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The stability of spin axis motionsand the consequent plan-
etary obliquities for a given planetary system is examined via
a simple agorithm for spin axis oscillations of a test particle
as a functions of its spin rate and orbital distance. For any
specified planetary system with masses M;, orbital distances
aj, eccentricities e; inclinations I;, longitudes of periapses
and ascending nodes, w;, 2, the Laplace-Lagrange first-order
secular solutionisdetermined[1]. Thisgivesthetimevariation
for each planet

{hj,k;} = ej;{cos,sin}w;
= Z Aj r{cos,sin}(skt + ex)
k
{pj,q;} = sinI;{cos,sin}Q;

= Z Bj 1 {cos, sin} (st + 6x)
k

where {A; k,ex}, {Bj,k,0r} are found from the initial con-
ditionsat timet = 0. Thevariables {sx, s}, } arethe eigenfre-
quencies of the system.

The orbit evolution of atest object isthen given by

{h, k} = 2an[%;u; N;{k, —h} — S;p; P;{k;, —h;}]
{,d} = 2an[Z;pu; Nj{—q,p} — Zjpu;Nj{—q;,p; }]
where n isits mean motion and

=1
Nj = @Q‘jb3/2

(o); P iajbé?z(aj)

with {a>,a<} = {max,min}(a,a;), a;j = a</a>, and
p{™ (cj) isthe so-called Laplace coefficient [1]. The quan-
tities pu; are the planetary masses normalized to the primary’s
mass. Substituting for h;, k;, p;, g, reversing the order of
summation, and integrating gives,

{h,k} = Ao,{sin,cos}(gt+ €)
+X% ( Ik > {sin, cos}(skt + €;)
g—5;
{p.a} = Bo{sin,cos}(—gt +9)
!
+3k <g j_ks;c> {sin, cos}(skt + Ok )
where,

g9(a) = 2nX;p;(aN;)

gi(a) = 2nZ;p;(aN;) Bjk

gr(a) = 2n3;p;(aP;) Ajk
The integration constants A,, B, €, § are determined by the
initial orientation of the test particle’s orbit. The first two

quantities are respectively its free eccentricity and the sine of
the free inclination.

The next step is to compute the obliquity variation of the
test object that results from the orbit evolution. Ward [2,3]
provided a first-order solution for Mars that is easily adapted
to our problem,

o gBo . o S
Al = acost—g sin[(acos @ — g)t + 4]

S;c g;c . U N
-3
* <ac050+82> <g+s;c> sinlercosf + ou)t + 0

where by, &, are phases found from 8y, and theiinitial spin axis
position of thetest planet [2]. Inthe above expression, a isthe
spin precession variable given by

_3m (D 2 2372
a_P<P>K(1 ¢)

where P, D arethelength of theplanet’syear and day, J» isthe
second harmonic of its gravity field, and K = C/MR? isits
gyration constant [4]. Because the various eigenfrequencies of
the orbit are uncorrel ated, they can on occasion constructively
interfere. Accordingly, the maximum obliquity variation is

9Bo
acosf —g

Sl 9k
acosf + s}, g+ s

Note that singularities exist whenever any of the following
conditions occur:

|A9‘maz

+Xg

g=—s5, ; acosd=—s, ; acosf=g

The first singularity condition locates the semi-major axes
where thereis a secular orbit-orbit resonance between the test
planet’s orbit and an eigenfrequency of the planetary system;
these are vertical lines, independent of the planet’s rotation
rate. The obliquity amplitude increases as these resonances
are approached because the forced inclination of the orbit goes
up. The second condition traces out the length of day vs. semi-
major axis of secular spin-orbit resonances for each eigenfre-
quency. Because J; o« 1/D? « « 1/D, the curves mono-
tonically decrease[4],i.e, D « 1/P? « 1/a®, andthistrend
is easily discernable in the figure below. The third condition
traces out the secular spin-orbit resonances of the free nodal
precession of the test planet; it is not monotonic because the
valueof g(a) peaksinthevicinity of each planet in the system.
The superposition of the obliquity contribution around each of
the singularity curves resultsin complex stability zones.

We have automated this process to produce color coded
maps of the obliquity "topography" for an arbitrary planetary
system. An example output is shown in Figure 1 where we
have first removed Mars from our solar system and solved
for the Laplace-Lagrange secular system in its absence (Ta-
ble 1). Mars is then replaced with a massless test object of
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similar attributes, viz., average density 3.9 g/cm?®, gyration
constant K = 0.366, unperturbed obliquity of 6 = 25°,
and located in a circular orbit with 2.9° free inclination. Hy-
drostatic equilibrium is assumed, with J> being estimated by
the Darwin-Radau relationship [4]. This procedure allows us
to move the pseudo-Mars object without having to construct a
new secular system for each location. Thelinear range |A6)] of
obliquity variations in the inner solar system is displayed as a
function of itsrotation period and semi-major axis. (Therange
of variationistwicethevalue shown, i.e. +|A6|.) The current
location of Marsonthediagram (24.6 hrs, 1.52 AU) placesitin
aregion where obliquities vary by +O(10°) which is consis-
tent with recent numerical experiments|[5, 6]. Thisisbounded
on the outside by a secular orbit-orbit resonance with s; and
ontheinside by a secular spin-orbit resonance with s5, so that
adlight displacement inward or outward brings the test object
into aregion of greatly increased oscillations. A niche where
Earth-like stability would be exhibited (i.e., |A§| ~ 1.5°) is
difficult to find inside ~ 2.5AU. The Earth owes its spin axis
stability to the lunar torque, which decreasesiits precession pe-
riod from 8.1 x 10* t0 2.6 x 10* years[2,7]. Thishasroughly
the same effect aslowering the rotation period by afactor of 3.
However, a similar satellite contribution to Mars' precession
would not be stabilizing, but would instead force it deeper into
the k = 3 spin-orbit resonance.

TABLE 1: INCLINATION EIGENFREQUENCIES.
With Mars (“/yr) Without Mars (“/yr)

s 523 517
sh -6.60 -6.49
sh -18.81 -18.49
s} -17.69 S
sk -25.51 -25.51
sh 2.92 2.92
sh -0.68 -0.68
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Figure 1: Obliquity variation amplitude | Ad| for atest object in place of Mars as afunction of rotation period and semi-major axis.

White areas exceed 20°; the linearized solution becomes increasingly inadequate at high amplitudes.
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