Cassini-Huygens

Enceladus: An Active Ice World in the Saturn System

John Spencer Southwest Research Institute, Boulder

Earth and Space Science Colloquium, JPL February 25th 2008

Enceladus in the Saturn System

Voyager: 1980, 1981

- 500 km diameter
- Very high albedo
- Heavily modified, fractured surface

E-ring

- Diffuse outer ring of Saturn, discovered in 1966
- Density peak at Enceladus (Baum et al. 1980, Reitsema et al. 1980, Larson et al. 1981)
- Haff et al. 1983: Sputtering lifetime of E-ring particles is only a few thousand years: need a continuous source at Enceladus
 - Geysers??
- Color implies a peculiar size/frequency distribution: geyser origin? (Pang et al. 1984)

National Geographic, 1981

Slide 5 John Spencer, JPL, Feb. 25 2008

1990s: Discovery of OH Torus

- Discovered by Hubble Space Telescope near the E-ring (Shemansky et al. 1993):
 - 20x more OH than expected from micrometeorites, sputtering: Need additional source of water (Jurac et al. 2001, 2002)

Slide 6 John Spencer, JPL, Feb. 25 2008

Early Cassini Observations

- Approach to Saturn, early 2004: Cassini UV observations of neutral oxygen throughout the Saturn system
 - More evidence for a large water source near Enceladus
- Distant high-phase imaging in Jan., Feb. 2005 showed south polar plume: not recognized at the time
- First close Enceladus flybys in early 2005...
 - Feb 17th 2005, 1260 km altitude
 - Mar 9th 2005, 500 km altitude

Esposito et al. 2005

Porco et al. 2006

Hints of South Polar Weirdness...

Feb. 2005 UVIS Stellar occultation

• Low latitudes: No atmospheric signature seen (Hansen et al. 2006)

Feb., Mar. 2005 Magnetometer results

• Field perturbations by a conducting barrier larger than Enceladus (Dougherty et al. 2006)

April 2005: Cassini satellite Workshop, JPL

Michele Dougherty argues for lowering the planned 1000 km distance of the July 2005 flyby to ~175 km to investigate more closely.

July 14th 2005 (Rev. 11): The Flyby That Changed Everything

- Good view of the south pole on approach
- UV star occultation over the south pole
- 175 km altitude flyby allowing close investigation by the in situ instruments

Imaging on Approach

 First good view of south polar "tiger stripes"

High Resolution Imaging

• 37 m/pixel, 4 m/pixel

- Distinctive terrain precisely centered on the south pole
- Bordered by scalloped scarps at ~55 S
- Tension fractures radiate northwards from the scallops
- At most, a small number of impact craters: age < 1 m.y.?

Slide 22 John Spencer, JPL, Feb. 25 2008

Tiger Stripe Infrared Spectrum

VIMS (Brown et al. 2006, Jaumann et al. 2008, Newman et al 2008):

- Coarser ice grains ~0.1 mm in tiger stripes
- Crystalline ice at the tiger stripes, more amorphous ice between the stripes

Tiger Stripe IR Spectrum, contd.

- CO₂
- Organics
- NH₃ frost not seen

(Brown et al. 2006)

Slide 25 John Spencer, JPL, Feb. 25 200

Thermal Infrared Observations

CIRS instrument: Map heat radiation from Enceladus' surface Spencer et al. (2006)

- Effective wavelength = 12 16 µm
- Resolution = 25 km

South polar hot spot

Location of Warm Region

 Corresponds closely to the "tiger stripe" fractures

Brightness Temperature Contours Slide 27 (Spencer et al. 2006) John Spencer, JPL, Feb. 25 2008

Spectrum of South Polar Warm Region

- ~345 km² (~1% of the surface) at ~133 K
 - Remainder of surface is much colder, <75 K
- E.g., ~660 m width of warm material along the tiger stripes
- Total radiated power: at least 5.8 \pm 1.9 GW

High Resolution CIRS Observations

- Warm material concentrated along the tiger stripes
- Temperatures up to at least 145 K

Spencer et al. (2006)

Slide 29 John Spencer, JPL, Feb. 25 2008

Putting Together the Big Picture

 Assume everything is symmetrical about the south pole

July 2005 UVIS Stellar Occultation

Hansen et al. (2006):

- South polar ingress: gas over the pole!
- Equatorial egress: no signature

UVIS Stellar Occultation, contd.

- H₂O absorption: 1.5 x 10¹⁶ molecules cm⁻² over the south pole
 - Most of the H₂O escapes
 - Speed ~ 400 m/sec
 - Enceladus escape velocity = 240 m/sec
 - Escape rate 120 180 kg/sec (Tian et al. 2006)
 - ~0.2 Enceladus masses in 4 b.y.! (Kargel 2006)
 - Probable source of the observed OH, O clouds

Hansen et al. (2006)

Composite of 2005 Enceladus Plume Observations (assuming symmetry about the spin axis)

Slide 34 John Spencer, JPL, Feb. 25 2008

July 2005 INMS Observations

Ion & Neutral Mass Spectrometer: *in situ* measurements of the gas cloud (Waite et al. 2006)

- Gas composition:
 - 91% H₂O, plus
 - CO₂
 - N₂
 - CH₄
 - C₂H₂, C₃H₈??
- Ammonia not seen...

INMS saw the most gas when Cassini was closest to the south pole

2000x scale

difference

Slide 36 John Spencer, JPL, Feb. 25 2008

CDA Dust Observations

- Cosmic Dust Analyzer: Spahn et al. (2006)
- Peak dust ~1 minute before C/A
- Modeled dust production rate > 0.2 kg s⁻¹
 - Could be much higher, depending on size distribution

The south polar plume is probably the dominant source of the E-ring

July 2005 Magnetometer, Plasma Results

Field perturbation is strongest over the south pole (Dougherty et al. 2006)

Cassini plume images

Higher-resolution images taken in November 2005

- Confirm reality of Feb., Mar. 2006 plume detection
- Multiple plume sources
- Source locations are consistent with the tiger stripes

ISS Camera Plume Observations, contd.

- Dust concentrated near the surface:
 - Mean vertical speed
 - ~ 60 m s⁻¹
 - Much less than escape velocity, 240 m s⁻¹
 - Much less than gas velocity
 - Most particles reimpact the surface!
 - ~1% of particles escape

 Cassini trajectory skirted the edge of the plume seen by the Cassini cameras

Slide 41 John Spencer, JPL, Feb. 25 2008

VIMS Plume Spectrum

Simultaneous with November ISS images

Plume particle spectrum is very similar to E-ring: ~micron-sized ice particles

NASA/JPL/U. Arizona Slide 42 John Spencer, JPL, Feb. 25 2008

What's Going On?

- Large amounts of heat and intense crustal deformation
 - What's the power source?
- Jets of gas and ice emerging from south polar fractures
 - What's the jet source?
- Why only at the south pole?
- Why only on Enceladus?

- Satellite in eccentric orbit
- Tidal bulge is larger when closer to primary
- Apparent direction of primary varies around the orbit (satellite faces empty focus of ellipse)
- Distortion generates frictional heat
- Poster child: lo

Tidal Heating

Maintaining Eccentric Orbit?

- For Io, 2:1 orbital resonance with Europa
- For Enceladus, 2:1 resonance with Dione
 - Hints of activity on Dione too

Dione from Cassini

- Mimas is closer to Saturn than Enceladus, and its orbit is much more eccentric
 - Should have 10x the tidal heating of Enceladus
- But, Mimas' ancient surface shows no sign of tidal heating
- Bistable tidal heating?
 - Enceladus is warm, soft, readily distorted by tides, stays warm.
 - Mimas is cold, rigid, stays cold.
- Need a way to "kick start" Enceladus initially
 - Aluminum 26 very early? (Matson et al. 2007)
 - "Normal" tidal heating plus insulation? (Schubert et al. 2007)

How Much Tidal Heat?

- Pre-Cassini estimates: 0.1 GW 4 GW
- But orbit stability implies < 1 GW of power if system is in equilibrium (Meyer and Wisdom 2007)
- Observed power at least ~6 GW!
 - Not in equilibrium?
 - Recent impact??
- Heating by spin/orbit resonance ("wobble") also possible?
 - But no wobble seen by Cassini

- Boiling of near-surface liquid water ? (Porco et al. 2006)
 - Easy way to make ice particles
 - Why near-surface liquid?
- Warm vapor from frictionallyheated ice? (Nimmo et al. 2007)
 - Can give right numbers for heat flow, vapor production
 - Requires ocean at depth
- Decomposing clathrates? (Keiffer et al. 2007)
 - Explains other gases in the plume
 - Hard to explain water vapor
- Dense condensing vapor from deep H₂O reservoir? (Schmidt et al. 2008)
 - Explains number and speed of ice particles

Plume Source?

Slide 49 John Spencer, JPL, Feb. 25 2008

Comparison to Observations

- E.g., Nimmo et al. (2007) shear heating model
- Polar stripe (Baghdad) is more active than predicted by this model

Why the South Pole?

Nimmo and Pappalardo (2006)

- Low-density silicate or ice diapir can reorient Enceladus
- Resulting stresses may be consistent with the observed tectonic patterns
- Gravity anomaly might be detectable by Cassini?

2006 CIRS Observations

- November 2006: first view of the south polar terrain since July 2005 (Abramov and Spencer 2008)
- Same power as 2005, despite more vertical view
 - Most hot material not in cracks?

2005/07/14 S. Pole Brightness Temperatures 2006/11/09 S. Pole Brightness Temperatures

More Plume Observations

- Triangulation allows determination of plume source locations (Spitale and Porco 2007)
- Plume sources are along the tiger stripes
- Correlate with CIRS hot spots

Slide 53 John Spencer

September 2006 High-Phase Imaging

Sampling the E-Ring

- CDA: Cassini dust analyzer (Postberg et al. 2008)
- Two main particle types
 - ~Pure ice
 - Knocked of Enceladus' surface?
 - Dirty ice
 - From the plumes?

Earth-Based Contributions

- Search for sodium from Enceladus (Schneider et al. 2007)
- Sodium is very bright: detectable in very small quantities
- Also very soluble- should be in any Enceladus ocean
- No sodium found
 - Plume source not connected to an ocean?
 - Or sodium distilled out of the plume?

Next Up: March 12th 2008 (Rev. 61) flyby

- Fly over low latitudes at 50 km altitude
- Fly over south pole at 580 km altitude 55 seconds later
- Much deeper penetration of the plume
 - ~10x better precision on plume composition
 - Plume particle compositions: distinguish impact and plume sources of ice particles?
 - Plasma: measure rate of mass loss from Enceladus?

Slide 60 John Spencer, JPL, Feb. 25 2008

Rev. 61 Encounter Movie

- -4 hours →
 +4 hours
- Red square

 ISS
 camera field
 of view

ENCELADUS RA/DEC : 348.7 / -72.5 SAT SUB S/C LAT / LON : 67.51 / 102.24 SAT SUB SOLAR LAT / LON : -7.60 / 305.99

Rev. 61 CIRS South Polar Mapping, Part 1

Looking back after closest approach

Saturn eclipse cools surface, makes internal heat easier to measure (and eliminates competition...)

- C/A +00:05 Begin turn back to Enceladus
- C/A +00:16 Begin tiger stripe map (range 13,800 km, resolution 4.1 km)
- C/A +00:37 End tiger stripe map (range 32,000 km, resolution 9.6 km)

CIRS South Polar Mapping, Part 1

- Previous best full map had 25 km resolution...
- Typical 10 km resolution of Rev. 61 map
- Easily resolve the tiger stripes, map temperatures along them

CIRS South Polar Mapping, Part 2

- C/A +00:38 Begin 6-minute integration on plume source "VI", hot spot "C" (resn. 9.8 km)
 measure hot spot temperatures
- C/A +00:44 Long-wavelength measurements of south pole and nearby, for heat flow
- C/A +01:03 End observation

Upcoming Enceladus Flyby Summary

Date	Orbit	Speed, km/s	Altitude, km	Orbit Inclination	C/A science emphasis
12-Mar-2008	61	14.3	50	High	Plume sampling
11-Aug-2008	80	17.7	50	High	S. pole remote sensing
9-Oct-2008	88	17.7	21	High	Plume sampling
31-Oct-2008	91	17.7	196	High	S. pole remote sensing
2-Nov-2009	120	7.7	96	Low	Plume sampling
21-Nov-2009	121	7.7	1560	Low	S. pole remote sensing
28-Apr-2010	130	6.5	96	Low	S. pole gravity
18-May-2010	131	7	246	Low	Plume solar occultation

Extended Mission Remote Sensing

2008/10/31

- 3 flybys optimized for hi-res remote sensing
- Coverage is limited:
 - Color imaging at > 6 m/pix
 - VIMS compositional maps at >500 m/pix
 - CIRS 1x10 pixel temperature profiles at >500 m/pix

Enceladus at 16 m/pix

Future Missions to Enceladus?

- 2007 NASA study
- Orbiter + Lander feasible for \$3B?
- NASA, ESA now pursuing possible Enceladus flyby science on a Titan flagship mission

Conclusions

- A living ice world!
- Heat source is presumably tidal
 - Many questions remain
- Near-surface liquid water is plausible
 - But so are models without near-surface liquid water
- Major discoveries are still likely from Cassini
 - We ain't seen nothing yet...