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ABSTRACT

A procedure for simultaneous analysis of multiple kinds of observations is developed for
binaries that contain X-ray pulsars. A wide variety of observation types might be included,
although we consider only velocity: pulse and light: velocity: pulse cases at present. The model
operates with equipotentials and can accommodate non-synchronous rotation and eccentric
orbits. The duration condition imposed by observed X-ray eclipses is incorporated as an
embedded constraint, so that only solutions consistent with the eclipse duration are found.
Relations needed for the method of differential corrections in least-squares solutions are
specified, and we apply the Marquardt scheme for improvement of solution convergence.
Parameters of Vela X1: GP Velorum are obtained from seven combinations of pulse and radial
velocity data. The estimated masses are thereby put into some perspective, especially for the
neutron star. The mass of the supergiant (m sin’ i) now ranges only *5 per cent from the mean
of seven results, although the uncertainty in i makes the actual mass range larger. We discuss
the determinacy of certain parameters and their historical consistency. For example, the
systemic radial velocity differs among spectroscopic data sets by more than 20 kms™'. We
show that, contrary to published assertions, the orbital inclinations of high-mass X-ray binaries
are essentially indeterminable by the usual methods, although lower limits to inclination may
be meaningful for some examples.

Key words: techniques: radial velocities — binaries: close — binaries: spectroscopic — stars:

neutron — pulsars: general.

1 INTRODUCTION

The X-ray binaries are rare but intensively observed objects the
many aspects of which have been reviewed by Bahcall (1978), Joss
& Rappaport (1984), Nagase (1989) and others. Some X-ray
binaries have abundant backlogs of multiple kinds and epochs of
observations including radial velocity and light curves, polarimetry,
pulse arrival times, and other types. Despite their abundance, the
observations often have given mixed messages. Some parts of the
problem are related to transient effects and are fundamentally
difficult, while others are due to timewise variation of system
parameters for which some very effective schemes already exist,
such as in the case of variable pulse periods (Nagase et al. 1984). A
third category of problem can be traced to non-unified, less than
optimal treatment of the various kinds of data sets. These latter
problems can be surmounted by properly thought out procedures,
with some progress already having been made. Here we extend
certain ideas of binary star modelling and analysis to X-ray binary
applications, with the supergiant X-ray system Vela X1: GP
Velorum (= HD 77581 = 4U 0900—40) as our initial example. We
shall refer to the binary as Vela X1 when the context is the neutron
star component, and as GP Velorum when it is the B supergiant
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component. The binary is an example of the class of high-mass
X-ray binaries (HMXBs). Our primary objective is to reduce
uncertainties arising from problems of analysis and from the
combining of multiple types of analytical results, so that remaining
uncertainties essentially are due only to the data sets. An idea that
has been around for some time (Wilson & Wilson 1976; Wilson
1979) but seldom applied is the use of an observed X-ray eclipse
duration not merely as a final filter on solutions, but as an embedded
solution constraint. An idea with frequent application is that of
simultaneous least-squares solution of two or more distinct kinds of
observations. For example, Wilson & Devinney (1972) solved
multi-band light curves simultaneously, Morbey (1975) and Pour-
baix (1998) combined radial velocity and visual binary data, and
Wilson (1979) combined radial velocities and multi-band light
curves. In a conceptually similar development, Nagase et al.
(1984) combined multiple epochs of X-ray pulse data. Although
not different kinds of observations, the multiple X-ray epochs were
treated mathematically as distinct data sets, solved simultaneously.
Of these combinations, the one that has been most extensively
followed up on is the radial velocity: multi-band light curve (e.g.
Van Hamme & Wilson 1984, 1986, 1990). The radial velocity:
visual binary area is likely to become very important owing to
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expected advances in interferometry. Separate analysis of X-ray
pulse observations has been an active arena with a number of
approaches tried. Although much innovation has been applied to
velocity solutions and also to pulse solutions, our contributions are
in different areas from those already explored, specifically in
several advantageous analytic features that have not previously
been used together (see Wilson & Terrell 1994 for a preliminary
report).

We combine into one unified procedure (1) an equipotential
model for the figure of the optical companion with non-
synchronous rotation and eccentric orbit effects (such as proximity
effects on radial velocities), (2) an embedded X-ray eclipse duration
constraint, (3) simultaneous multi-data fitting, (4) formulation of
the method of differential corrections specifically for pulse arrival
times, with analytic derivatives, and (5) the Marquardt (1963)
scheme to improve solution convergence. In regard to lobe filling,
we use a generalized definition of the traditional Roche lobe that
applies for non-synchronous as well as synchronous rotation and for
eccentric as well as circular orbits (Wilson 1979): a limiting lobe is
an equipotential (or its contained volume) for which effective
gravity is zero on the line of centres at periastron. The solution
procedure does not need the intermediate fitting functions and series
expansions that one sees in some X-ray pulse papers. We compute
only equilibrium rather than dynamical tides, so dynamical tides
remain as an unrealized advance in this kind of application. The
main dynamical tide effects may only be stochastic variations about
equilibrium, although the number of data needed for good aver-
aging may be very large for GP Vel. Still, given the advantages
combined here, fitting of X-ray binary data by the least-squares
criterion becomes more powerful, more straightforward to apply
and to program, and readily amenable to refinements. An example
of a further refinement might be added solution parameters such as
time derivatives of some of the basic parameters, which would
require only additional terms in the least-squares equation of
condition.

One might ask if a rigorously unified model and solution are
genuinely preferable to existing practice, in which at best one of the
above-listed items is used alone. Consider how the geometry and
physics of the situation are coupled. Even in the simple case of an
equilibrium tide, the surface configuration of the optical star
depends on the mass ratio, rotation, orbital eccentricity and instan-
taneous separation (equivalently, phase). Its projected horizon
(relevant to eclipses) depends on all those things plus the argument
of periastron and orbital inclination. In this rather complicated
situation one sees published parameter estimates via spherical star
approximations and a chain of corrections, even in very good review
papers. Can such approximations and corrections do as well as a
unified treatment? Considering that the approximate way begins
with an ‘effective mean radius’ that has no consistent definition
(effective in what sense?), that the chain of corrections is long, and
that some corrections are ignored, we think that the answer is ‘no’.
Even if the answer were as good as ‘perhaps’, there would be no
reason to settle for corrected spherical calculations when a fast
computer can provide a full and coherent calculation (Wilson
1979). In addition to the geometrical—physical problem, one has
a correlation problem among parameters derived from the various
kinds of observations, in that their correlations will be different for
optical velocities vis-a-vis pulse data vis-a-vis light curves, etc. A
simultaneous solution can accomodate all the correlations and
come to properly adjusted results because it can ‘see’ the various
influences together, whereas separate pulse, velocity, etc., solutions
see only part of the picture. Accurate results via self-consistent

analyses are particularly important here because GP Vel is very
close to filling its limiting lobe. As we shall see, its delicate lobe
filling status is hard to evaluate even with fully consistent X-ray and
optical parameters, and even small inconsistencies make evaluation
much harder. Naturally, the lobe configuration has major astro-
physical significance for present structure and for past and future
evolution as well.

Some of the parameters of Vela X1: GP Vel are reasonably well
known as a result of numerous observational and analytical papers
over the past three decades. However, the masses are very important
and their realistic uncertainties are not so well known, as the results
depend on which observations are used — especially on the optical
velocities — and on how pulse and velocity information is com-
bined. The mass of the X-ray source is especially important for Vela
X1 and other X-ray binaries. Relatively high estimates can be
interesting with regard to the mass limit for neutron stars. Any
estimate is interesting with regard to pre-collapse core masses in the
end states of evolution and to the collapse itself. A consensus of
published mass estimates indicates that Vela X1 is about 25 per cent
more massive than a typical X-ray pulsar, yet one recent estimate
(Stickland, Lloyd & Radziun-Woodham 1997) assigns a mass
similar to those of other pulsars. Thus one of our main results is a
perspective view of Vela X1: GP Vel mass estimates. We make
progress by combining the above-mentioned five items that, taken
together, increase coherence while decreasing complexity. The
explanation in the Appendix should make the procedure easy to
program. However this is only a step. Further progress will be
needed through generalization of the basics and through continued
observations. Indeed, a primary virtue of the procedure lies in its
being easy to generalize, largely because Fourier series, polynomial
fitting functions and series expansions play no role.

2 SOLUTION STRATEGIES FOR PULSED
ECLIPSING X-RAY BINARIES

Our solution strategies differ in several ways from some others,
including the independent variable for the pulse analysis. Early
work, and now also our work, fits pulse arrival time with pulse
number as the independent variable (e.g. Rappaport, Joss &
Stothers 1980; Nagase et al. 1982, 1984; Nagase 1989), while a
recent trend has been to fit pulse delay, with time as the independent
variable (van der Klis & Bonnet-Bidaud 1984, hereafter KB;
Boynton et al. 1986, BDLZ; Deeter et al. 1987, DBSHNS). We
have gone back to the original way because it keeps the overall logic
simple and straightforward. While the two approaches may seem
equivalent, notice that a certain awkwardness attends pulse delay,
treated as the dependent variable. Scientific tradition is to compare
observation as directly as possible with theory, as in comparing
observed and theoretical pulse arrival times. While pulse delay is a
computable theoretical quantity (it is just a light traveltime in the
model), it has no purely observational counterpart. An ‘observed’
pulse delay is the difference between arrival time and expected
arrival time in the absence of an orbital light time effect. (Negative
delays will still be called delays, not ‘advances’.) Although arrival
time is a direct observable, expected arrival time depends on
various model parameters (how large is the orbit, when was the
nodal crossing of the star, etc.) so that pulse delay is an observa-
tional—theoretical hybrid. As a consequence, ‘observed’ delays are
not definite until the parameters have been adjusted (one has to
know the answers to get the answers). The authors who fit pulse
delays rather than arrival times utilize Fourier or other fitting
functions, coupled to series expansions, to deal with this problem.
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While that method can be effective and accurate, lack of need for
intermediate fitting functions and series expansions makes the
original one more straightforward and therefore more readily
extendable. It can be applied because, for many real data sets, we
do presume to know the integer pulse numbers, reckoned from some
reference pulse, and the pulse numbers are just the integer part of a
more general pulse phase. We thus adopt the pulsar as a funda-
mental clock and conceptually plot arrival time (including delays)
against pulsar phase (no delays). We would like the pulsar clock to
be steady in the interest of accurate results, but must realize that its
short-term variations are intrinsic to the problem and degrade
accuracy no matter how the analysis is done. Although the strategy
will fail if the pulsar clock is so unsteady that one cannot identify
correct pulse numbers, the same failure will attend other methods.

One can still graph pulse delay for illustrative purposes because,
after a solution is completed, we have numbers for the parameters,
so expected arrival time can be computed without introducing an
extra level of iteration or series expansion. Delays really are needed
for illustration because the data actually analysed, pulse arrival time
versus pulse phase, will look quite straight in a graph — the eye will
not see the tiny periodic displacements. Of course, this subjective
problem does not bother the least-squares algorithm in the slightest,
so we do the actual fitting in arrival times and the illustrations in
delays.

3 MULTI-DATA ANALYSIS AND
SIMULTANEOUS SOLUTION

Our procedure is direct. We write the pulse arrival time in Helio-
centric Julian Date, ¢, as

L= tes + S(n - nref)Pp + Ar — Atref» (1)

with #.¢ the arrival time of a reference pulse (which defines pulse
phase zero) and At and At the light time delays for a given pulse
and the reference pulse, respectively. Apart from notation the basic
relation is the same as in Nagase et al. (1984). A superficial
distinction is that (1) explicitly contains the separate pulse numbers
and separate delays (light travel times) for an arbitrary pulse and the
reference pulse, whereas Nagase et al. write pulse numbers and
delays already as differences from the reference values. The binary
system parameters are contained in the delay terms, the form of
which is given in detail in the Appendix. In the pulsar clock term,
n — n. is the number of pulses before or since the reference pulse,
with P, the pulse period in seconds, and S a units conversion factor
that here is the number of mean solar days in a second of time.
Natural refinements could include additional terms for time deriva-
tives of P, (Nagase et al. 1984 already include these) and a
relativistic treatment, but for now we keep the exposition simple,
as our main thrust concerns items (1) to (5) of the Introduction. Now
simply differentiate equation (1) to provide coefficients for a least-
squares solution by the method of differential corrections, whose
equation of condition is

= %8&31‘ + %BP + binary system terms. ?2)
at,ef oP, P P
Here t, — 1, is the difference between observed and computed pulse
arrival times, and Ot, 6Pp, etc., are corrections to initial parameter
estimates. Complete formulations for the partial derivatives are
given in the Appendix for parameters i(orbital inclination),
a=a;+a (relative orbital semi-major axis), e(orbital eccentri-
city), w (argument of periastron), ¢, Py, fo (time of reference orbital
conjunction), Py (orbital period) and g (mass ratio = my/my).

Ih— 1L
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Equation (1) is the key element. If others prefer not to program the
partial derivatives in equation (2) analytically, the derivatives can be
evaluated with adequate accuracy by differencing, although direct
evaluation by the expressions in the Appendix is probably easier. If
terms involving second derivatives are added, one again has the option
of forming them analytically or by differencing. Although numerical
second derivatives can be awkward to program in some circumstances,
here we have analytic first derivatives, which make the differencing
simple to program. Accuracy should seldom be a problem, so the
choice of method is mainly a matter of programming preference. In
this paper we use the basic form (2) for the pulse arrival part of
differential corrections, programmed with analytic derivatives.

The light curve and radial velocity (hereafter RV) curve parts of
the problem are the same as in Wilson (1979), where our overall
scheme for carrying out simultaneous differential corrections solu-

tions in parameters p, po, . - . . . , P, is explained in some detail.
Equation (19) of that paper (here with slight notation changes),
ofc o ofc
—fo=5—%6 —0py + e =—0p,, 3
f:.) f;} apl p1+ap2 p2+ +apn Dn ( )

utilizes the general symbol f to represent light, RV, pulse arrival
time, or any other kind of observation. Although time is the natural
independent variable in light curve and RV curve solutions, there is
no need for the several parts of a simultaneous differential correc-
tions solution to have the same independent variable. In the present
case of light: velocity: pulse or velocity: pulse solutions, time
remains a natural independent variable for the light and RV parts
while pulse phase is natural for the pulse part. We therefore adopt
(3) as our general least-squares equation of condition, with the
understanding that f means light or RV or pulse arrival time as the
case may be for particular observations. Thus the 7. of (2) (specific
equation for pulses) becomes f, when used in (3).

Computation of the surface configuration at arbitrary phase and
thus also the mean radius for the eccentric, non-synchronous case
are covered in Wilson (1979). Although numerous papers have used
X-ray eclipse duration to limit parameter ranges, only Wilson &
Wilson (1976) have applied it as an embedded constraint, and then
only in the special case of synchronous rotation and circular orbit
for light curve solutions. An unconstrained least-squares solution
(adjusting mean radius among the other parameters) will violate the
duration condition in most examples because light and RV curves of
HMXBs provide only weak information on the size and figure of the
optical star. Of course one can simply step the mean radius (or
periastron potential) and find a family of solutions consistent with
the range of observed durations. However, one would first have to
guess a range of mean radii and proceed by trial and error. To find a
solution for a definite eclipse duration (say the longest, shortest or
average observed) one must then either go through an extra level of
iteration or interpolate all system parameters and their standard
errors from tables of solutions. These difficulties are eliminated by
embedding the eclipse duration constraint within the procedure.

Convergence is greatly improved by application of the well-
known Marquardt (1963) scheme, and we find that Marquardt As in
the range 1074 to 1077 give essentially the same (good) conver-
gence behaviour. One also might try solutions via algorithms other
than differential corrections, perhaps one such as Simplex that
requires no derivatives. In that case equation (1) or an extension
with more parameters provides the entire modelling formalism. We
prefer differential corrections because it is fast and, more impor-
tantly, because it allows one to change the parameter set
under adjustment very easily at any point in the iterations. With
inclusion of the Marquardt A, it usually converges extremely well.
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Discussions of the relative merits of various solution algorithms that
might be used with equation (1) can be found in many places, such
as Barone et al. (1988), Price (1976), Kalirath & Linnell (1987),
Plewa (1988), Wilson (1994), and the references contained in those
papers. :

4 VELA X1: GP VEL SOLUTIONS

Our original intent was to fit light, radial velocity and pulse curves
simultaneously. However, the light curves of GP Vel are seriously
affected by dynamical and essentially stochastic (probably tidal)
disturbances (Tjemkes, Zuiderwijk & van Paradijs 1986; Wilson &
Terrell 1994; van Kerkwijk et al. 1995). It seems unlikely that the
mechanisms of these disturbances can be modelled realistically in
the near future. Ours is a physical model in that it incorporates
gravitational —centrifugal equipotentials and their timewise varia-
tion [Wilson (1979); see also Tjemkes et al. (1986) for a similar
model; see Plavec (1958) and Limber (1963) for the non-synchro-
nous potential, and Avni (1976) for the eccentric potential] but it is
not a structural—hydrodynamical model, nor does an adequate such
model now exist. Within the large scatter, our computed light curves
and those of Tjemkes et al. (1986) show good agreement with those
of GP Vel in regard to waveform, which is distinctly different from a
pure sinusoid. However, the computations have only about half the
observed amplitude and a phase shift of 0.04 cycle. The waveform
and the amplitude mismatch are nicely shown by fig. 12 of Tjemkes
et al. (1986), while fig. 1 of Wilson & Terrell (1994) shows those
features and also the 0.04-cycle phase shift. Put simply, present
models are not adequate to deal with the complicated dynamical
tides in GP Vel in regard either to light curve amplitude or to phase
lag. However, our model does have a phase-variable equilibrium
tide, which in itself is a major asset for computation of light curves
and to some extent also for RV curves. Sterne (1941), Hutchings
(1973), Wilson & Sofia (1976), van Paradijs, Takens & Zuiderwijk
(1977a), Wilson (1979) and Van Hamme & Wilson (1994, 1997)
discuss and compute such RV distortions.

There are good U, B, V, L, W light curves (Walraven system) by
van Genderen (1981) that contain important information, and
we initially included them in simultaneous light: velocity: pulse

Table 1. ®, versus F, and i for seven solutions.

solutions. The van Genderen light curves are the best set for GP Vel
in regard to wavelength and phase coverage and for internal
coherence, although many other light curves and fragments of
light curves exist. Subjective fits to mean light curves were
discussed in considerable detail by Tjemkes et al. (1986), using a
figure computation scheme substantially identical to that in Wilson
(1979). They did not try to adjust g but adopted a fixed value of 12.8,
which approximately corresponds to the relative pulse and optical
velocity amplitudes, although somewhat lower than recent esti-
mates. They found, as did Wilson & Terrell (1994), that the
observed amplitude of ellipsoidal variation is much larger than
one expects from an equilibrium tide. Not surprisingly, when we
adjusted g in our light: velocity: pulse solutions, it ran to obviously
wrong (low) values as the model tried to mimic the large ellipsoidal
variation in the many light curve points. This outcome can be
viewed as a success rather than a failure because it sends a clear
message that the tide is not an equilibrium tide.

Although our procedure applies to simultaneous light: velocity:
pulse data and we have carried out a few such solutions, we report
only simultaneous velocity: pulse solutions for the reasons already
mentioned, connected with light curve problems. Other decisions
also must be made before solutions can properly be carried out. The
adjusted parameters should be those that influence the RV and/or
pulse observations to a reasonable degree and are not hopelessly
correlated with other parameters. Periastron potential, Q,, is com-
puted as @, (q, e,w,Fy, 1, (E')e) according to the rules in Wilson
(1979) and therefore is not adjustable. Parameter F, is the ratio of
the angular rotation rate of the optical star to the mean orbital rate,
and O, is half the phase duration of X-ray eclipse. Here we adjust a,
e, », V., tre, Py and q. The binary system centre-of-mass velocity,
V., effectively relates only to RVs and not to pulses, as it is perfectly
correlated with P, for pulse-only data sets. Any w listed or
discussed here is w for the X-ray source (star 1), not for the optical
star (which would differ by 180°). The binary system parameters a,
e, w and q reflect the influences of both RV and pulse observations,
balanced in the simultaneous solutions according to the assigned
weights. The ratio of RV to pulse weights is the inverse ratio of the
data variances, with the variances determined from the residuals as
part of the iterative solutions. All weights are the same within any

Sol. F, Qiobe i=90° | = 85° i=80° i=175° i=70°
1 0.0 17.8506 .0996 .0990 .0971 .0937
0.5 18.8541 .0982 .0975 .0954 .0918
1.0 21.7324 .0938 .0930
2 0.0 18.8071 .0951 .0944 .0925
0.5 19.7599 .0911
3 lobe exceeded
4 0.0 17.5313 .1009 .1002 .0983 .0949 .0898
0.5 18.5368 .0994 .0987 .0966 .0929
1.0 21.4175 .0949 .0940 .0913
5 0.0 16.9858 1021 .1014 .0995 .0961 .0910
0.5 17.9855 .1005 .0998 .0977 .0940
1.0 20.8446 .0958 .0949 .0922
6 0.0 17.6895 .0973 .0967 .0949 .0916
0.5 18.6493 .0960 .0953 .0933
1.0 21.4051 .0918 .0910
7 0.0 19.6530 .1015 .1009 .0991 .0959 .0911
0.5 20.8161 .1000 .0994 .0974 .0939
1.0 24.1536 .0955 .0947 .0921
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Table 2. Adjusted parameters and standard deviations from seven solutions.

X-ray binary unified analysis 37

Solution/  asini e @ T, — 2444612. T, — 2443819, T, — 2442612. v, P,—282. mym
Source (Ro) (o) (Hel.JD) (Hel.JD) (Hel.JD) (kms™") (s)

1 52.94 0917 1379 9781793 -8.42 74961 14.53
Ab +.50 +.0078 +6.4 +.0000080 .82 +.00056 +.93
2 53.74 1206 146.1 841432 -84 89595 14.6
Aa + .80 +.0092 +77 +.000015 *1.7 +.00090 +1.9
3 54.6 127 140 841443 -5.8 8963 13.5
B.a *13 +.018 +14, +.000028 *1.7 +.0017 *16
4 54.09 085 139.4 306942 +13.7 85039 144
Cec +.45 +.010 +52 +.000011 *13 +.00048 *1.3
5 52.52 075 136 305950 +136 88400 14.0
cd +.84 +.025 *11. +.000055 *13 +.00098 *14
6 53.40 .098 1327 978175 +13.6 74984 14.2
Chb +.64 +.011 +77 +.000011 +12 *.00074 *12
7 52.69 0923 1347 9781770 —347 74980 16.6
Db +.53 +.0082 *6.4 +.0000080 *1.02 +.00056 +1.6

A = van Paradijs et al. (1977b) mean of He1 lines.

B=Petro & Hiltner (1974) ‘mean’ plus Wallerstein (1974) ‘absorption blue’.

C= van Kerkwijk et al. (1995) (their table 1 plus their table 3).
D = Stickland et al. (1997).

a = july75 (as listed in table 6 of BDLZ).

b =nov78 (as listed in table 6 of BDLZ).

¢ =jan81, Ist orbit (as listed in table V of DBSHNS).

d = jan81, 2nd orbit (as listed in table V of DBSHNS).

RV or pulse data set. We did not adjust the orbital ephemeris because
the pulse data sets typically are shorter than one orbit cycle and
most of the RV sets span only small parts of the historical record.
Instead we adopted the orbital period, Py, = 8.96443 d, and the
orbital reference epoch, t, = JD 244 3821.8604 from BDLZ, which
were found from long stretches of data. In both BDLZ and here, ¢, is
a time of superior conjunction of the neutron star. There is no
chance to find i or F, without the help of light curves, so we ran
solutions only for i = 90° and F, = 0 (no rotation), which is the
safest case if we want to avoid overfilling of the supergiant’s
limiting lobe. We verified that solutions with other fixed F,s lead
to the same parameter values, within the standard errors, and that
solutions for i < 90° also do so, except of course for parameter a,
which always satisfies the relation a sin i= constant.

The role of eclipse semi-duration, ®,, is almost entirely to
delimit the permitted F, and i ranges because pulse arrival times
are unaffected by ®, and RVs are almost unaffected. Therefore any
[F,, i] pair that gives the observationally adopted ®,, and does not
violate the limiting lobe condition, is valid. So one can change ®,
without much altering velocity: pulse solutions (but of course not
light: velocity: pulse solutions). Thus ©, is given as a function of
F,, i for each of our solutions in Table 1. From the table one can
estimate the largest F, and smallest i allowed for any adopted ©,. In
principle, ®, has some small influence on theoretical RVs because it
affects the surface configuration of star 2. It has a major influence on
light curves through ellipsoidal variation, but our listed solutions
are for velocity: pulse only. Estimates of ®, from X-ray obser-
vations include 0.106 £0.003 by Forman et al. (1973),
0.100 = 0.002 by Charles et al. (1978), 0.094 = 0.004 by Watson
& Griffiths (1977), 0.106 = 0.003 by Ogelman et al. (1977),
0.089 = 0.003 by Nagase et al. (1983) and 0.096 = 0.003 by Sato
et al. (1986). There have been previous attempts to reconcile the
rather wide eclipses with a physically consistent geometry in which
the supergiant does not exceed its limiting lobe (e.g. Wilson 1979;
Tjemkes et al. 1986; van Kerkwijk et al. 1995). Neither the
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observational nor theoretical ®, situations, nor their small range
of overlap, seem to be improving. We have adopted Watson &
Griffiths’ ®, because the authors give a thoughtful description of
how O, was derived, rather than only mentioning a number, and
their procedure seems appropriate. Also, a significantly larger ©,
makes it very difficult to find solutions that do not violate the lobe-
filling condition (i.e. the legitimate F,, i entries of Table 1 shrink
almost to zero ranges). The Nagase et al. (1983) 0, is relatively
small (‘safe’) but we decided against using the most extreme value
in print. Our results do effectively apply to ranges of @, not just
exactly 0.094, as discussed above. The X-ray eclipse duration
constraint for Vela X1: GP Vel may seem to have only limited
usefulness here, partly because our listed solutions include no light
curves and partly because the observational value of @, is rather
uncertain. However, Table 1 defines relations between F, and i that
essentially apply not only for our adopted ©,, but for any O,
determined in the future. Since the parameters, given in Table 2,
depend only very slightly on ®,, the solutions remain realistically
valid for any adopted ®,s that do not lead to overspilling of the lobe.
From a parameter estimation viewpoint they remain valid even for
modest lobe excesses, although they then become unphysical. With
or without light curves, the embedded @, constraint allows one to
vary O, in a sequence of solutions while keeping the parameters
mutually consistent. A major practical advantage is a saving of
printed words, as discussions of how to work back and forth among
separated pulse, RV and light curve parts of a solution become
unnecessary.

Mass results for the neutron star depend heavily on which optical
RVs are processed. Even a quick visual scan shows the amplitude
and mean level of RVs to change from one data set to another.
Formal error estimates have very limited value in this situation, with
systematic effects causing major epoch-to-epoch changes. To
illustrate, we find a systemic velocity, V,, of +13.6 = 1.3 s.d. km
s~ 'for one data set and —8.4 = 1.7 km s~ for another, and one can
readily see the reason (a large vertical shift) simply by looking at the
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Figure 1. Comparison of the Petro & Hiltner (1974) (squares), Wallerstein (1974) (triangles), and van Kerkwijk et al. (1995) (dots) radial velocities, to illustrate
disagreements among data sets. Our solution to a fourth set (Stickland et al. 1997) is shown for reference as the solid curve.

corresponding RV graphs in the original papers. Fig. 1 compares
three of the RV data sets and one of our solutions. Fig. 2 shows our
fit to the Stickland et al. (1997) RVs, which are the most normal in
appearance of published sets.

Amplitude variation is not as large as V., variation, but masses are
sensitive to RV amplitude, so again epoch-to-epoch changes are
important. Given this state of affairs, our response was to do
solutions with various combinations of pulse and RV data sets, so
as to acquire a feeling for the realistic uncertainties. We thus
selected combinations of four RV sets and four pulse sets for
simultaneous solution. To this end we examined the distribution
of observations over the past 25 years so as to match pulse data with
RV data from roughly the same epochs. Previous analyses indicate
that the orbital parameters are not changing rapidly with time, with
mainly only upper limits on their time derivatives, so mismatches of
a few years should not be very important. Nevertheless, we would
not want mismatches in the temporal data centroids to be larger than
necessary, so we paired RV and pulse sets accordingly, with seven of
the 16 possible combinations selected. Time placement and avail-
ability (extremely few pulse data are published) were the main
considerations in selecting and pairing data sets. A secondary
consideration for RVs was night-to-night and cycle-to-cycle con-
sistency. Specifically not considered was ‘normality’ in overall
amplitude or V,, because one of our main objectives was to
acquire a feeling for how parameters jump around owing to
systematic differences among data sets. Atypical data sets could
give the best information about the underlying binary, since major
disturbances may be absent only at a few epochs. The data sets
and their pairings are identified by letters A, B, C, D (for RVs)
and a, b, ¢, d (for pulses) in Table 2. Pulse sets ¢ and d are
respectively from the first and second orbits of the DBSHNS 1981
January data set. We fitted the two orbits separately because the
pulse period was changing unusually rapidly at that time. Con-
stant pulse period was not a good assumption even over as short
an interval as two orbits. Fig. 3 is a delay curve for the 1978

November pulse data that shows the smallness of pulse residuals
compared with RV residuals.

We have not processed multiple disconnected epochs of pulse
data as in several papers by the Nagase group (e.g. Nagase et al.
1984) but expect to do so in the future. The Nagase et al. type of
multiple-epoch solution is simultaneous. It might seem not to be so
because if one did that for light or RV it would merely be a matter of
tossing all observations in together and would not be conceptually
different from an ordinary solution. However, the pulse situation is
different because it requires knowledge of correct integer pulse
numbers and in practice it is seldom possible to know them for even
moderately separated epochs. The Nagase group solved this pro-
blem by introducing separate reference pulses and separate initial
time references for the various epochs of pulse data, and this
practice constitutes a true simultaneous solution because those
parameters take on different values for different data subsets. We
did not solve multiple pulse epochs together because our emphasis
is on unified light: velocity: pulse solutions and because most of the
relevant pulse arrival times are unpublished. Even if those arrival
times were available, significant improvement on the existing
analysis (see Nagase 1989 for a review) seems unlikely, as pulse
period is a rather robustly determined parameter.

5 SUMMARY AND DISCUSSION

There are many extensive parameter listings and discussions for
Vela X1: GP Vel, including their uncertainties and the means by
which they were derived. Because undue space would be needed
to put all such things in perspective, we make limited com-
parisons that emphasize differences of primary astrophysical
importance, mainly in the mass results. The robust parameters
apsini and (variable) P, come from the pulse data and are
summarized by Nagase (1989). For comparison with a; sini in
other papers, our asini = [(1 + g)/gla, sini. Our P, values of Table
2 fit in smoothly with the extensive listing by Nagase (1989).
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Figure 2. The Stickland et al. (1997) RVs and our solution curve (same curve as in Fig. 1).
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Figure 3. The 1978 November pulse data, referenced in table 6 of BDLZ, and our solution curve.

Other listings from various epochs are in KB, BDLZ and
DBSHNS.

The result of main astrophysical significance is the neutron star
mass because of implications for its mode of formation. Theoretical
and observational estimates of neutron star masses were examined
by Timmes, Woosley & Weaver (1996). The collapse-explosions
had been followed by Woosley & Weaver (1995). Observational
examples included both radio and X-ray binary pulsars. The

© 1998 RAS, MNRAS 296, 33-43

theoretical distributions are strongly bi-modal, with average
masses in the two peaks of 1.28+0.06 and 1.73+0.08 M. Those
masses do not include accretion from beyond the iron core in the
early collapse stages, fallback at late times from material that fails
to reach escape speed, or subsequent accretion from the companion,
so they are best regarded as lower limits. They also are affected by
uncertainties in convection theory. Note that the recent Stickland et
al. RVs (both our analyses and Stickland et al.’s) give estimates in
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Table 3. Relative radii and related quantities for seven solutions.

3

Soln. , Ryla Righela lobe status  m;sin®i  mysin’ i
Mo Mo
1 19.0259 0.5888 0.6186 5% under 1.60 23.26
2 19.0413 0.5939  0.5996 1% under 1.67 24.34
3 174009 0.5987 0.5880 2% over 1.88 25.33
4 189497 0.5859 0.6221 6% under 1.73 24.39
5 18.6015 05842 0.6267 7% under 1.61 22.65
6 183762 05938 0.6116 3% under 1.68 23.83
7 213995 05903  0.6296 6% under 1.40 23.12

the lower peak, while a consensus from other published RV curves
is in the upper peak (see next paragraph). Obviously the observa-
tional range for Vela X1 will have to be narrowed greatly to be
useful, since it does not even discriminate between the peaks at
present. The variety of estimates depends partly on the observations
and partly on how they are analysed, including how the pulse and
RV results are combined. Here we analysed representative combi-
nations of pulse and RV data sets, simultaneously and impersonally,
and the data sets themselves now appear to be the only significant
sources of epoch-to-epoch differences. For each of our solutions,
the supergiant’s surface ‘potential’, Q,, the mean relative radius,
Ry/a, the mean relative lobe radius, Rjy,./a, and the masses,
my, sini, are given in Table 3. The first quantity, Q,, comes
mainly from ®,, as adopted from X-ray eclipse duration, and
from the adjusted g. The relative radius is a derived quantity that
follows from the adjusted parameters. It varies only slightly among
the solutions — less than =1 per cent from the mean. More important
is the ‘lobe status’ column, which compares the estimated radius
with the lobe radius. As listed, Q, and R,/a pertain specifically to the
case i = 90°, F, = 0. The mass estimates should depend very little
on 0.

One sees at once that solution 7 stands alone in having a neutron
star mass in the low theoretical peak of Timmes et al. (1996). All
other estimates correspond to their high-mass peak. Solution 7
utilized the Stickland et al. (1997) ultraviolet RV's based on cross-
correlation of 1250- to 1900-A spectra. The neutron star mass
computed by Stickland et al. is 1.39 or 1.33 Mg, according to two
ways of carrying out the solution, and is close to our result from the
same data. One must remember, however, that these numbers are
my sin® i and that the sin’ i factor introduces its own uncertainties
(see discussion below). Of course, answers will depend somewhat
on the chosen pulse data, but not to a great extent because delay
amplitudes vary little among pulse data sets. So, although final
numbers will depend on the pulse data and solution method, the
Stickland et al. RVs do lead to a neutron star mass sufficiently
different from other published values as to have major astrophysical
significance. The range of mass estimates for Vela X1 thus remains
large, even with advantages (1) to (5) of the Introduction, but at least
our unified treatment gives reasonable assurance that the differ-
ences are in the data and not in the analyses. The supergiant’s mass
now shows improved agreement among data sets, with the extremes
of our seven results differing from the mean of about 24 M by only
5 per cent. Supergiant masses as low as 20.5 My are found in
previous results (van Paradijs et al. 1977b). Our solution 1 and 2
my sin® is of 23.3 and 24.3 Mg, are based on the the van Paradijs et
al. RVs.

Most published e and w estimates are from pulse data, with the es
similar on average to those found here (=0.10). The few RV-based

es are typically larger (e.g. 0.223 by Zuiderwijk, van den Heuvel &
Hensberge 1974; 0.136 by van Paradijs et al. 1977b), although
recently Stickland et al. (1997) found e = 0.107. However, our
results on w are quite different from those in the literature, even
results from pulse data. Our seven ws lie in the range 133° to 146°
while others’ range from about 148° to 177°, except for one KB w of
121°. The references are KB, BDLZ, Rappaport et al. (1980),
Nagase et al. (1984), DBSHNS and van Paradijs et al. (1977b).
Published RV-based ws are 153° (Stickland et al. 1997), 175° (van
Paradijs et al. 1977b) and 193° (Zuiderwijk et al. 1974). The only
explanation we can offer is our experience that w is highly
correlated with other parameters such that its value depends on
the relative weighting of pulse and RV data. One might think that a
correctly weighted solution would find w somewhere between
separate pulse and RV solutions, but there is no principle that
demands such a result and this certainly is not a precedent (see Van
Hamme & Wilson 1990; Eichhorn 1997). Since we have conscien-
tiously applied proper relative pulse and RV weights and the earlier
work neglected this point entirely, we think that our results on w
have a good chance of being essentially correct.

A spectacular recent discovery by Kaper et al. (1997) is a bow
shock in the interstellar medium, presumably due to collision with
GP Vel’s stellar wind. The bow shock geometry helps to identify
the direction of motion, while position information from the
Hipparcos satellite provides a rough proper motion, correspond-
ing to about 90 kms~ transverse velocity. The discovery makes
GP Vel one of the most interesting cases for examining the
runaway star phenomenon. Ordinarily the radial velocity would
be the most accurately measured part of the space motion, but
here V, differs by more than 20 kms™' among RV sets. It would
be good to settle the V., issue, but all one can do now is point out
the inconsistency. Curiously, a majority of RV solution papers fail
to list a V,, although their solutions almost certainly must have
included V.

A claim in several papers (e.g. Nagase 1989; van Kerkwijk et
al. 1995) is that information from ellipsoidal variation can be
combined with the X-ray eclipse duration to infer the relative
radius, R,/a, and the inclination. While the idea should work for
idealized static tides and may work for some real X-ray binaries,
it fails demonstrably for Vela X1: GP Vel whose actual ellipsoidal
amplitude greatly exceeds that expected in any synchronous or
non-synchronous lobe-filling configuration. A likely reason for
the large ellipsoidal amplitude is that the tide is not static, but
dynamical (Tjemkes et al. 1986; Wilson & Terrell 1994; this
paper). Accordingly, any inclination permitted by Table 1 is
presently viable and only lower limits are meaningful. Thus we
reject published statements to the effect that the Vela X1: GP Vel
system has a definitely known inclination (with or without an
attached uncertainty), as there is no observational basis for such a
claim at present.

More generally — and in opposition to explanations in well-
regarded papers, including major reviews — only in exceptional
circumstances might one hope to estimate the inclination of any
HMXB by the traditional means (via O,, ellipsoidal variation, etc.),
and no other means can realistically be applied at present. The
exceptional circumstances would necessarily include high levels of
confidence in two items: that the rotation is synchronous and that
the optical star accurately fills its limiting lobe. Few, if any, HMXBs
are in compliance with these requirements. The point can be
illustrated by examining a development in the review by Joss &
Rappaport (1984, hereafter JR), also used in the Nagase (1989)
review. JR derive an approximate relation between sin i and several
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geometric parameters (their equation 10),
o ) 2112
sini = [1 — B*(Rp/a) ] /cos @, 4)

where Ry is an effective lobe radius, 3 is the ratio of mean star radius
to Ry, and a and O, have their usual meanings. The JR development
begins with the well-known formula for eclipse duration by a
spherical star and introduces an effective eclipsing radius via an
approximation function fitted to equipotential surfaces. JR then
state that their formula ° . . . yields inclination angles with typical
errors of only 1 — 2°” Presumably the errors cited by JR are only
the systematic errors of their approximation, but readers could
easily misinterpret the remark to mean that inclinations in X-ray
binaries can be estimated with realistic errors of 1° to 2°. It appears
from comments in the literature (e.g. Timmes et al. 1996, p. 840)
that this particular misinterpretation has indeed been made many
times. With JR’s formula we can quickly see that realistic uncer-
tainties in i (derived from star size and eclipse duration) are so large
as to render i completely unknown for typical HMXBs, apart from
lower limits. Take a relatively favourable case in which Ry /a is
computed without approximation and @, is accurately known, so
that the entire error in i comes from uncertainty in 8. From (4) the
derivative

g _ — (RL/ a) 26
s [l — B*(Ryp/a) 2] "2 cosicos 0,

)

evaluates in typical HMXB cases to absolute values much above
unity — usually 5 rad or greater. Now if 3 is not known to be unity
(exact lobe-filling case, not believed applicable in generic
HMXBs), it can only be estimated from ellipsoidal variation and
will have an uncertainty of at least a few per cent in any believable
situation (remember that 3 will be correlated with i and F,, which
are fixed parameters in our solutions, and also with ¢; remember
also the erratic light curves of most HMXBs). Therefore the
uncertainty in i will be of order *0.1 rad (*6°) in the most
favourable circumstances likely to occur, and usually much
larger. Since the above uncertainty estimate ignores errors in ©,
and any lack of isomorphism between the idealized model and
reality, it is clear that the ‘standard’ geometrical estimation of i
gives essentially no useful information for HMXBs. Estimation of
sini (needed for absolute dimensions and masses) is stronger
because of the absence of a 1/cosi factor in dsini/dB. Lower
limits to i are on a somewhat firmer foundation because they are
based on the lobe-filling condition, where 3 has the definite value of
unity. However, even the lower limit is poorly known for Vela X1:
GP Vel, as shown by Table 1.

Although the main cause of variable results for Vela X1: GP Vel
is the strange behaviour of the optical velocities, we feel that our
unified analysis has clarified the situation significantly, with most
remaining disagreements due to epoch-to-epoch changes in the data
sets. The unified analysis also simplifies the interpretation of
multiple kinds of observations because it avoids mutually incon-
sistent results. The problem of keeping the supergiant within its
limiting lobe at periastron has been quantified for seven com-
binations of RV and pulse observations. Rotation as fast as syn-
chronous is barely possible for some data combinations but slower
rotation, such as 0.67% 0.04 times the orbital angular rate that
follows from line broadening (Zuiderwijk 1995), seems more
likely. Further progress toward finding the true orbital parameters
and masses would seem to require a breakthrough in radial velocity
measurement.
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APPENDIX A: PARTIAL DERIVATIVES FOR
DIFFERENTIAL CORRECTIONS

The pulse number n (the integer part of pulse phase) is the
independent variable and the pulse arrival time ¢ is the dependent
variable. The defining equation is

E= et + S(n — neep)Pp + At — Aty (A1)

where S is the number of days in a second of time (1/86 400), Py is
the pulse period in seconds, and » is an integer assigned to an
observed pulse (presumed consecutive in actual pulses, not neces-
sarily in observed pulses). The variable ¢ is in Heliocentric Julian
Date (HID) and At is the delay in pulse arrival due to orbit crossing.
Positive At is the light travel time from the pulsar to a plane normal
to the line of sight at the nodal distance (‘plane of the sky’), and
negative At is light travel time from the plane of the sky to the
pulsar. Subscript ref refers to a designated reference pulse and its
time of arrival. All times ¢, whether subscripted or not, are in the
proper time frame of the Solar system barycentre." Implicit para-
meters that affect ¢ include the system mass ratio (g = m,/m,), with
star 1 the pulse source; the orbital inclination (i) to the plane of the
sky, in radians; the relative orbital semi-major axis (@ = a; + a5),
here in solar radii; the orbital eccentricity, e; the argument of
periastron, w, in radians; the orbital period, Py, here in mean
solar days; and the orbital time reference, #,. The implicit para-
meters enter through the delay terms, which depend on location
within the orbit. Parameters P, and ,.¢ enter both explicitly through
the first two terms of (A1) and implicitly via the computation of
time and thus of orbital position and delay. One uses the pulse
ephemeris to obtain time, then the orbital ephemeris to obtain
orbital phase, and finally the orbital phase to compute delay. Thus
recognize the first two terms of (Al).as time, #,, kept by the pulsar
clock (also in HID),

tp = fref + S(n — nref)P , (A2)
which then is coupled to the orbital phase, ¢, by

¢ =¢o+ (tp—PtL). (A3)
orb

Here #; and ¢, are respectively the orbital reference epoch (time
of superior conjunction of star 1) and the phase assigned to that
epoch. Often ¢, will simply be zero, but in general we allow the
phase to include a constant offset. The computed times depend on
the nine parameters t.s, g, i, a, €, w, fy, P, and P,y Partial
derivatives, dt/dp, of arrival time with respect to the parameters
are needed if one is to fit pulse observations by the method of
differential corrections. First, the explicit form of the delays must be
specified:

__ SReaDgsini

) cos(2me,), (A4)

'We neglect relativistic effects, which are very small in the context of typical
X-ray binaries.

where Rp is the radius of the Sun in kilometers, D is the
instantaneous separation of the two stars (unit = relative semi-
major axis), ¢, is the angle in the orbit plane measured from
conjunction in the direction of motion (we call ¢, the ‘geometrical
phase’, with unit that of conventional phase, 27 radians), and c is
the speed of light in kilometers per second. Formally,

_vtw

¢, = o= - 0.25, (AS)

where v is the true anomaly (angle from periastron to star in the orbit
plane). The At term is the same as At, except for ref subscripts
(Drer and ¢, ). Next a relation between orbital phase and orbital
angle, ¢,, is required. The mean anomaly, M, is the difference
between a given phase and periastron phase, ¢,

M =27($ — Pper) (A6)
with
Sper = W/(2T) + Pg + 0.75, (A7)

where the 0.75 term accounts for w being measured from the
ascending node (270° from conjunction). So
M =27(¢ — ¢g) — w — 1.5m. (AB)

However, ¢ includes ¢ (cf. A3), so M does not depend on ¢, but
does depend on #,.

t, — 1
M= 2wM— w— 1.5m. (A9)
Porb

The eccentric anomaly, E, also occurs below. In the interest of
compactness, we define expressions that occur repeatedly. They are

Ax = Dcos(2m,) — Dyt cos(2mag), (A10)
A = SRp/c, (A11)
B= /1T (A12)
1—e
q
=7 Al3
0] T+q (A13)
dm
déy 1
W "o (A1
oD e(1—é)sinv
oD _el —e)simv Al6
dv  (1+ecosv)? (AL6)
dv cos2(0.5v)
— =B s Al7
M c0s2(0.5E)(1 — ecos E) (ALD)
dD 9D dv
T~ 30t 19
dg, do, dv
M~ dv dM” &19)
The required partial derivatives are
ot  Aasini
— =2 Ax, A20
3~ U +q7 (A20)
% = AaQ cos iAx, (A21)
o _ AQsiniArx, (A22)
da
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cos(2me,) 5%
o o — cos (2, ) Lt ff
=1+ AaQsini
Otret —27Dsin (21'r¢~g)

421D, sin (27, ) %ef

mf
with
dD dDdM d,
dt,ef “a dt dt,ef

do, _ ds, d dy,
dis  dM di, diee’

dM 2w
dtp P orb ’
d,
dtref -
cos(2me, ) L
o . — cos(2m,,, ) Gt
— = AaQsini dé ,
de —2wD sin2md,) T
+27D ¢ sin(2me, ) di;‘fﬁ
with
dD 8_Dd_v oD
de  Odvde e’
oD (1 +¢é*) cosv+ 2e
de (1 + ecosv)?
a9, _ dgydo
de ~ dv de’
dv B sin E cos(0.5v) 2 sin(0.5v)
— = c0s(0.5v) > >
de (1 — ecos E)cos“(0.5E) 1—e
cos(2me,) L
y —cos(2Tog, Dt
a— = AaQsini . d:,,, R
dw —2mD sin2me,) T
2m D sin(2mebg_ ) it
with
a0
w  ovdw’
qug 1 (dv
— 1
do — (dw + >
dv_ B cos’(0.50) dM
dw ™ (1 —ecos E)cos*(0.5E) dw’
M
dow
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(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

(A35)

(A36)

(A37)
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cos(2me,) %
dD,

t A Q .. - Cos(zqugmf)?tm
— = Aa@sm1 )
do —2mD sin(2my)

+2mDyes sin(2Th, ) —; —g—”i

with
dD _dDdM
dty ~ dM dry’
b, _ dg v

dzy M dt()
a __om
dtO P, orb '

ot ( ) + AaQsini cos(2m,) §
— = S(n — ng aQsini
9P, ' —2mDsin(2me,) S

P

(A38)

(A39)

(A40)

(A41)

} (A42)

(Note: the terms subscripted ‘ref’ do not appear in A42 because

dr, /dP, (see below) is zero.)

with
dD dDdMd¢ dr,

dP de¢>dth

dg,  do,dM d¢ dr,

P P
d¢ 1
dt, Py’
dr
d_Tl; S (n - ’lref)
cos (2, ) 72
O osimi| (279e,.)
— = Aa{/sIm1i
Pory —2mDsin(2mg) st
4
+2m Dy sin (2, ) gp=t
with

dD _ dDdM d¢
dPo,  dM d¢ dPoy,’
dp,  dé,dM do
APy  dM d¢ dPoy’
do -1
dPy, P2

orb

(A43)

(A44)

(A45)

(A46)

(A47)

(A48)

(A49)

(A50)
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