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The stability of spin axis motions and the consequent plan-
etary obliquities for a given planetary system is examined via
a simple algorithm for spin axis oscillations of a test particle
as a functions of its spin rate and orbital distance. For any
specified planetary system with masses Mj , orbital distances
aj , eccentricities ej inclinations Ij , longitudes of periapses
and ascending nodes, $j ;
j the Laplace-Lagrange first-order
secular solution is determined [1]. This gives the time variation
for each planet
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where fAj;k; �kg; fBj;k; Ækg are found from the initial con-
ditions at time t = 0. The variables fsk; s0kg are the eigenfre-
quencies of the system.

The orbit evolution of a test object is then given by
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where n is its mean motion and
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s (�j) is the so-called Laplace coefficient [1]. The quan-

tities �j are the planetary masses normalized to the primary’s
mass. Substituting for hj , kj , pj , qj , reversing the order of
summation, and integrating gives,
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where,

g(a) � 2n�j�j(aNj)

g0k(a) � 2n�j�j(aNj)Bj;k

gk(a) � 2n�j�j(aPj)Aj;k

The integration constants Ao, Bo, �, Æ are determined by the
initial orientation of the test particle’s orbit. The first two
quantities are respectively its free eccentricity and the sine of
the free inclination.

The next step is to compute the obliquity variation of the
test object that results from the orbit evolution. Ward [2,3]
provided a first-order solution for Mars that is easily adapted
to our problem,
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where ~Æk, ~Æ, are phases found from Æk and the initial spin axis
position of the test planet [2]. In the above expression, � is the
spin precession variable given by
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whereP ,D are the length of the planet’s year and day, J2 is the
second harmonic of its gravity field, and K = C=MR2 is its
gyration constant [4]. Because the various eigenfrequencies of
the orbit are uncorrelated, they can on occasion constructively
interfere. Accordingly, the maximum obliquity variation is
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Note that singularities exist whenever any of the following
conditions occur:

g = �s0k ; � cos � = �s0k ; � cos � = g

The first singularity condition locates the semi-major axes
where there is a secular orbit-orbit resonance between the test
planet’s orbit and an eigenfrequency of the planetary system;
these are vertical lines, independent of the planet’s rotation
rate. The obliquity amplitude increases as these resonances
are approached because the forced inclination of the orbit goes
up. The second condition traces out the length of day vs. semi-
major axis of secular spin-orbit resonances for each eigenfre-
quency. Because J2 / 1=D2, � / 1=D, the curves mono-
tonically decrease [4], i.e., D / 1=P 2 / 1=a3, and this trend
is easily discernable in the figure below. The third condition
traces out the secular spin-orbit resonances of the free nodal
precession of the test planet; it is not monotonic because the
value of g(a) peaks in the vicinity of each planet in the system.
The superposition of the obliquity contribution around each of
the singularity curves results in complex stability zones.

We have automated this process to produce color coded
maps of the obliquity "topography" for an arbitrary planetary
system. An example output is shown in Figure 1 where we
have first removed Mars from our solar system and solved
for the Laplace-Lagrange secular system in its absence (Ta-
ble 1). Mars is then replaced with a massless test object of
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similar attributes, viz., average density 3.9 g/cm3, gyration
constant K = 0:366, unperturbed obliquity of � = 25o,
and located in a circular orbit with 2.9o free inclination. Hy-
drostatic equilibrium is assumed, with J2 being estimated by
the Darwin-Radau relationship [4]. This procedure allows us
to move the pseudo-Mars object without having to construct a
new secular system for each location. The linear range j��j of
obliquity variations in the inner solar system is displayed as a
function of its rotation period and semi-major axis. (The range
of variation is twice the value shown, i.e. �j��j.) The current
location of Mars on the diagram (24.6 hrs, 1.52 AU) places it in
a region where obliquities vary by �O(10o) which is consis-
tent with recent numerical experiments [5, 6]. This is bounded
on the outside by a secular orbit-orbit resonance with s05 and
on the inside by a secular spin-orbit resonance with s03, so that
a slight displacement inward or outward brings the test object
into a region of greatly increased oscillations. A niche where
Earth-like stability would be exhibited (i.e., j��j � 1:5o) is
difficult to find inside � 2.5AU. The Earth owes its spin axis
stability to the lunar torque, which decreases its precession pe-
riod from 8:1�104 to 2:6�104 years [2,7]. This has roughly
the same effect as lowering the rotation period by a factor of 3.
However, a similar satellite contribution to Mars’ precession
would not be stabilizing, but would instead force it deeper into
the k = 3 spin-orbit resonance.

Figure 1: Obliquity variation amplitude j��j for a test object in place of Mars as a function of rotation period and semi-major axis.
White areas exceed 20o; the linearized solution becomes increasingly inadequate at high amplitudes.

TABLE 1: INCLINATION EIGENFREQUENCIES.
With Mars (“/yr) Without Mars (“/yr)

s01 -5.23 -5.17
s02 -6.60 -6.49
s03 -18.81 -18.49
s04 -17.69 ——-
s05 -25.51 -25.51
s06 -2.92 -2.92
s07 -0.68 -0.68
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