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Abstract

Recent observational surveys of trans-neptunian binary (TNB) systems have dramatically increased the number of
known mutual orbits. Our Kozai Cycle Tidal Friction (KCTF) simulations of synthetic trans-neptunian binaries show
that tidal dissipation in these systems can completely reshape their original orbits. Specifically, solar torques should
have dramatically accelerated the semimajor axis decay and circularization timescales of primordial (or recently ex-
cited) TNBs. As a result, our initially random distribution of TNBs in our simulations evolved to have a large popu-
lation of tight circular orbits. This tight circular population appears for a range of TNO physical properties, though a
strong gravitational quadrupole can prevent some from fully circularizing. We introduce a stability parameter to pre-
dict the effectiveness of KCTF on a TNB orbit, and show that a number of known TNBs must have a large gravitational
quadrupole to be stable.
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1. Motivation

Trans-neptunian binary systems (TNBs) constitute
at least 10% of the objects between 30 and 70 AU
(Stephens and Noll, 2006), and up to 30% of the
Cold Classical Kuiper Belt (Noll et al., 2008b). As
of spring 2012, 72 TNBs have been reported in the
literature, with full mutual orbits having been re-
ported for 18 objects, partial orbits with ambiguous
orbits for 30 more (e.g. Noll et al., 2008a; Grundy
et al., 2009, 2011; Parker et al., 2011, and the list at
http://www2.lowell.edu/users/grundy/tnbs). These ob-
servations show that the majority of detected TNB sys-
tems have a separation of less than 2% of the Hill Radius
(rHill), defined as:

rHill = ahelio(1 − ehelio) 3

√
Mbinary

3MS un
(1)

where ahelio and ehelio are the semimajor axis and ec-
centricity of the heliocentric orbit. Even more striking
is the very small fraction of TNB systems which are
widely-separated (>10% a/rHill), despite their being
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easier to detect. This implies that TNBs are generally
in very close mutual orbits, and the fraction of orbits
that are very close has only increased with better
detection methods. In addition, most known TNBs
are of almost equal brightness (Noll et al., 2008a),
implying near-equal masses.

Several formation methods have been proposed to
create TNBs, though none as yet can fully describe
the observed population, nor account for any post-
formation orbital evolution. Large impacts are an
obvious contender for formation, but tend to produce
smaller satellites (and thus less equal mass ratios)
than are observed. Indeed, Canup (2005) showed the
Charon-forming impact required a very slow relative
velocity (vimp ≈ vesc ≈ 0.7 km/s), and even then only
allowed a mass ratio of approximately 10:1. Dynamical
captures can also produce TNBs (e.g. Goldreich et al.,
2002; Lee et al., 2007). These methods do favor
near-equal mass ratios (as it provides a deeper gravity
well per size of the primary object), but have great
preference for producing wide (>5% rHill) binaries on
eccentric orbits. Funato et al. (2004) combines a small
impact and dynamical capture to efficiently produce
TNBs, but only at very high eccentricities. Nesvorný
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et al. (2010) shows that binaries formed by gravitational
collapse also tend to have near-equal mass ratios, but
again have wide, moderately eccentric orbits. The
unbinding of binaries by impacts (Petit and Mousis,
2004) or Neptune encounters (Parker and Kavelaars,
2010) would reduce the number of wide TNBs, but
would not correspondingly increase the number of tight
systems. The deficit of these wide systems, and the
abundance of tight ones, therefore hints at the existence
of some non-disruptive post-formation processing of
TNB mutual orbits.

In this paper, we propose that Kozai Cycle Tidal Fric-
tion (KCTF, after Eggleton and Kisseleva-Eggleton,
2006) may be the method by which these orbits were
tightened and circularized. We will show through
several sets of Monte Carlo simulations that KCTF can
transform a large fraction of primordial TNB systems
into very close and circular orbits. In addition, we show
that the tidal evolution this implies means that Kozai
cycles are very inefficient at destroying TNB systems.
We also show how KCTF is influenced by the physical
properties of the TNB system, such as tidal Q and kL,
density, J2, rotation rate, and mass ratio.

Figure 1 here

2. KCTF Model

In order to understand how TNB orbits may have
evolved since they were formed, we created a numerical
Kozai Cycle and Tidal Friction model. Kozai Cycles in
this context are periodic oscillations in eccentricity and
inclination of the TNB mutual orbit caused by solar
torques. For this paper, the outer orbit is the heliocentric
orbit of the binary’s barycenter, and the inner orbit is
the mutual orbit of the binary pair. These oscillations
preserve the orbit’s semimajor axis and the quantity

cos I ×
√

1 − e2
in, where I is the inclination of the

mutual orbit with respect to the heliocentric orbit and
ein is the eccentricity of the inner orbit. This process
was first described in Kozai (1962), in the context of
perturbations by Jupiter on asteroid orbits. Without any
tidal or quadrupole effects, these oscillations would
vary eccentricity periodically with a period between
approximately 2 ka and 2 Ma. Kozai (1962) showed
that for an initially circular orbit, the minimum inclina-
tion for oscillation to initiate is ±39.2◦. However, this
limiting inclination becomes much lower at non-zero
initial eccentricities. Thus, the only mutual orbits that
could be excluded from this effect are those which form

with both low initial eccentricity and low inclination
relative to their heliocentric orbit. Kozai cycles have
been suggested as a method of evolving the mutual or-
bits of TNBs (Perets and Naoz, 2009), as well as binary
and triple Near-Earth asteroids, which may have Kozai
cycles short enough to be observable (Fang et al., 2011).

A significant consequence of these Kozai oscilla-
tions is that the eccentricity of the mutual orbit can
become very high, especially if the initial orbit has a
low eccentricity but high inclination (or vice versa).
Since the tidal dissipation rate for these objects is
chiefly a function of their mutual separation at periapse
(see Equations 5 to 7 in Eggleton and Kiseleva-
Eggleton, 2001), a minor increase in eccentricity can
have a major effect on the amount of tidal dissipation.
This is important, as tidal models that assume near-zero
eccentricity would produce much slower tidal evolution
than is realistic for an orbit with high eccentricity due to
solar Kozai effects. Mutual orbits with Kozai-pumped
eccentricities can therefore decay due to tidal friction
much faster than their initial state would imply; see
Figure 1 for an example. The strength of Kozai-driven
tidal decay is inversely proportional to the magnitude
of the binary orbit’s angular momentum as projected on
the axis of the heliocentric orbit’s angular momentum
vector. Also, because this projected angular momentum
is perpendicular to the solar-driven precession of the
system, it can be completely determined from the in-
stantaneous orbit without knowledge of the precession.
Here, we normalize this quantity to a percent of the Hill
radius of the system:

H′ = cos I

√
ain(1 − e2

in)
100
rHill

(2)

Where ain is the semimajor axis of the inner orbit. We
find this to be a particularly useful normalization, as
values of H′ smaller than one will experience strong
body tides over the course of a Kozai cycle, while
larger values generally will not (depending on their
physical properties). Also, since we do not evolve the
binary’s heliocentric orbit in our simulations, 100/rHill

is a constant normalization parameter. H′ is effectively
Tisserand’s Parameter for a three-body system with
only quadrupole perturbations, which is appropriate
here because all known TNBs have ahelio�ain by at
least five orders of magnitude.

Since H′ is a much stronger function of the or-
bit’s orientation than separation, even very wide
binaries can be affected by KCTF if their inclination
(or eccentricity) is high enough. This KCTF process
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has been previously identified as significant for TNBs
by Perets and Naoz (2009), but only demonstrated
for the Orcus-Vanth dwarf planet system (Ragozzine,
2009). We used a similar model based on Eggleton and
Kiseleva-Eggleton (2001, herein EKE01) to Ragozzine
(2009), which is described below. This model directly
evolves the mutual orbital elements and spin vectors of
the binary while holding the heliocentric orbit constant.
We did not include any dynamical effects from objects
external to the binary other than the Sun. The general
equations of the EKE01 KCTF model are summarized
in Fabrycky and Tremaine (2007); below we describe
the modifications and additions we used. These consist
of our estimation of frictional timescale, quadrupole
gravity terms, and integration methods.

2.1. Frictional Timescale

Since the EKE01 model was developed for binary
stars and giant planets, we needed to modify the terms
relating to the physical characteristics of the objects.
One benefit of the EKE01 method is that all these terms
are condensed into a single frictional timescale for each
object. This timescale, however, is also a function of the
mutual orbit’s semimajor axis and is thus time-varying.
We therefore reformulated the frictional timescale in a
way that is computationally more useful.

In the EKE01 model, the behavior of the objects’
body tides is determined by the second tidal Love
number (kL = k2) and the tidal dissipative function (Q)
for each object. The Love number is highly dependent
on both the composition of the object and whether it
is physically a solid object or a rubble pile. For half
of our simulations, we assumed the objects were solid
homogeneous elastic bodies (Burns, 1977):

kL,solid =
3
2

(
1 +

19µrR
2GMρ

)−1

(3)

We took the rigidity of the objects, µr, to be 4 ×
109N/m2, using the value for icy bodies from Gladman
et al. (1996). For the other half of the simulations, we
assumed the objects were rubble piles, using the approx-
imation of Goldreich and Sari (2009):

kL,rubble =
R

105 km
(4)

In addition, we assumed a constant value for Q, the in-
verse of the average fraction of tidal energy lost to heat
per radian of the orbit (Goldreich and Soter, 1966). We
can then find the tidal timescales as a function of the bi-
nary’s orbit (ain, nin), kL, and Q. The viscosity (tV ) and

frictional (tF) timescales for the primary object as were
formulated in Fabrycky and Tremaine (2007, Equations
A9 and A10) as:

tV,1 =
3
2

(1 + kL,1)2

kL,1

Q1ninR3
1

GM1
(5)

tF,1 =
tV,1
9

(
ain

R1

)8 M2
1

(M1 + M2)M2
(1 + kL,1)−2 (6)

The timescales for the secondary object are the same
equations, but switch the subscripts 1 and 2. Combin-
ing these two equations allows ain to be separated out,
thus reducing the number of calculations required per
iteration:

tF,1 =
1
6

Q1

kL,1

M1

M2

R−5
1

√
G(M1 + M2)

× a13/2
in (7)

Note the leading factor of 1/6 is erroneously listed
as 2/3 in Ragozzine (2009), leading to longer fric-
tional timescales, and thus slower orbital decay. In
addition, this timescale is for an object in a perfectly
circular orbit with its rotation synchronized to the orbit.
Equations 5 and 6 in EKE01 combine these factors to
account for the eccentricity of the orbit and the rotation
of the objects. Since the closest separation of the two
objects is the key driver for tidal evolution, the effective
timescale is very sensitive to eccentricity.

This frictional timescale gives the approximate
rates of evolution for a near-circular orbit, but the actual
rates are strongly dependant on the orbit’s eccentricity.
To illustrate this point, consider the special case of
a system where the objects have equal values of tF ,
have e � 0, and their rotation is synchronized to the
orbit, the rates of change for the semimajor axis and
eccentricity can be approximated as:

da
dt

=
−a

tF(1 − e)15/2 (8)

de
dt

=
−1

tF(1 − e)13/2 (9)

While the eccentricity is e � 0, the semimajor axis de-
cay can then be estimated as:

a
a0

=
tF,0(1 − e0)15/2

t + tF,0(1 − e0)15/2 (10)

Where a0, e0, and tF,0 are the initial semimajor axis,
eccentricity, and frictional timescale. As an example,
consider an equal-mass TNB system with objects
having a radius of 100 km, Q=100, rubble-pile kL,
and density of 1.0 g/cm3. At a semimajor axis of
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104 km (100 radii), the objects would have values of
tF ≈ 7 × 1012 years. If the initial eccentricity were 0.5,
the orbit would only have decayed to 9998 km after one
million years. At an eccentricity of 0.8, the semimajor
axis would decay to 8512 km in that time. And at an
eccentricity of 0.9, the orbit would shrink to just 306.5
km (3 radii) after a million years. By the time the
system reaches an orbit this tight, tF has decreased to
less than 1000 years, allowing for rapid circularization.
Clearly then, only a brief excursion to high eccentricity
is needed to start a feedback loop of tidal decay to a
tight circular orbit. In KCTF, those excursions happen
when Kozai cycles pump up the eccentricity.

The system in Figure 1 shows this process in ac-
tion. The two objects are equal mass rubble-piles with
Q=10 and radii of 42 km. The initial orbit is at 9.7%
of rHill, e=0.99, and inclination of 99◦. However, the
system’s orientation puts it initially past the peak of
its Kozai cycle, and so the orbit starts to become more
circular and less inclined with little tidal evolution.
After reaching a minimum of e=0.46 at 3200 years, the
eccentricity then grows again. By the time it reaches
e=0.98, the semimajor axis is shrinking at a rate of 2
km/year and 45 km/year at e=0.983. The shrunken
semimajor axis reduces tF , so the peak decay rate is
150 km/year at 6550 years since the start, e=0.985, and
a=6.1% of rHill. This corresponds to a periapse distance
of 212 km, or 5 radii apart. The orbit then gradually
decays down to a tight circular orbit at 0.15% rHill or
8.1 radii.

Most KCTF systems do not evolve as rapidly as
this, and will often have several eccentricity peaks
with a small amount of decay until the periapse be-
comes close enough for rapid decay to occur. Still, a
large range of orientations can produce strong KCTF
evolution. To measure this effect, we reran a number
of the simulations described below without any solar
perturbations. In all these cases, the number of systems
which circularized was reduced by at least a factor
of 3.5 compared to the full KCTF model. These
systems all oriented randomly on the sphere of the
sky (corresponding to observed systems), so the joint
process of KCTF can cause fast tidal evolution in a
large variety of TNB mutual orbits.

Figure 2 here

2.2. Quadrupole Gravity
Ragozzine (2009) expanded this model by adding the

capacity for the objects to have a permanent quadrupole

term in their gravity field. The non-uniform gravity field
this allows is more physically appropriate for solid ob-
jects (like TNOs) than the stars and giant planets for
which the EKE01 model was developed. This non-
uniformity is especially relevant for objects the size of
most known TNBs (less than 400 km diameter), which
are likely not large enough to have reached hydrostatic
equilibrium (Yasui and Arakawa, 2010), and thus could
have relatively large quadrupole fields. The quadrupole
moment is defined for an axisymmetric body as J2=(C−
A)/(MR2), where C is the moment of inertia about the
polar radius, A is the moment of inertia about the equa-
torial radius, R is the equatorial radius, and M is the
mass. In the EKE01 model, the vector (X,Y,Z) provides
the angular precession rate relative to the inertial frame,
and is in the (êin, q̂in, ĥin) orthonormal basis, where êin is
the normalization of the mutual orbit’s Laplace-Runge-
Lenz vector, which points in the direction of the peri-
apse, ĥin is in the direction of the orbit’s angular mo-
mentum vector, and q̂in = ĥin × êin. This vector due to
solar torques is given by Equations 10 to 12 in EKE01,
and their relation to the secular evolution of the orbit
is summarized by Equations A6 to A8 in Fabrycky and
Tremaine (2007). Ragozzine (2009) formulated the ad-
ditional precession due to the primary’s quadrupole field
as being:

XJ2,1 =
3
2

J2,1

(
R1

ain

)2 nin

(1 − e2
in)2

Ω1hΩ1e

Ω2
1

(11)

YJ2,1 =
3
2

J2,1

(
R1

ain

)2 nin

(1 − e2
in)2

Ω1hΩ1q

Ω2
1

(12)

ZJ2,1 =
3
4

J2,1

(
R1

ain

)2 nin

(1 − e2
in)2

2Ω2
1h −Ω2

1e −Ω2
1q

Ω2
1

(13)

Where the terms ain, ein, and nin are the semimajor
axis, eccentricity, and mean motion of the mutual or-
bit, and R1 is the radius of the primary. In addition,
Ω1i is the projection of primary’s spin angular veloc-
ity vector onto the axis i. Since the binaries dealt with
in this work are of similar size, this process was re-
peated to account for the secondary’s quadrupole field,
and the two quadrupole precession vectors added on to
the (X,Y,Z) vectors defined in the EKE01 model. The
total (X,Y,Z) vector was then combined with the dissi-
pative terms (our Equation 7) to feed the full evolution
equations (Equations 1 to 6 in EKE01).

2.3. Integration Methods
Since the EKE01 model defines the evolution of the

system by a set of four related inhomogeneous vector
differential equations, we needed a numerical integrator
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that could solve them rapidly and precisely on a
modern computer. For this we based our integrator on
a Burlisch-Stoer method, which combines a modified-
midpoint integrator with an polynomial interpolation
method to increase precision and control error. Since
the system was conservative when the dissipative terms
where close to zero, we used a fixed timestep of 1.1
mutual orbital periods when |V1| + |V2| < 10−18sec−1

(equating to an approximate circularization timescale of
3.2×1010 years). On the other hand, if the system were
dissipative, we used the adaptive timestep management
algorithm described in Press et al. (2007), setting a
minimum timestep of 10 days (864000 sec). This
algorithm estimated the total error for each step as the
root-mean-square of the normalized error estimates
for each component (ein, êin, hin, ĥin, ~Ω1, ~Ω2), and
kept it below a tolerance of 10−13 for each timestep.
Throughout the simulation, the program keeps track
of the total angular momentum (spin plus orbit) in the
direction of the heliocentric orbit’s angular momentum
vector. As described above, this term determines the
magnitude of solar perturbations on the mutual orbit
and should be precisely preserved over the entire
integration. The small number of cases (generally those
with non-zero values of J2) which did not preserve
angular momentum were rerun at sufficiently smaller
tolerances that momentum was again conserved. Con-
versely, if this tight tolerance proved to be numerically
unstable, the tolerance was slowly increased until it was
stable but still conservative.

We ended each simulation when it reached either
4.5 Ga (i.e. the maximum physically possible evolution
time) or reached an eccentricity smaller than 10−4.
This value of minimum eccentricity was chosen for
an end state because preliminary simulations down
to 10−10 showed no further orbital evolution beyond
circularization. In addition, the simulation would end
prematurely if the periapse fell below the Roche limit
(≈1.26(R1 + R2), which we consider an impact), the
apoapse grew beyond the Hill radius of the system, or
one of the objects reached a spin period faster than the
breakup rotation rate. The condition for the latter case
was a rotation rate greater than 2π

√
Gρ/(3π), and in

practice was never reached in our simulations.

3. Monte Carlo Simulations

To test the responses of TNBs to the KCTF model,
we conducted a series of Monte Carlo simulations in
which we created a sample set of 1000 synthetic TNBs

with randomized mutual orbital elements and system
masses. The heliocentric orbit, physical properties, and
range of rotation rates were all kept constant for each
set. We then evolved each system for 4.5 billion years,
or until the system either circularized, impacted itself,
became unbound, or spun to breakup.

As common initial parameters, we set the heliocentric
orbits to a semimajor axis of 45 AU and eccentricity
of 0.05, representative of the cold-classical belt, which
contains the highest fraction of TNBs. We then varied
the system GM range from 0.02 to 0.20 km3/s2. This
corresponds to a radius range from 33 to 71 km for an
equal-mass, ρ = 1.0 g/cm3 system, appropriate for the
lower range of detectable TNB systems. The semimajor
axis of the mutual orbit (in the frame of the primary)
was varied uniformly from 0.1% to 10% of the system’s
Hill radius. This range is inclusive of nearly all known
TNB orbits, as well as published formation models.
The mutual eccentricity was varied uniformly from
10−4 to 0.9999. The orbits were all orientated randomly
on the sky by first generating a random direction for the
ĥin vector with the algorithm of Knop (1970). A second
random vector perpendicular to the first was then
generated and used as the êin vector. These two vectors
plus the semimajor axis, eccentricity, and system mass
then fully describe the randomized orbit. This random
orientation corresponds to dynamical simulations of
binary capture (Kominami et al., 2011). Likewise, the
initial spin poles of the two objects were pointed at two
different vectors also randomized on the sky.

We considered two different densities, 0.5 and 1.0
g/cm3, representative of the range of reported densities
for binary TNOs in this size range (Stansberry et al.,
2012). As noted above, we also considered both solid
and rubble-pile assumptions for kL. For each simulation
set, we replicated the runs for each of the four combina-
tions of density and kL. For most of the simulations, we
allowed the initial rotational periods of the objects to
vary between 4-48 hours. This range is consistent with
observed lightcurves for solitary TNOs (Trilling and
Bernstein, 2006; Thirouin et al., 2010). To check the
sensitivity of this range, we also ran simulations with
2-7 day rotation rates. We ran most of our simulations
with J2=0, but we also ran sets at J2=0.01 and J2=0.1.
The former being comparable to Saturn’s satellite
Phoebe, and the later to Hyperion, both of which are in
the same size range as our simulations. We ran most
simulations with Q=100, a typically canonical value
for large solid objects. However, since smaller objects
may have much smaller Q (Goldreich and Sari, 2009;
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Zhang and Hamilton, 2008), we also performed a set
of simulations with Q=10. Finally, in addition to the
equal-mass simulations, we ran a set with a mass ratio
of 10:1. Since most observed binaries have a brightness
difference of less than one magnitude (Noll et al.,
2008a), these two mass ratios are representative of the
observed population.

The parameters varied per each set of 1000 simu-
lations were thus Q, J2, rotation rate, mass ratio,
density, and kL. Table 1 lists the 24 sets considered,
for a total of 24,000 simulations and approximately
1 million CPU-hours. Because the initial conditions
of these systems were distributed across reasonable
ranges of a, e, i, and obliquity, they do not necessarily
represent the primordial population of TNBs. Rather,
they are a superposition of all the possible initial states.
KCTF can then act as a filter to check whether a certain
range of initial orbits (and thus formation methods)
corresponds to the observed population of TNBs.

Figure 3 here

Table 1 here

4. Results

We found that a significant fraction of our simula-
tions resulted in the synthetic TNB systems evolving
to very tight circular orbits; Table 1 lists the relative
fractions for each simulation. These tight, circular
orbits were at less than 1% of rHill and eccentricities
smaller than 10−5, meaning that they were entirely
dominated by mutual tidal interactions. In addition to
these highly-evolved systems, a number of systems
evolved to orbits that were tighter but still eccentric.
Figure 2 shows the time evolution of one set of sim-
ulations and Figure 3 separates initial and final states
for the circularized and elliptical cases of the same
set. The conservation of H′ is quite evident in these
plots, as is its dependence on cos I and

√
a. Figures

4, 5, and 6 show the final states of a range of different
simulation sets, varying in both the speed of body tides
and physical shape.

Much of the tightly-bound population is beyond
current TNB detection methods, including the WFC3
camera on the Hubble Space Telescope and the laser
guide star adaptive optics system at the Keck Observa-
tory. However, some of the known TNO orbits do fall
within this population. The closest published full orbit
is (79360) Sila-Numan, formerly 1997 CS29, at 0.35%

rHill (Grundy et al., 2012). The published eccentricity
is 0.02, but a fully circular orbit is only excluded at 1.8
σ confidence. In addition, (120347) Salacia-Actaea at
0.23% rHill (Stansberry et al., 2012) and the centaur
(65489) Ceto-Phorcys at 0.46% rHill (Grundy et al.,
2007) both have extremely circular orbits. These three
objects likely represent the inner edge of the potentially
very numerous tight circular population, and should
become less unique as observations improve.

Our simulations also naturally produced a deficit
of systems with a final semimajor axis smaller than
1.26 × (R1 + R2), our approximate Roche limit. It
is perfectly possible that these systems could sur-
vive, either as a contact binary or breaking apart and
reforming in a more stable configuration (Jacobson
and Scheeres, 2011). However, any of these cases
are beyond the capabilities of our model and would
require further work. This inner edge corresponds to
a J/J′ of approximately 0.4, where J is the total orbit

+ spin angular momentum, J′ =

√
GM3

t Re f f , Mt is
the system mass, and Re f f is the radius of a sphere of
mass Mt and density equal to the average density of the
two objects. Canup (2005) showed that binaries with
J/J′ < 0.8 can be produced by collisions. Thus, we
found that KCTF can transform a wide range of binaries
formed by capture into ones sufficiently close as to be
indistinguishable from collision-produced binaries, the
general case of what was shown for Orcus-Vanth by
Ragozzine (2009).

Because the quadrupole component of Kozai per-
turbations are axisymmetric, the resulting systems also
preserve the direction of their initial mutual orbit rela-
tive to the plane of their heliocentric orbit. The EKE01
model only includes the quadrupole component, though
in the actual dynamics of these systems there are also
higher-order terms. The next higher term is the octupole
component, which is not axisymmetric and can there-
fore cause a system to flip from prograde to retrograde
(and vice versa, Naoz et al., 2011). However, the
relative strength of the octupole to the quadrupole
goes as ain/ahelio, and so the quadrupole completely
dominates in all the cases we considered (Ragozzine,
2009). Thus, the initial prograde/retrograde ratio was
preserved in all our simulations.

Figure 4 here
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4.1. Stability of Orbits to KCTF

A further inclination effect can be seen in Figure 3;
the inclination region within 10◦ of perpendicular to
the heliocentric orbit is empty for all but the tightest
semimajor axes. This range of inclination equates to
such low values of H′ that all orbits starting there reach
very high levels of eccentricity, and therefore initiate
runaway KCTF decay (e.g. Figure 1). Figure 5 clearly
shows that these orbits mostly end up tighter than 1% of
rHill. Indeed, as Figure 5 shows, there is a clear limiting
value of |H′| below which orbits are not stable to KCTF.

We define this limiting value, |H′tide|, as the mini-
mum value of |H′| where the relative difference in the
initial and final semimajor axes is less than 10%, i.e.
|ai − a f |/ai < 0.1. The values of |H′tide| for all our simu-
lations are listed in Table 1. The average values of this
|H′tide| are all close to 1.0, with the higher-dissipation
cases above and the lower below. Thus, |H′| appears to
be a good normalized indicator of KCTF susceptibility
for TNB orbits; values below 1.0 likely will have
experienced Kozai cycle-driven tidal evolution, while
values above will likely have not. This is especially
useful for determining the stability of observed binary
systems where the mutual orbit is known, but not any
physical or rotational properties.

In addition, we found it useful to define |H′circ|,
the minimum value of |H′| for an orbit that did not
circularize. This value ranges from 0.2-0.7 for non-J2
runs, but is close to zero for the simulations with J2.
This shows that J2 can provide an island of stability
for eccentric orbits close enough that J2 blocks fur-
ther Kozai cycles, but not close enough for further
tidal decay. These systems have tidally evolved before-
hand to reach this state, but are stable once they reach it.

Figure 5 here

4.2. Effects of Physical Parameters

For our base sets of simulations, we assumed Q=100,
J2=0, rotation rates between 4 and 48 hours, and equal
masses for the two objects. Using these parameters, we
ran sets at each combination of density equals 0.5 or
1.0 g/cm3 and a Love number appropriate for either a
rubble pile or elastic solid body. The remainder of the
simulations perturbed one of the first set of parameters
and ran the same set of four density/Love number
combinations; Table 1 shows this grouping.

In general, the low-density rubble piles were the

most susceptible to tidal decay, followed by the high-
density rubble piles. This makes sense, as the internal
friction of a rubble pile allows it to dissipate tidal
forces very effectively. The lower density allowed a
larger radius per mass, thus raising larger tides and a
higher Love number (by Equation 4). Less obvious is
that fewer of the low-density elastic solid simulations
decayed to stable circular orbits than the high-density
cases. Here, the difference can be seen in the final
column of Table 1; these low-density, rigid systems
suffered a much higher rate of mutual collisions. Their
larger radius prevented a significant fraction of the
very eccentric systems from circularizing, lowering the
overall efficiently of producing close, circular orbits.
As noted below, these mutual collisions could still
produce close or contact binaries, but that is beyond the
capabilities of these simulations.

While we assumed the canonical value of tidal
Q=100 for most of the simulations, a lower value is
likely more physical for the size of objects we consid-
ered (Goldreich and Sari, 2009). The simulations that
we ran with Q=10 did show an average of 20% greater
propensity to tidally decay and circularize. This small
increase in tidal decay for a full order of magnitude
decrease in Q shows the true driver in this evolution
is the closest periapse the system reaches. Either the
objects become close enough to undergo decay or they
do not, there is not much space in between. Indeed, the
increase is roughly comparable (100/10)1/8, where the
strength of the tides goes as a8. An additional effect of
the lower Q is to remove the higher mutual collision
probability for the low-density, elastic solid case. As
shown in Figure 4, the faster tides allow these cases
to circularize at larger separations, limiting the impact
probability.

We ran sets of simulations with a J2 of both 0.01
and 0.1. As seen in Figure 6, the main effect of J2
on wider systems was to decrease the obliquity of the
objects with respect to their mutual orbit. For slightly
more evolved systems, though, an interesting effect
could be seen; a number of the systems decayed to
a point where J2 was strong enough to block further
Kozai cycles, but their periapse was wide enough at
the point of being frozen that no further tidal decay
could occur. This freezing-in of Kozai-blocked systems
created the island of high-inclination, moderately
eccentric systems seen in Figures 3 and 5. Since the
frozen systems did not evolve further, they reduced the
total fraction of systems that circularized. However,
since they had to first tidally evolve to reach the frozen
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state, the total fraction that tidally evolved (and thus
|H′circ|) is almost the same as the non-J2. Also, since
tidal evolution is strongly driven by the periapse, there
is a noticeable gradient in eccentricity, with the closest
frozen systems having e < 0.2. Thus, the effect of J2
on KCTF of TNBs is produce stable high-inclination,
moderately eccentric TNBs, while not eliminating the
tight circular population.

We also ran a group of simulations with much
slower initial rotation rates, from 2-7 days (and at
random initial orientations, just as before). These
simulations were slightly less likely to evolve to close
circular orbits than their fast rotating counterparts. This
may be because the final orbital periods of the close
circular orbits were closer to the initial rotation rates of
the faster rotators. Thus, the slower rotators required,
on average, a larger amount of spin-orbit interaction to
reach a doubly-synchronous state (with both spin peri-
ods equal to the orbital period). The effect was slight
enough, though, to conclude that initial rotation rate
is not a significant factor in the evolution of these TNBs.

Finally, we changed the mass ratio of the two ob-
jects to be 10:1. Since most known TNBs have
near-equal brightness ratios (Noll et al., 2008a), this
covers most of known TNBs that are not dwarf plan-
etary systems. The effect on tidal decay was again
similar to the slower initial rotation rates, a slight
decrease in the efficiency of producing close circular
orbits. Here the reason is that most of the dissipation
is taking place on the secondary, which can only have
smaller tides due to its smaller radius. Again, though,
the effect is slight enough that most systems would be
completely insensitive to mass ratios between 1:1 and
10:1.

Table 2 here

4.3. Survival Probability
Not all of the simulated binaries survived to either

circularize or reach 4.5 Ga. As shown in Table 1, about
1-15% of our random initial orbits proved in some way
unstable. The largest fraction of destroyed systems was
due to impacts when Kozai Cycles drove the periapse of
the system within the mutual Roche radii of the objects.
This was especially apparent for systems with elastic
solid values of kL (weak tides) and large radii, which
consistently had destruction rates higher than 10%. Ev-
ery other case had destruction rates smaller than 10%.
As noted above, this is because the low-density solid
systems circularize slowly enough that semimajor axis

decay can bring their periapse below the Roche limit.
In real TNBs, such a close approach could result in the
temporary breakup of the secondary and reformation of
one or more new satellites in tight circular orbits. The
simulated systems were also considered destroyed if
the apoapse of the system exceeded rHill, though this
case did not occur in any of our simulations. Likewise,
we had no systems spin to breakup, with spins either
slowing to synchronize or not changing at all (see
Figure 6). It therefore appears that mutual collisions
are the only practical way to destroy a TNB system
with KCTF, and even then only with an efficiency of a
few percent. In addition, 90% is a lower limit for the
number of TNBs (of an initially random population)
which survive as binaries once formed, exclusive of
impacts or close encounters.

The survival rate in our simulations is much higher than
that calculated by Petit and Mousis (2004), who found
that non-disruptive impacts were the most effective
means of destabilizing wide TNBs. This implies that
small impacts and disruption by Neptune encounter
(Parker and Kavelaars, 2010) are still the most efficient
means to cause a TNB to become unbound. However,
our results show that KCTF is very efficient at trans-
forming wide binaries into tight ones, which would
presently be observed as single objects. Indeed, KCTF
can quickly shrink wide binaries down to orbits tight
enough to have a high survival probability in the event
of a Neptune encounter (Parker and Kavelaars, 2010).
Thus, any scaling of the initial population of wide
TNBs based on survival rates must also account for the
fraction which decay into much tighter orbits.

Figure 6 here

4.4. Obliquity
All the systems we simulated started out with

randomly directed spin axes, and thus each object had
random initial obliquities. We define obliquity here
to be the angle between the spin pole of the objects
and a vector perpendicular to the plane of the mutual
orbit. Thus, an obliquity of 0◦ is parallel to the orbit’s
angular momentum vector, while an obliquity of 90◦ is
perpendicular. Figure 6 shows the final obliquities of
equal-mass, Q=100 simulations with and without J2.

In general, the non-J2 runs experienced two stages of
obliquity evolution. At less than about 3% rHill, the
spins of the two objects begin interacting with each
other and with the orbit. This causes any objects rotat-
ing retrograde to their orbit to flip around to prograde,
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causing the step jump in Figure 6. In addition, the two
objects begin to match their obliquities and rotation
rates to each other, thus producing the star shapes in
Figure 6. The second (and terminal) stage is for the
objects to match their spin poles and rotation rates to
their mutual orbit. This drive to zero obliquity only
occurs for the non-J2 simulations when tidal forces are
also strong enough to circularize the orbit.

The simulations with J2 were similar, but the ad-
ditional gravitational factor from J2 caused them to go
to zero obliquity much faster. Indeed, even some very
wide orbits with little tidal evolution were still driven
to zero obliquity by J2. Shape effects thus can have a
major effect on the rotational evolution of even wide
systems.

A further effect can be seen in Figure 6, as some
circularized orbits ended with non-zero obliquities and
non-synchronous rotation rates. This effect was more
pronounced for less-dissipative simulations. These
systems appear to have been captured into Cassini state
2, which is low obliquity for fast precession and high
obliquity for slow precession (Fabrycky et al., 2007).
As they circularize at near-constant semimajor axes,
their precession rate due to J2 drops (equations 11-13).
Since they are sufficiently close that J2 precession
dominates, the overall precession rate becomes very
small and the objects follow Cassini state 2 to high
obliquity.

This capture process is not necessarily observable
in real systems. Most small objects with known shapes
(asteroids and minor satellites) are not pure oblate
spheroids, but rather more complex shapes. It is
possible for these shapes to capture into Cassini state 2
(Peale, 1969; Bills and Nimmo, 2008), but it is much
more difficult. In addition, they may have precession
rates due to higher-order terms that are large enough
to prevent even a very circular system in Cassini state
2 from going to high obliquity. Thus, a much more
through study of the possible post-circularization
rotational evolution of TNBs is needed to properly
predict their current states.

Table 3 here

5. Discussion

KCTF provides an evolutionary path to convert wide,
elliptical binaries into close, circular ones. It therefore
helps to explain the observed dichotomy between

the few (but well-sampled) wide TNB systems and
the apparently numerous tight systems. In addition,
because it is a process that does not require any external
forces other than the Sun, it applies to all objects that
could be called trans-neptunian binaries, from classical
Kuiper Belt objects to highly scattered centaurs like
Ceto-Phorcys. And, because it is independent of the
surrounding disk, KCTF can shrink and circularize or-
bits over a much longer timescale than disk dynamical
friction (e.g. L2S ).

A consequence of this extensive evolution is that
KCTF should have significantly reshaped the orbits of
most TNBs since their formation. In the process, some
information is lost, as tidal decay is an irreversible
thermodynamic reaction. The distribution of semimajor
axes for present-day TNBs is thus necessarily tighter
than at formation. By what factor it is tighter is hard to
determine, as the physical properties of the objects do
affect the efficiency of semimajor axis decay (see Table
1). Similarly, the exact eccentricity and inclination of
the orbit are changed in ways that have partially erased
their history.

More clear is that KCTF generally preserves the
prograde/retrograde ratio of initial distribution. Though
the octupole term from the solar perturbations can
flip a very inclined system (Naoz et al., 2011), it also
has no preference for the directionality of the system.
Schlichting and Sari (2008) predicted a retrograde
preference for binaries formed by the L2S capture
method. On the other hand, the gravitational collapse
method of Nesvorný et al. (2010) favors orbits in the
direction of disk clump rotation, which simulations
(cited therein) generally show as prograde. Three-body
methods (L3 and momentum exchange) have a much
weaker inclination dependence. The current inclination
distribution could therefore serve as a tracer for these
various formation methods. Because the sense of
motion can be hard to determine for TNBs, only a
few TNBs have published unambiguous inclinations.
However, for the 16 TNB orbits listed in Table 2, there
is a 4:1 prograde preference.

The H′ parameter introduced above is also pre-
served by KCTF (except for spin-orbit interactions),
and Table 2 also lists the H′ for those 16 known orbits.
The widest orbits (a > 5%rHill) are apparently stable,
with their large a and low inclinations keeping them
stable even at high eccentricities. These systems likely
have thus been undergoing low-amplitude Kozai cycles
for most of the history of the solar system. Table 3 lists
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the known TNB systems in near-circular orbits; these
systems appear to represent the outer edge of the close
circular population identified in our simulations. As
more sensitive high-resolution imaging systems come
on line, an increasing number of these tight systems
should be detected. The remaining systems smaller
than 5%rHill have values of |H′| at or below unity,
implying that they all should have some amount of tidal
evolution. Most still have a larger |H′| than the typical
values of |H′circ| in Table 1, meaning they could have a
range of physical properties and still not circularize.

Two eccentric systems do have an |H′| small enough
to stand out, though: 2004 PB108 and 2001 QC298.
These two systems happen to be the only scattered-disk
binaries by the DES classification (Elliot et al., 2005;
Osip et al., 2002) in Table 2, but we think it more likely
that their apparent stability is due to their non spherical
shapes. Indeed, Table 1 shows that if both of the objects
in each system had a J2 of at least 0.01, they could
easily be stably eccentric for the lifetime of the solar
system. The other eccentric systems do not require
J2 to be stable, but it would do no harm to their stability.

The three systems just wider, 2001 XR254, Altjira,
and 275809, all have values of |H′| just larger than one.
Since they are all also in the classical Kuiper Belt, these
systems have potentially had very little tidal evolution
since their original formation as binaries. Interestingly,
they also have very similar systems masses and mutual
orbit inclinations. Future investigations could help
determine if this is simply coincidence or an optimal
point for stability.

6. Conclusions

KCTF can significantly transform the orbits of trans-
neptunian binaries. At least 90% of random synthetic
TNB systems survive 4.5 Ga of KCTF evolution. A
third to half of the surviving TNB systems decay to
circular orbits at less than 1% of their mutual Hill
radius. Some of these systems can have values of J/J’
similar to impact-generated systems. The remaining
systems are stable being eccentric over the lifetime of
the solar system. All resulting systems preserve their
initial prograde/retrograde preference.

The inclusion of J2 lowers the effectiveness of
KCTF, but does not eliminate it, especially for rubble-
pile objects. In addition, J2 creates an island of stability
that allows otherwise unstable observed system to
be in permanent eccentric orbits. A slower initial

rotation rate or 10:1 mass ratio also slightly lower the
effectiveness of KCTF, but do not change the basic
trends.

The observed population of TNB orbits fits well
to our simulations with J2. These simulations predict
that, as high-resolution observational systems improve,
a large number of TNBs will be detected with very
tight, circular orbits. Indeed, considering the fraction
of known wider binaries, tight near equal-mass TNBs
may be extremely common.
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Table 1: Summary of KCTF simulation results: % Circ. are the fraction of surviving orbits with e < 10−4, % Dest. are the fraction of initial orbits
destroyed over the simulation, and |H′tide | and |H′circ | are as defined in the text.

Q Spin J2 m1/m2 kL ρ % Circ. % Dest. |H′tide| |H
′
circ|

10 fast 0 1 rubble 0.5 56% 3% 1.28 0.620
10 fast 0 1 rubble 1.0 48% 1% 1.19 0.550
10 fast 0 1 solid 0.5 38% 2% 1.05 0.435
10 fast 0 1 solid 1.0 39% 1% 1.03 0.426
100 fast 0 1 rubble 0.5 48% 2% 1.07 0.534
100 fast 0 1 rubble 1.0 42% 1% 0.98 0.488
100 fast 0 1 solid 0.5 29% 11% 0.92 0.380
100 fast 0 1 solid 1.0 34% 5% 0.94 0.324
100 fast 0 10 rubble 0.5 43% 2% 1.05 0.437
100 fast 0 10 rubble 1.0 40% 1% 1.04 0.359
100 fast 0 10 solid 0.5 23% 15% 0.84 0.326
100 fast 0 10 solid 1.0 25% 9% 0.87 0.264
100 fast 0.1 1 rubble 0.5 38% 2% 1.12 0.005
100 fast 0.1 1 rubble 1.0 36% 0% 1.11 0.005
100 fast 0.1 1 solid 0.5 24% 8% 0.90 0.012
100 fast 0.1 1 solid 1.0 28% 5% 0.84 0.001
100 fast 0.01 1 rubble 0.5 36% 1% 1.09 0.028
100 fast 0.01 1 rubble 1.0 34% 1% 1.04 0.054
100 fast 0.01 1 solid 0.5 25% 9% 0.87 0.014
100 fast 0.01 1 solid 1.0 26% 5% 0.90 0.014
100 slow 0 1 rubble 0.5 44% 2% 1.13 0.524
100 slow 0 1 rubble 1.0 43% 1% 1.00 0.514
100 slow 0 1 solid 0.5 27% 14% 0.88 0.364
100 slow 0 1 solid 1.0 33% 5% 0.94 0.362

Table 2: H′ for observed systems with fully-constrained orbits. I is the angle between the heliocentric and mutual orbital planes, and GM is the
system mass. Orbits are from Grundy et al. (2011), Parker et al. (2011), Sheppard et al. (2012) and references therein.

Designation Name a (% rHill) e I (deg) GM (km3/s2) H′

79360 Sila 0.35 0.02 123.1 0.72 -0.32
2001 QC298 0.50 0.34 73.5 0.79 +0.19
66652 Borasisi 0.91 0.47 49.4 0.23 +0.55
42355 Typhon 1.15 0.53 50.5 0.06 +0.58
2004 PB108 1.48 0.44 83.2 0.63 +0.13
2001 XR254 1.70 0.56 21.1 0.27 +1.01
148780 Altjira 1.83 0.34 25.4 0.27 +1.15
275809 1.88 0.42 161.0 0.27 -1.18
26308 2.42 0.47 75.4 0.46 +0.35
2003 QY90 3.19 0.66 51.4 0.03 +0.84
58534 Logos 3.25 0.55 74.2 0.03 +0.41
88611 Teharonhiawako 5.82 0.25 127.7 0.16 -1.43
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Table 3: Observed TNB systems with near-circular orbits. GM is the system mass. Orbits are from Brown et al. (2010), Grundy et al. (2011),
Stansberry et al. (2012) and references therein.

Designation Name a (% rHill) e GM (km3/s2)
120347 Salacia 0.23 0.01 30.28
79360 Sila 0.35 0.02 0.72
90482 Orcus 0.42 0.00 42.40
134860 0.53 0.09 0.14
123509 0.66 0.01 0.07
65489 Ceto 0.71 0.01 0.37
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Figure 1: An example of rapid KCTF evolution of a TNB mutual orbit; see Section 2.1 for a full description.
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Figure 2: The evolution over time of 1000 synthetic equal-mass TNBs with Q = 100, ρ = 1.0 g/cm3, elastic solid kL, and J2 = 0.
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Figure 3: A comparison of end states for three different physical properties and observed orbits. The simulations are all equal-mass, Q = 100.
Observed orbits are as listed in Table 2.
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Figure 4: The circularization times for three different physical properties; the simulations are all equal-mass systems. The horizontal line corre-
sponds to 4.5 billion years, and any points along it represent stable elliptical orbits. The points on the left below the line are simulations that were
evolved by KCTF to close circular orbits, while the points on the right below the line started at very low eccentricity and evolved to e < 10−4. The
final semimajor axis in tidally-evolved systems is usually very close to the periapse of the orbit when body tides become the dominant force, as
most of the energy loss in an evolving orbit is at the periapse.
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Figure 5: A comparison of initial |H′ | and final semimajor axis for three different physical properties and observed orbits. The simulations are all
equal-mass, Q = 100. Observed orbits are as listed in Table 2.
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Figure 6: The final spin rate and obliquity (to the mutual orbit) with and without J2; upward-triangles are the primary objects, and downward are
the secondaries. The high obliquity of some of the close orbits with J2 is due to them being captured into Cassini state 2 (see text).
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