knows how many curves to expect, and it knows which is a velocity curve and which is a
light curve because it has already read IFVC1, IFVC2, and NLC. However a line with integer 2 in column 2 should follow
the �nal line of subset KEEP's to signal the end of subset processing and of the entire job.
Weighting of observations is discussed in Wilson (1979, pp. 1064, 1065), Wilson (1988) and Kallrath and Milone (1999).

Briey, the program applies three kinds of weights, which are "intrinsic" weights (assigned by the user to the individual
observations), "curve-dependent" weights (based on estimated standard deviations [SIGMA's] at a reference phase), and
"level-dependent" weights ( computed by DC according to the input parameter NOISE, which tells how observational
scatter scales with light level. NOISE should be set to 1 for scatter that scales with the square root of the light level, such
as pulse counting statistics, and to 2 for scatter that scales with the light level, such as scintillation noise or uctuations
in sky transparency. If NOISE is set to 0, no level-dependent weighting is applied. Level-dependent weighting does not
apply to velocity curves. SIGMA's pertain to the directly entered velocity and light values. An exception is where the
SIGMA's were actually measured from individual observations, but normal points (i.e. averages) are entered. In that case,
the number of individual points in each normal point should be incorporated in the "intrinsic" weight of each point. Some
persons have contrived their curve-dependent weighting (through the SIGMA's) so as to increase the inuence of one or
a subset of the curves according to pre-conceptions - for example, of the relative importance or radial velocity and light
curves. However the SIGMA's should properly be based on measurements, not prejudice.

15. The Scaling of Run Time

The main computational activity of LC consists of summations over surface grid points in forming the observable
uxes and velocities of the two stars. The number of grid points on each star is essentially proportional to the square
of the grid �neness integer for that star (number of latitude rows per hemisphere), so run time very nearly scales with
N2

1
+N2

2
. Computations of all other kinds take negligible time. Of course, run time in LC also scales with the number of

phase points, or more precisely with that number plus 1 (because one extra point is done at the phase of normalization).
Eccentric orbits take longer than circular orbits because the local physical computations must be done anew at each phase.
Note that a very small eccentricity (say 0.000001) di�ers in this regard from one of exactly zero, because the program skips
the extra computations only if e = 0. The actual time factor depends on whether the old approximate (MREF=1) or new
detailed (MREF=2) reection model is speci�ed. The MREF=2 case takes longer for both circular and eccentric orbits,
but it takes much longer (usually impractically longer) for eccentric orbits. If MREF=2, then run time also depends on
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NREF, the number of multiple reections. There will also be some dependence on the particular binary star con�guration.
For example, runs for stars with small r = R=a go faster than those with large r. The situation is su�ciently complicated
so that actual speed factors are best estimated via a few experiments at low grid �neness.
For DC, many of the same considerations apply as for LC. However there are four grid �neness integers because DC

uses both a high and a low grid for each star (viz. Section 12), so run time scales with (P+1)
�
N2

1 +N2
2

�
+PL

�
N2

1 +N2
2

�
L
,

where P is the number of �ne grid parameters and PL is the number of low (coarse) grid parameters under adjustment
in the main (base) set of parameters. The �rst term involves P + 1 rather than just P because not only derivatives
but also residuals ([O � C]0s) must be computed, and the residuals are done with the �ne grid. Run time in DC also
scales with the number of observations that are processed. Do not add 1 because there is no phase of normalization. The
numbers of parameters in subset solutions are not relevant to run time because the run time for the subsets is negligible.
DC iterations with ISYM=1 (i.e. symmetrical derivatives) will take nearly twice as long as those with ISYM=0 (i.e.
asymmetrical derivatives).

16. Common Di�culties

1. Minimum dimensioning: One of the most frequent reasons for failure in program execution is under-dimensioning
of arrays. These failures are disconcerting because very strange things can happen and usually no logical interpretation of
the machine error messages is apparent. The dimensioning of LC and DC, as supplied, may not be su�cient for all cases.
Array dimensions need be changed only in the main programs (LC andDC), not in the subroutines. See the "Dimensioning
vs. Grid Fineness Table" at the end of the booklet for minimum dimensions of the arrays RV, GRX, GRY, GRZ, RVQ,
GRXQ, GRYQ, GRZQ, SLUMP1, SLUMP2, SRV, SGRX, SGRY, SGRZ, SRVQ, SGRXQ, SGRYQ, SGRZQ, SRVL, SGRXL,
SGRYL, SGRZL, SRVQL, SGRXQL, SGRYQL, SGRZQL, SLMP1, SLMP2, SLMP1L, SLMP2L, FR1, FR2, GLUMP1, GLUMP2,
GRV1, GRV2, XX1, XX2, YY1, YY2, ZZ1, ZZ2, GMAG1, GMAG2, CSBT1, CSBT2, RF1, RF2, RFTEMP, SXX1, SXX2, SYY1,
SYY2, SZZ1, SZZ2, SGMG1, SGMG2, SGRV1, SGRV2, SGLM1, SGLM2, SCSB1, SCSB2, SRF1, SRF2, SGLM1L, SGLM2L,
SGRV1L, SGRV2L, SXX1L, SXX2L, SYY1L, SYY2L, SZZ1L, SZZ2L, SGMG1L, SGMG2L, SCSB1L, SCSB2L, SRF1L, SRF2L,
ERV, EGRX, EGRY, EGRZ, ELMP1, EGLM1, EGRV1, EXX1, EYY1, EZZ1, EGMG1, ECSB1, ERF1, ERVQ, EGRXQ, EGRYQ,
EGRZQ, ELMP2, EGLM2, EGRV2, EXX2, EYY2, EZZ2, EGMG2, ECSB2, ERF2, ERVL, EGRXL, EGRYL, EGRZL, ELMP1L,
EGLM1L, EGRV1L, EXX1L, EYY1L, EZZ1L, EGMG1L, ECSB1L, ERF1L, ERVQL, EGRXQL, EGRYQL, EGRZQL, ELMP2L,
EGLM2L, EGRV2L, EXX2L, EYY2L, EZZ2L, EGMG2L, ECSB2L, ERF2L, SFR1, SFR!L, ERF1, ERF1L, SFR2, SFR2L, EFR2,
and EFR2L. The minimum dimension of each of these arrays depends on the grid �neness. For example, if the grid �neness
integer (N1, N2, N1L, or N2L) is 30, the minimum dimension is 762. The arrays STLDH, STLDL, ETLDH, and ETLDL
are dimensioned to the sum of the minimum dimensions for both stars (in above long list of arrays). For N's of 30, this
would then be 762+762=1524. The arrays PHAS, FLUX, and WT are dimensioned to include all the observations in all
bandpasses plus the blanks on the last data lines plus the blank observations on the data stop lines (see DC sample input
�le). Arrays OBS and HOLD are dimensioned to [(number of observations) X (number of parameters in least squares
solution +1)]. A curve-dependent parameter counts n times for n light curves. Thus if you had 98 observations in star
1's velocity curve, 102 in star 2's velocity curve, 470 in one light curve, and 530 in another, the �rst factor would be 1200
= 98 + 102 + 470 + 530. Then if you adjust i, g2, L2, and x1, the second factor is 7 = 2 + 2 X 2 +1 (remember, L2

and x
1
are curve dependent and count twice each, since there are two light curves. The last +1 is for the (O-C) residuals.

OBS and HOLD need then be dimensioned to a minimum of 1200 X 7 = 8400.
2. The parameter increments must be neither too large (gives systematic errors) nor too small (gives numerical noise).

These increments are called the DEL's (FORTRAN name). For most parameters, DEL's of about 1 % of the parameter
value are appropriate. However particular circumstances sometimes a�ect that guideline, so common sense and experience
are the best guides. Finer grids allow smaller DEL's. Use of the ISYM = 1 option allows larger DEL's before curvature
e�ects become important.
3. It is best to have the initial parameter guesses for di�erential corrections based on experiments with the light -

velocity program. Column 5 in the main block of output from LC, which is l1 + l2 + l3, should approximately match the
observed light values.
4. The distinction between direct light (column 5 of LC output) and normalized light (column 6) can be a source of

confusion. Remember that normalized light is only intended for convenience in initial graphical trials and that it has no
counterpart in DC, which deals with direct light only. If this continues to confuse you, forget that normalized light exists
and work always with direct light.
5. Always check 
1and 
2 to be sure they are in the permitted range for given q, F , and e. In di�erential corrections,
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be sure that the incremented values of 
1and 
2 are within allowed ranges. For overcontact systems, 
 should be between
the critical values for inner and outer contact (see table of critical 
's). For detached stars, 
 is greater than the critical

 for inner contact.
6. Certain parameters cannot be adjusted in certain program modes. The reason is either that the parameters are

not free, but functionally determined from the mode logic, or that they have no e�ect on the computed light or velocity.
Attempts to adjust those parameters are the most common cause of blowups in subroutines SQUAR and DMINV. L2

cannot be adjusted in any mode greater than 0 unless IPB has been set to 1. In mode -1, parameters g1, T1, T2, A1,

1, 
2, and x1 cannot be adjusted. In mode 3, parameters g2, A2, 
2, L2, and x2 cannot be adjusted. In mode 4,
parameters 
1 and L2 cannot be adjusted. In mode 5, parameters 
2 and L2 cannot be adjusted. In mode 6, parameters

1, 
2, and L2 cannot be adjusted. As a practical matter, one should try to adjust both temperatures only under unusual
circumstances.
7. Luminosities (input L1 and L2) are approximately 4� times larger than computed light values (output l's). Therefore

to obtain l1 + l2 of about unity outside eclipse, enter input luminosities that add to about 4�. Note that the traditional
treatment of third light as if it were third luminosity is incorrect (see section with discussion of luminosity vs. light).
8. Critical 
's depend on e. Although a table of lobe �lling potentials for synchronous and non-synchronous rotation

is provided with this document (on diskette), such tables for eccentricity and rotation combined would be too extensive
for practicality. Therefore to �nd critical eccentric 
1 and 
2, run LC in mode 6. The program will replace your input

's for both stars with the critical 
's in the output listing.
9. Overcontact binaries, such as W UMa stars, require �ner grids than do detached and semi-detached binaries. This is

because the numerics of the neck region are particularly di�cult to treat accurately. N 's about 50 % larger than normal
are recommended for overcontact systems.
10. The programs can apply the detailed reection model of Wilson (1990) for eccentric as well as circular orbits, but

eccentric cases use an enormous amount of machine time. If you are doing an eccentric binary and the programs run
almost forever, check to see if you set MREF = 2. In most realistic situations, the old approximate reection (MREF = 1)
should be entirely adequate for eccentric binaries.
11. A very common cause of failed runs is simply inadvertant shifting of numbers on the input lines out of their proper

�elds, so that leading digits or signs are clipped away, or the numbers are not read at all, or they are read under the
wrong name. Be sure to keep a copy of the sample data in exactly its original form, for later comparison.
12. Sometimes users make changes that cause the programs not to work. Perhaps the program will work for the

immediate application, but will fail in another situation. Be sure to keep a copy of the entire program in exactly the form
supplied, so that you can see whether it runs correctly in the circumstances under question.
13. Be sure not to mix subroutines from di�erent versions of the program.

17. Di�erences from Pre-1992 Versions

1. Star spot parameters can now be adjusted.
2. Optional non-linear limb darkening laws (pre-1992 versions had only the linear cosine law).
3. The reection e�ect now can be computed either with the detailed model of Wilson (1990) or with the approximate

reection model of the old program (which is faster). Multiple reection is included in the detailed model.
4. The present LC and DC programs are much faster than pre-1992 versions.
5. The speci�cation of phase range in LC was made more convenient in 1992, with allowance for phases outside the

range 0 to 1.
8. The stars now orbit counter-clockwise (for i < 90�), rather than clockwise as in the old program. This make a

di�erence only for pictures of the binary (MPAGE=5).
9. Messages about exceeding limiting lobes are now generated if the stars exceed the lobes at all, instead of only when

at least one grid point falls in the hole near the inner Lagrangian point, as in the old program.
10. Star spots now can be made to move in longitude, keeping pace with the physical surface of an asynchronously

rotating star, rather than being tied to the coordinate grid. This provision is optional.
11. For both stars, LC now provides absolute mass, bolometric luminosity, equivalent sphere radius, and approximate

absolute mean surface gravity in the output.
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18. Summary: Di�erences between 1998 & 1992 Versions

1. The output from LC now is determined by setting integer MPAGE to 0, 1, 2, 3, 4, or 5. Older versions had light
and velocity curve output on the same pages, which made the page format inconveniently wide. The output should now
be easier to read. The input �le format now is di�erent for the various values of MPAGE (samples are provided with the
distributed program).
2. DC solutions can include the Marquardt � factor.
3. The least squares normal equations are in re-scaled form (diagonal terms are unity before application of �).
4. Semi-transparent circumstellar clouds (at �xed locations in rotating frame) can be included.
5. Rotational spectral line pro�les can be computed (other broadening mechanisms no; blending yes).
6. The program now is entirely in double precision.
7. Non-linear limb darkening via a square root law is an added option (1992 version had logarithmic law and linear

law).
8. One can now use either time or phase as the independent variable in DC. Previously only phase could be used. Use

of time as the independent variable allows solutions for the ephemeris parameters t0;P , and dP=dt, as well as the apsidal
motion parameter d!=dt.
9. The stepped independent variable in LC now can be either time or phase. Previously only phase could be stepped.

If time is the stepped variable, phase is computed and also listed. If phase is the stepped variable, time is computed and
also listed.
10. DC now can read the observational input in 1, 2, 3, 4, or 5 data triplets per line, according the the value of NPPL.

The old version read only 5 triplets per line.
11. Input and output formats for the parameters of both LC and DC have been expanded to more digits. Some

quantities that are likely to range over many orders of magnitude are now entered and printed in D format. See the
sample input data sets and Appendices Ia and Ib for examples.
12. The argument of periastron, !, now is in radians rather than degrees. The new parameter d!=dt is in radians per

day (since t is Julian Date in days).
13. Spot longitudes, latitudes, and angular radii now are in radians, as are their DELS and corrections. Previously they

were in degrees.
14. The output format for solution results has been changed and should now be more convenient.
15. LC now generates coordinates of plane of sky projected images for use with an external plot program (MPAGE=5).
16. Error estimates printed by DC are now standard deviations. Previously they were probable errors. Standard

deviations seem to be more commonly used in the literature than probable errors.
17. Simulated observational scatter can be applied to the light curves computed by LC. Similar provisions for radial

velocities and line pro�les are not yet included.
18. The DC output now lists the corrected parameter values in addition to the corrections. Previously one had to apply

the corrections by hand - the idea being to make certain that users compare new and old values at every iteration. In
deference to the signi�cant amount of grumbling generated by that practice, the machine now does the addition. However
DC still does only one iteration in a given submission.

19. Summary of [0,1] Control Integers

Integer 0 1
IPB normal value decouple L from T

IFAT1, IFAT2 black body atmospheres
IFSMV1, IFSMV2 spots �xed in longitude spots move in longitude

IFDER not print derivative matrix print derivative matrix
IFM not print normal equations print normal equations
IFR not print radii & their derivatives print radii and their derivatives
ISYM asymmetrical partial derivatives symmetrical partial derivatrives

ICOR1, ICOR2 not apply RV proximity corrections apply RV proximity corrections
KDISK not use disk scratch pad use disk scratch pad
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20. Summary of [0,1,2] & [1,2] Control Integers

Integer 0 1 2
JDPHS n.a. independent variable is time independent variable is phase

NOISE no level-dependent weights scatter scales with
p
level scatter scales with level

KO DC does base set only read from scratch pad write on scratch pad
MREF n.a. approximate reection detailed reection

21. Summary of [1,2,3] & [1,2,3,4,5] Control Integers

Integer 1 2 3 4 5
LD linear cosine law log law square root law n.a. n.a.

MPAGE light curves velocity curves line pro�les radii vs. phase image data
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