THE EJECTION RESONANCE AND THE ANGULAR MOMENTUM OF THE EARTH-MOON SYSTEM. Wm. R. Ward and R. M. Canup, Southwest Research Institute, Boulder, CO 80302

Recently, Cuk and Stewart [1] have suggested that the Earth-Moon system may have had its angular momentum modified by a solar resonance. As the early Moon’s orbit expands due to tidal interaction with the Earth (mass \(M \)) it can be captured into the ejection resonance, which occurs when the precession period of the Moon (mass \(m \)) equals the orbit period of the Earth [2]. Capture excites the Moon’s orbital eccentricity and drains angular momentum from the Earth-Moon system. If the angular momentum loss is substantial as recently advocated by Cuk and Stewart - who numerically integrated the evolution of the lunar orbit with an ersatz version of a constant \(Q \) tidal model - this could allow for a broader range of lunar forming impact scenarios than previously considered viable. Here we further examine this possibility by using complimentary semi-analytical methods in the context of a popular tidal model due to Mignard [3] that assumes a constant time lag, \(\Delta t \), of a body’s response to tidal distortion.

The equations for the tidal evolution of the lunar semi-major axis \(a \) and eccentricity \(e \) vs. \(\tau \equiv t / t_T \) due to Earth tides read
\[
\frac{\Delta a}{\Delta \tau} = \left[\frac{s}{n} \right] f_1(e) - f_2(e) \left(R / a \right)^8 \]
\[
\frac{\Delta e^2}{\Delta \tau} = \left[\frac{s}{n} \right] g_1(e) - g_2(e) \left(R / a \right)^8
\]
where \(s \) is the Earth’s spin rate, \(n \) is the Moon’s mean motion, \(f_1, f_2, g_1, \) and \(g_2 \) are functions of \(e \) [4], \(R \) is the Earth’s radius, and \(t_T \) is a characteristic tidal time scale. Since tides conserve angular momentum, we can set
\[
C_0 ds / d \tau = -dL_o / d \tau |_{\Delta \tau},
\]
where \(C_0 \) is the Earth’s spin moment of inertia and \(L_o \equiv m(GMa)^{2 / 3} (1 - e^2)^{1 / 2} \) is the Moon’s orbital angular momentum. The corresponding evolution expressions due to satellite tides are then given by using the lunar spin rate, \(s_M \), in place of \(s \) in the \(\dot{a} \) and \(\dot{e} \) expressions and then multiplying the RHS by
\[
A \equiv \frac{k_M}{k} \frac{\Delta t_M}{\Delta t} \left(\frac{M}{m} \right)^2 \left(\frac{R_m}{R} \right)^5 = 10 \frac{k_M}{k} \frac{\Delta t_M}{\Delta t},
\]
which is a ratio of physical parameters of the two bodies that scales the relative strength of tides on the Moon to tides on the Earth, with \(R_m, k_M \) and \(\Delta t_M \) being the Moon’s radius, tidal Love number, and lag time, respectively and \(k, \Delta t \) are the corresponding quantities for the Earth. The lunar spin rate is then found from setting \(C_M ds_M / d \tau = -dL_o / d \tau |_{\Delta \tau_M} \), where \(C_M \) is the lunar moment of inertia.

In addition to the tidal rates, we need the Lagrange equations associated with the ejection resonance, viz.,
\[
\frac{de}{d \tau} = \frac{15}{4} e (1 - e^2)^{1 / 2} \left(\frac{a}{R} \right)^{3 / 2} \left(\frac{n_\odot}{n_R} \right)^2 (n_\odot t_T) \sin 2 \varphi
\]
\[
\frac{d\varphi}{d \tau} = \left[\frac{\Lambda^2 (s / n_R)^2}{(1 - e^2)^2 (a / R)^{7 / 2}} \right] - 1 + \frac{3}{4} (1 - e^2)^{1 / 2} \left(\frac{a}{R} \right)^{3 / 2} \left(\frac{n_\odot}{n_R} \right)^2 \left(1 + 5 \cos 2 \varphi \right) n_\odot t_T
\]
where \(n_\odot \) is the mean motion of the Earth about the Sun and \(n_R \equiv (GM / R^3)^{1 / 2} \). The resonance angle \(\varphi \) measures the difference between the solar longitude, \(\lambda_\odot \), and the position of the moon’s perigee, \(\varphi \), as seen from the Earth. In writing \(\varphi \), we have set
\[
J_2 = J_4 (s / n_R)^2 \quad \text{with} \quad J_4 = 0.315 \quad \text{to take into account the effect of the Earth’s spin rate on its oblateness, and then defined}
\]
\[
\Lambda \equiv (3 J_4 n_R / 2 n_\odot) \left(\frac{3}{2} \right)^{1 / 2} = 54.2.
\]
To evolve the Earth-Moon-Sun system, we use a 2nd order Runge-Kutta routine.
to integrate the tidal and evection equations together. The simulations are started with the Moon in a nearly circular orbit inside the evection resonance location. Tides push the orbit outward until the resonance is encountered, at which time the eccentricity starts to increase rapidly. Eventually, \(e \) becomes so large that the tidal expansion of the orbit stalls in this tidal model. Past this point both \(a \) and \(e \) begin to decrease. The system angular momentum, \(L = C_\oplus s + C_M s_M + L_o \), also decreases. Just how much angular momentum is drained by the Sun depends on the duration of resonance occupancy.

In the left-hand figure below, with initial values \(a/R = 4, \ e \sim 0, 2\pi / s = 2.5\text{hrs}, \ \varphi = \pi/2 \) and an \(A \) of 9, the Moon escapes the evection resonance very soon after the semi-major axis stalls. Once the Moon is out, its semi-major axis resumes an outward migration (dashed line = perigee distance), while the eccentricity undergoes a slow increase. This is qualitatively similar to some earlier investigations of this mechanism [4]. The bottom panel shows the normalized system angular momentum, \(L' \equiv L / C_\oplus R \), which has a starting value of 0.64, but is only slightly changed by the time of escape and remains constant thereafter.

By contrast, the right-hand figure shows the evolution with the same initial conditions except for the starting value of the resonance angle, \(\varphi = 0 \). Here, resonance escape occurs late in the evolution, after the orbit has contracted back to \(a \sim 6R \). By then, significant angular momentum has been removed from the system, leaving \(L \) pretty close to its current value of 0.35. This is qualitatively similar to the results of Cuk and Stewart [1]. Both types of outcomes appear possible with this tidal model.

This work was supported by the NLSI and NASA’s LASER programs.