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Introduction:  Prior simulations of giant impacts 

capable of producing the Earth-Moon system predict 
that the Moon forms predominately from material 
originating from the impactor rather than from the pro-
toearth.  Yet there are distinct isotopic similarities be-
tween the Earth and Moon. To date, simulations of 
potential lunar-forming collisions have considered im-
pactors and target protoearths that are not rotating prior 
to impact [1-3].  However, rapid planetary rotation 
rates are expected throughout late stage terrestrial ac-
cretion [e.g., 4], and modeling of Pluto-Charon form-
ing collisions indicates that pre-impact spin can be 
important, e.g. leading to the formation of intact satel-
lites rather than circumplanetary disks [5].  Here I con-
sider the effects of pre-impact spin on the fraction of 
protolunar material derived from the impactor vs. the 
target, and on the likelihood of forming a large intact 
moon via giant impact.    

Method:  I utilize smooth particle hydrodynamics 
(SPH, e.g. [1-3; 5]) with an improved version [6] of the 
equation of state ANEOS [7].  The SPH code is a vari-
ant of that by Benz (e.g. [8]) that employs variable 
smoothing lengths and a tree code to calculate explicit 
gravitational interactions. Material strength is ignored, 
a valid assumption for the planet-scale impacts simu-
lated here. The energy budget is determined by shock 
dissipation [9], and work done by compressional heat-
ing and expansional cooling [e.g., 3].    

Initial conditions:  Each collision involves a total 
mass, MT (target + impactor), of approximately an 
Earth-mass, described by between N = 60,000 and 
120,000 SPH particles. Targets and impactors are dif-
ferentiated prior to the collision and contain 30% iron 
and 70% forsterite by mass, having initial surface tem-
peratures ~ 2000 K (see [3] for details).  Two values 
for γ, the ratio of the impactor mass to MT, are consid-
ered, with γ = 0.05 and γ = 0.13.  Impact velocity, vimp, 
is varied from 1 ≤ vimp/vesc ≤ 1.2, where vesc is the mu-
tual escape velocity of the colliding objects, while im-
pact angles are varied from 24° ≤ ξ ≤ 53°, where ξ is 
the angle between the impact trajectory and the local 
surface normal, so that ξ = 90° is a grazing impact.   
The pre-impact spin vectors of either the target or im-
pactor are normal to the plane of the impact, and pre-
impact spin is classified as “prograde” if it has the 
same rotational sense as the impact.  

Results:  Figs. 1-2 show results of 27 impact 
simulations after ~ 24 hours of simulated time.  

Prograde impactor or retrograde target.  Open 
diamonds show six N = 60,000 particle simulations in 
which a successful impact from [3] (“Earth 119”, Fig. 
2) was repeated with either a pre-impact prograde spin 
in the impactor (with spin period T = 5, 10, or 15 hr), 
or a pre-impact retrograde spin in the target (with T = 
15, 20 or 30 hr).  In all six cases, the scaled impact 
parameter, b’ = sin ξ, was fixed at b’ = 0.73, and 
vimp/vesc = 1. The six simulations yield broadly similar 
results to those of the comparison simulation without 
pre-impact spin (which had MD/ML = 1.62, 85% of the 
disk originating from the impactor, and 5% of the disk 
in iron, see [3] and Fig. 1), although the disk masses 
here are lower in some cases.  

The three retrograde target cases yielded massive 
and iron-depleted protolunar disks.  The final system 
angular momentum, LF, in each case was in the range 
0.94 ≤ LF/LEM ≤ 1.08 (where LEM is the Earth-Moon 
system angular momentum), lower than the no-spin 
case from [3] (with LF = 1.18LEM) and more consistent 
with the current Earth-Moon system than successful 
lunar-forming candidates identified previously [10]. 

In the simulation involving the slowest prograde 
impactor spin (Timp = 15 hr), an intact moon resulted 
which contained 74% of a lunar mass, no iron, and was 
comprised of 87% impactor material by mass.  The 
moon had an eccentric orbit with e = 0.45 and a peri-
gee of 3.2 Earth radii.  It has recently been argued that 
a high early lunar orbital eccentricity is implicated by 
the current “fossil bulge” in the Moon’s figure [11].  
However, an intact Moon formed overwhelmingly from 
impactor-derived material may be difficult to reconcile 
with the O-isotope compositions of the Earth and 
Moon that fall on the same fractionation line [12].    
The two faster impacator spin cases yielded progres-
sively lower disk masses and did not produce large 
intact moons. 

 Prograde target.  In twenty-one, N = 120,000 par-
ticle simulations, a range of impact speeds, angles, and 
impactor sizes were considered in conjunction with 
pre-impact prograde spin periods in the target pro-
toearth ranging from T = 4.3 to 102 hours.  In each 
case, the total pre-impact system angular momentum 
was between 1.1 and 1.2LEM.  Similar trends are ob-
served as in cases without pre-impact spin [e.g. 3], 
including that the orbiting mass, and impactor and iron 
disk mass fractions generally increase for highly 
oblique impacts. 
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Cases involving less grazing collisions and a pre-
impact prograde spin in the protoearth can produce 
disks that are comprised predominately of target mate-
rial. Such an outcome is advantageous in accounting 
for compositional similarities between the Earth and 
Moon [e.g. 12-13].  However, at least in the prelimi-
nary suite of simulations performed here, the total disk 
masses in such cases are substantially less than a lunar 
mass.    
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Figure 2: The predicted satellite mass that would 
accrete from the impact-generated disk, MS [14], 
scaled to the final planet’s mass, MP, as a function 
of the final bound planet-disk angular momentum, 
scaled to the quantity [GMT

3RT]1/2, where MT and RT

are the total final bound mass and the radius of an 
equivalent spherical object containing that mass.  
The green square indicates the Earth-Moon system. 

Figure 1: Results of giant impact simulations shown 
as a function of the scaled impact parameter, b’ = 
sin ξ. The first column in the legend indicates a pro-
grade (P) or retrograde (R) pre-impact spin in the 
target (T) or impactor (I), the second column is 
(vimp/vesc), and the third column is γ (see text for 
definitions).  (a) Orbiting disk mass (MD) in lunar 
masses (ML). (b) Percentage of disk mass that origi-
nated from the impactor. (c) Fraction of iron in the 
orbiting disk. 
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