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Abstract

Several distant icy worlds have atmospheres that are in vapor-pressure equilibrium with
their surface volatiles, including Pluto, Triton, and, probably, several large KBOs near
perihelion. Studies of the volatile and thermal evolution of these have been limited by
computational speed, especially for models that treat surfaces that vary with both latitude and
longitude. In order to expedite such work, I present a new numerical model for the seasonal
behavior of Pluto and Triton which (i) uses initial conditions that improve convergence, (ii)
uses an expedient method for handling the transition between global and non-global
atmospheres, (iii) includes local conservation of energy and global conservation of mass to
partition energy between heating, conduction, and sublimation or condensation, (iv) uses
time-stepping algorithms that ensure stability while allowing larger timesteps, and (v) can
include longitudinal variability. This model, called VT3D, has been used in Young
(2012a,b), Young (2013), Olkin et al. (2015), Young and McKinnon (2013), and French et al.
(2015). Many elements of VT3D can be used independently. For example, VT3D can also
used to speed up thermophysical models (Spencer et al. 1989) for bodies without volatiles.
Code implementation is included in the supplemental materials and is available from the

author.

Keywords: Pluto, atmosphere; Pluto, surface; Atmosphere, evolution; Trans-neptunian

objects
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1. Introduction

Pluto and Triton have atmospheres whose pressures have been measured by stellar
occultations (e.g., Young et al. 2008a, Olkin et al. 1997) and spacecraft (Gurrola 1995,
Krasnopolsky et al. 1993, Stern et al. 2015, Gladstone et al. 2016). These measurements
reveal atmospheres for Pluto and Triton that are global in extent, almost certainly controlled
by vapor-pressure equilibrium of the surface N ice, (Spencer et al. 1997, Yelle et al. 1995),
similar to the role of CO, on Mars (Leighton and Murray 1996).

Vapor pressure is an exceedingly sensitive function of temperature, and early models
predicted that the surface pressures of Pluto and Triton would vary by orders of magnitude
over their years (e.g., Hansen and Paige 1992, 1996; Moore and Spencer 1990; Spencer and
Moore 1992). Those early models were based on a single observation of the atmospheric
pressure, either the Triton flyby in 1989 or the definitive discovery Pluto occultation in 1988
(e.g., Elliot and Young 1992). Since that time, further occultations have shown a large
increase in the atmospheric pressures of both Pluto and Triton since the late 1980's (Elliot et
al. 1998; Elliot et al. 2003). Other advances in the past decade include an improved
understanding of the surface compositions of Pluto and Triton (Grundy and Buie 2001,
Grundy et al. 2010). It is time for new models (Young 2012a, Young 2013, Olkin et al. 2015,
Hansen et al. 2015). This work describes the model used by Young (2012a, 2013) and Olkin
et al. (2015).

Since the rash of models in the 1990's, the large, volatile-covered ice worlds Pluto and
Triton have been joined by other large, volatile-covered bodies in the outer solar system,
including the large Kuiper Belt Objects (KBOs) Eris, Sedna, Makemake, Haumea, Quaoar
(Schaller and Brown 2007), and 2007 OR10 (Brown et al. 2011). Some of these should have
atmospheres at some time in their orbit (Stern & Trafton 2008). In particular, the 98% albedo
of Eris argues for a perihelion atmosphere that collapses near aphelion, freshening Eris's
surface (Sicardy et al. 2011).

I present a new model for volatile transport on Pluto, Triton, and other volatile-covered
bodies in the outer solar system. As with previous models (Hansen and Paige 1992, 1996;
Moore and Spencer 1990; Spencer and Moore 1992), this model includes transport of volatile
mass and latent heat, the thermal inertia of a volatile slab, internal heat flux, and thermal
conduction to and from the substrate. The major improvements over previous models are
improved numerical stability, strict mass conservation including atmospheric escape, a new

method for handling the transition between a global and non-global atmosphere, and
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longitudinal variability. The model is designed to be flexible in order to easily accommodate

details such as a change in N, emissivity with crystalline phase (Stansberry and Yelle 1999).

Although motivated by volatile-covered bodies, the speed improvements make this of
interest for other computationally difficult problems of thermal evolution, such as Mercury or
Mimas. The intent is that this model will find wide utility in the community. Examples of
possible applications include (i) comparison of modeled pressures with occultation results,
(i) comparison of modeled thermal emission with Spitzer observations, and (iii) the
exploration of volatile transport on other large, volatile-covered KBOs. Therefore, this paper
takes an approach similar to that used in Numerical Recipes (Press et al. 2007), which has
found wide adoption within the planetary science community. In particular, it presents a
description of the numerics in enough detail for the reader to implement all equations. Many
of the equations and figures are implemented in the layoung IDL library, found at
http://www.boulder.swri.edu/~layoung/. These are indicated in the text, listed in Appendix B,

and included in the supplementary materials.

We give an overview of the VT3D model in Section 2, and show its application to areas
bare of volatiles (Section 3), volatile-covered areas with local atmospheres (Section 4), and
volatile-covered areas with efficient transport of mass and latent heat (Section 5). In each of
Section 3-5, we present the continuous equations; recap the analytic results of Young 2012a
(hereafter Paper I) for use both in initial conditions and the numerical solution; and present
the numerical implementation, in which these equations are linearized, discretized, cast into
matrix form, and solved. Compared with previous models of volatile transport (and, to some
extent, thermophysical models of airless bodies), the model developed here and in Paper I

introduces several new concepts. These include the following:
1. Using analytic approximations for the temperature variation for initial conditions.

2. Approximating a surface in transition between a global, Pluto-like surface and a local,
lIo-like surface as a splice between areas of local and non-local transport of mass and latent
heat (See Fig 2-2).

3. Closing the time-dependent energy equation for volatile-covered areas by requiring

mass balance.

4. Linearizing the equations for volatile transport, and casting them in matrix form,

simplifying the program structure needed for modeling Pluto, Triton, Eris, and other KBO.

5. Implementing numerically stable methods that allow larger time steps, and take

advantage of the fast matrix-based calculations of modern computer languages.
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2. VT3D (Volatile Transport, 3-Dimensions) overview

This paper and Young 2012a (Paper I) are intended to be the first two in a series of
models of increasing complexity. Paper I derived an analytic expression for surface and
subsurface temperatures assuming (i) albedos and compositions that vary with latitude and
longitude, (ii) a static distribution of volatile and bare surface elements, (iii) a single volatile
species, (iv) volatile temperatures that are constant within a volatile slab and across the
surface, and (v) substrate properties (density, specific heat, thermal conductivity) that could
vary with location but not depth. The analytic results presented in Paper I can be used for
physical intuition, diurnal variation, seasonal variation under certain circumstances (such as
completely volatile-covered bodies), quick estimations of temperatures, testing of numerical
code, and initialization of temperatures for numerical simulations. These are elaborated in
Sections 3.2, 4.2, and 5.2.

This paper, Paper II, focuses on the numerical calculations for volatile transport and
surface and subsurface temperatures. As with Paper I, this model assumes a single volatile
species and volatile temperatures that are constant within a volatile slab. This paper extends
Paper I in that: (i) substrate properties are allowed to be variable with depth, (ii) the latent
heat of solid-phase transitions are treated (e.g., between o and B N»), (iii) volatile-covered
areas can sublime to become bare, and cold bare areas can become volatile-covered, and (iv)
there is a smooth transition between the case where the surface pressure is globally isobaric
(similar to Pluto's current atmosphere), and one where surface temperatures and pressures
can vary with location. Multiple species and layers within the volatile slab are planned for
Paper III. A more accurate model of the variation involved in the transition case is planned
for Paper IV.

As in Paper I, the conceptual framework is built on the physical processes considered by
Spencer and Moore (1992), Moore and Spencer (1996), Hansen and Paige (1992) and
Hansen and Paige (1996, HP96), as illustrated in Fig 2-1. These include thermal conduction
into and within a substrate, a heat flux at the lower boundary, absorbed sunlight, and thermal
emission. I assume absorption of solar energy and thermal emission occur at the uppermost
surface. Grundy & Stansberry (2000) discuss the "solar gardening" that can occur from a
separation between the shallow depth of the source of thermal emission and the deeper
penetration of solar heating. This distinction is deferred for a later formulation that treats
layering within the volatile slab.

Insert fig 2-1 here.
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Fig. 2-1. Schematic of the heat balance equation solved by the analytic model
(based on Hansen and Paige 1996). Locally, we balance absorbed insolation,
S, emitted thermal energy eo7®, and latent heat of sublimation or
condensation, Ls dmy/dt, where my is the mass per area of the volatile slab and
Lgs is the latent heat of sublimation. Additionally we balance (i) heat to and
from the substrate, k d7/dz, where k is the thermal conductivity and d7/dz is
the vertical gradient of temperature, and (ii) the heat capacity of the
isothermal ice layer, my dHy/dt = my cy dTy/dt, where Hy is the enthalpy and
cy is the specific heat of the volatile slab (subscript V' for volatile). At the
lower boundary, there is a heat flow of F. All variables except Ty are free to
vary with latitude and longitude. Compared with Young (2012a; Paper I), this
figure illustrates (i) heating within the substrate for vertically varying k, and
(i) enthalpy of the ice slab, Hy, to allow the treatment of solid-phase

transitions.

The latent heat of sublimation term of the energy equation depends on the mass flux
(dmy/dt in Fig. 2-1). For extremely thin atmospheres, such as on Io or possibly currently on
Eris, some atmospheric flow occurs, but is ineffective in changing local surface temperatures
(Fig 2-2A). In this case, the volatile slab temperature is controlled by local conditions only.
The volatile slab temperature and the local atmospheric pressure are generally higher in areas
of high insolation. For thin atmospheres, we assume no atmosphere over the bare areas. This

approach allows efficient calculation of surface and subsurface temperatures. Once
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temperatures are calculated, one can calculate Iapetus-style cold trapping or lo style flow

after-the-fact; this is not treated in this paper.

In thicker atmospheres, such as on the current Pluto and Triton, the atmosphere
efficiently transports mass and latent heat across the entire globe (Fig 2-2B). As quantified
by Trafton and Stern (1983), the pole-to-pole pressure differences are small as long as the
sublimation wind is much less than the sound speed. In this case, the mass flux is calculated
by ensuring global mass balance, including the mass of the atmosphere over both volatile-
covered and bare areas (Trafton & Stern 1983; Young 1992; Hansen and Paige 1992, 1996;
Young 2012a).

Accurately modeling the transition between a global and local atmosphere is too complex
and computationally expensive to treat here. In future papers, we plan to treat this using
vertically integrated hydrodynamic equations, as has been done for Io (Ingersoll et al. 1985,
Ingersoll 1989). In this paper, I treat the atmosphere as a splice between isolated locations
with local atmospheres and ineffective transport of mass and latent heat (Fig 2-2C, Areas I
and II), and interacting locations that share a single surface pressure, with effective transport
of mass and latent heat (Fig 2-2C, Areas III and IV).

Insert fig 2-2 here.
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Fig. 2-2. Schematic of the transport of mass and latent heat over a surface in
this model. Dark and light surface areas represent areas devoid of or covered
with volatiles, respectively. The mottled outline around the body represents an
atmosphere of varying surface pressure. Short arrows represent mass
exchange between the surface and atmosphere, and large curved arrows
represent net flow within the atmosphere. (A) For low-pressure atmospheres

(such as current Eris), the mass and latent heat balance are local, the surface
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pressure depends on local heating, and the surface is covered with Areas I
(bare) and II (volatile-covered). At each location, the surface and atmosphere
exchange volatiles, indicated by the double-headed arrows, but neighboring
locations are isolated from each other. (B) For high-pressure atmospheres,
such as the current Pluto or Triton, all the volatiles interact with each other.
The mass and energy balance is global, the surface pressure is constant over
the globe, and the surface is covered with Areas III (bare) and IV (volatile-
covered). There is net sublimation at the summer pole (indicated by an arrow
pointing from the surface at the top of the figure), net deposition at the winter
pole (indicated by an arrow pointing from the atmosphere at the bottom of the
figure), and balanced exchange of volatiles at mid latitudes (indicated by
double-headed arrows). (C) Intermediate cases are treated with the

computationally efficient method of splicing local and isobaric areas.

Table 1. Area Types

Bare Volatile-covered
Area Il
Area | Energy budget includes latent heat, without
. mass or energy transfer from other locations.
Energy budget does not include latent heat. . .
Isolated . . .. Atmosphere is in vapor-pressure equilibrium
Atmospheric pressure is negligible. with the surface, with surface pressures that
Section 3. vary with location.
Section 4.
Area IV
Area ITI Energy budget includes latent heat, with mass
Energy budget does not include latent heat. or energy transfer from other locations.
Interacting Atmospheric pressure is constant over all Atmosphere is in vapor-pressure equilibrium
locations in Area IIT and IV. with the surface, with a surface pressures is
Section 3. constant over all locations in Area III and IV.
Section 5.

In the following sections, I develop the VT3D model for both isolated and interacting
bare areas (Areas I and III), the local volatile-covered areas (Area II), and the interacting,
isobaric volatile-covered areas (Area IV). In each, I present the equations for energy balance,
and describe the analytic approximation that can be used as effective initial conditions. The
problem is discretized in location, depth, and time, and the energy balance equations are
linearized. This leads to two forms of matrix equations. The explicit equations involve
multiplication of the current temperature array by a tridiagonal or banded tridiagonal matrix,
while the implicit equations (in this case, a Crank-Nicholson timestep scheme; Press et al.

2007) involve multiplication of both the current and next temperature array by tridiagonal or



L. Young —9— Volatile Transport Il (VT3D)

banded tridiagonal matrices. The elements of the matrices are derived, and notes on how to

solve the resulting equations are given.

The primary advantage of VT3D is its speed (Table 2). Many of the speed gains are
applicable to bare locations, and can speed up calculations involving spatially resolved
thermal measurements, measurements involving seasonal, diurnal, and eclipse time scales,

and other applications. Therefore, I present the formulation for bare locations first, in Section

3, and only then turn to volatile areas.

Table 2. Elements of VT3D relating to computational speed

Feature Speed Notes See Sections
factor
Initialize with analytic ~4 Allows spin-up in only a few 3.2 (Areas I, III)
approximation periods, rather than 10-20. 4.2,5.2 (Areas 11, 1V)
Uneven layer ~2-1000  Allowing layers to increase 3.3 (All Areas)
thickness their thickness with depth
decreases the number of layers
needed.
Implicit time steps ~50 Stable for large timesteps. 3.3 (Areas I, III)
(Crank-Nicholson) Requires solution of 43,53 (Areas II,IV)
tridiagonal or banded
tridiagonal matrices
Lower-Upper (LU) ~2 Speeds up the solution of 3.4 (All Areas)
decomposition of tridiagonal or banded
substrate sub-matrix tridiagonal matrices
Decouple seasonal and ~15,000  Decreases the number of time 3.3 (All Areas)
diurnal forcing steps by the ratio of orbital to
rotational period
Calculate temperatures Depends  Avoids costly "for loops" 34 (Area I, II, ITI)
on multiple locations on the 5.4 (Area 1V)
with a single operation language
Global tiling 1.6 Can decrease the number of 3.4 (All Areas)
required tiles
Combine mass and 10 Avoids having to calculate a n/a (Area I, III)

energy equations

range of mass fluxes and then
test for conservation of mass

4.2 (Area II)
5.2 (Area 1V)

I end this section with a few words about the modularity of the techniques described here.

» Anyone interested in this model should read Section 2 (this section) because it is short,

and provides an overview.

* If your object has no volatiles, you do not need to read past Section 3.
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» If you want to characterize which processes are important in controlling surface
temperatures, you can stop at the calculation of the thermal parameters, or Eq. 3.2-11 for
volatile-free bodies, plus Eq. 4.2-7 and 4.2-8 for isolated volatile-covered areas, or Eq. 5.2-

2a-d for volatile-covered interacting areas.

* If you want to very quickly approximate a temperature field based on the solar forcing,
read Section 3.1-3.2, plus Section 4.1-4.2 if you have isolated volatiles, and Section 5.1-5.2 if
you have interacting volatile covered areas. The critical equations are Eq. 3.2-12 or 3.2-17,
4.2-9 or 4.2-10, and 5.2-3 or 5.2-4.

* If you are calculating temperatures at one volatile-free location at a time, you can stop
at Section 3.3. If you are calculating one isolated volatile-covered location at a time, read
through Section 3.3, then skip ahead to Sections 4.1-4.3.

 If you are calculating roughly several hundred timesteps per period (e.g., to gain
insights at short timescales or to make smooth plots), then the explicit equations will be
stable, and the implicit equations will not save much computation time. In that case, you can
skip those equations in Section 3.3, 4.3, and 5.3 that are described as implicit (roughly half of
them), and all of sections 3.4b and 5.4b.

3. VT3D for bare locations (Areas I and III)

Fig 2-2 and Table 1 recap the definitions of Areas I and III and their interaction with the
atmosphere. For Area I (bare, no mass exchange, no atmosphere), the physics in VI3D is
identical to the well-known thermophysical model (TPM) used to interpret thermal emission
from airless bodies (e.g., Thomas et al. 2000; Spencer et al. 1989; Harris 1988). Heating in
the top-most layer is balanced by thermal emission, insolation, and conduction; heating in
interior layers is balanced by conduction only; heating in the lower layer is balanced by

conduction and a flux condition at the lower boundary.

Area III (bare, no mass exchange, isobaric atmosphere) represents, for example, the
"bedrock" H,O on current-day Triton. There is no volatile slab and no sublimation. The
difference between the two bare area types are (i) Area III is a potential deposition site, and
(i) an increase in the volatile temperature for Area IV (volatile-covered, isobaric) also
increases the pressure over Area III, so the atmosphere above Area III needs to be included in
mass balance equation for Area IV. As long as there is no condensation (which will alter the
state from bare to volatile-covered), the energy balance for Area III is the same as for Area I.

Therefore, both bare areas, I and III, are treated in this section.
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These equations demonstrate several aspects of the numerical power of VT3D. In Section
3.1 and 3.2, I show the analytic expressions for the initial conditions, and show that a simple
calculation can approximate the numerical solution. In Section 3.3, I present the explicit and
implicit (Crank-Nicholson) numerical solutions for a single bare location, showing that
solutions spin up in less than a quarter period. In Section 3.4, I show a compact
representation of the linearized, discretized equations. In Section 3.5, I present a worked
example of Mimas's diurnal temperatures, with code and output in the supplementary

materials.

3.1 Areas I and III : Continuous expressions for bare areas

At the lower boundary, there may be positive (or negative) heat flow, F, which is
balanced by upward (or downward) thermal conduction from a negative (or positive) thermal

gradient:

oT
k— =-F (3.1-1)
0zl

where £ is the thermal conductivity, and 7 is the temperature. As with Paper I, z is a height
coordinate, defined to be zero at the top of the substrate and decreasing downward. Thus, z =
0 at the substrate-volatile interface for locations where there is a volatile slab, or at the

surface on volatile-free areas.

Within the substrate, I assume there are no heating sources, so net conductive heat flux is

balanced by changes in the temperature of the substrate:

oT 9 oT
i 3.1-2
Peos 0z oz (31-2)

Enthalphy of substrate Conduction

where p is the density, ¢ is the specific heat at constant pressure for the substrate, ¢ is time,

and 7 is the temperature.

The energy balance at the surface balances net heating with absorbed sunlight, thermal
emission, and thermal conduction. There is no latent heat of sublimation or condensation.

The total equation is

oT
0= S -eoT" -k— 3.1-3
o d
Insolation —— Z z=0
Emission
Conduction
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where S is the absorbed solar energy, and ¢ is the emissivity, and o is the Stefan-Boltzmann

constant.

The first term of Eq. (3.1-3) describes the solar energy absorbed by the volatile slab, in
power per area. For Triton, Pluto, Eris and other large KBOs, the fraction of sunlight
absorbed by the atmosphere is small, and we do not need to alter S to account for
atmospheric absorption. The absorbed solar energy at a particular location and time of day
depends on the solar flux at 1 AU, Siau, the heliocentric distance, », the hemispheric albedo,
Ay, and the cosine of the solar incidence angle, uy (where o is O when the sun is below the

horizon).

S
S=%(1—Ah)uO =Sl (3.1-4)
where Sss is the absorbed insolation at the sub-solar point. uy depends on latitude, A, sub-
solar latitude, Ao, and the hour angle, 4 (where % is the difference between the location's

longitude and the subsolar longitude, defined to increase with time at any given location).

U, = max(O,sin Asin A, +cos Acos A, cos h) (3.1-5)!

The hemispheric albedo, 4, is a local quantity, also known as the directional-hemispherical
reflectance, hemispherical reflectance, or plane albedo (Hapke 1993). It is defined as the ratio
of the total scattered power to the incident collimated power, (S,,,/r*)u,, and depends on
the location on the surface and the incidence angle. It is useful to approximate the
hemispheric albedo by its average over all incidence angles, or Ag =2 f A, uydu, , where Ag is
known as the spherical reflectance, spherical albedo, or the Bond albedo (note, however, that
Bond albedo is strictly defined for an entire surface). For typical phase functions in the outer
solar system, substituting 4s for A, tends to slightly underestimate solar heating for direct
illumination and overestimate solar heating for large incidence angles. Since there is
typically large uncertainty in the values of 4s or A, due to uncertain phase functions, this
distinction is usually ignored. The remainder of the paper uses 4 for 4n, and does not
distinguish between 4, and 4s.

The second term of Eq. (3.1-3) represents thermal energy emitted by the substrate. For a
physical surface, this term might include such effects as self-heating from crater sides
(Spencer 1990; Rozitis and Green 2011). In VT3D the emissivity, ¢, is treated as a parameter

! mu0 = vt3d_solar mu(lat, lon, lat0, lon0)
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that defines the power per area lost by thermal emission. Since € can vary with location and

time, it can be used to encompass these more subtle physical effects.

The final term of Eq. (3.1-3) represents thermal conduction from the substrate. If the
substrate just below the interface is warmer than the surface temperature (d7/dz < 0), then

conduction expressed by this term warms the surface.

3.2 Areas I and Il : Analytic approximation and initialization bare areas

This section expands on key results of Paper I. The purpose is to introduce variables that
will be used later, and to show the equations that will be used to initialize numerical

calculations. For more discussion of the derivation, see Paper 1.

If the solar insolation, S, at latitude A and longitude ¢, is a known function of time, ¢, with

period P, then it can be approximated as a sum of M+1 sinusoidal terms

S(A,$,1)=Re

> Am(k,qﬁ)e""’“”} (3.2-1)!

where w=2m/P is the frequency of the diurnal or seasonal forcing, and Sm (7L,¢) are the
complex sinusoidal coefficients, with the hat indicating complex quantities (note, however,
that Sy is real). The coefficients are derived from the insolation in an expression closely

related to the Fourier transform:

5,(%9)= % [7s(p.ndi (3.2-2a)?

5, (1.9)- % [7SGup.0e™ di (3.2-2b)?

A common application is diurnal forcing. For areas in permanent darkness, the solution is
trivially Sm(k,¢) =0. For others, the diurnally averaged insolation can be expressed
analytically (e.g., Levine et al. 1977). One first finds the maximum hour angle of

illumination, /uay, (Ama: = 7 for areas of constant illumination)

coshmax = max(—l,min(—tan/ltanko,l)) (3.2-3)

sol = vt3d_solwave (sol terms, phase)

2 f t = sft(p, f, nfreq) (Slow Fourier Transform, in ~layoung/math)
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where A is the latitude and A is the sub-solar latitude, as before. The average insolation is a

real quantity, so written without the hat, and is given by

5, = sinAsinAyh, +cosAcosA,sink, s, (3.2-4a)!
T

where the ratio So/Sss is the longitudinal average of wo. The decomposition of the solar
forcing can also be written analytically. For a location that has hour angle 4, at time ¢ = 0, the

first term is

g 2sinAsin A, sinh,_ .\ cos Acos Ao(hmax +sinh_, cosh,, )
=

S.e™  (3.2-4b)?

JU T

and, form > 1,

G 2sinAsinA_sinmh_ . 2cosAcosA (m cosh sinmh —sinh cosmh )

" mi Jt(m2 —1)

imh
S.e (3.2-4c)

If the latitude of the surface element or the sub-solar latitude are near equatorial, then the
solar terms are dominated by the first two terms, then diminish quickly with higher order; at
the equator, the magnitudes of the terms are proportional to 1, /2, 2/3, 0, —2/15, etc., (Paper
I). Fig. 3-1 shows an example of the decomposition of insolation for a body with a sub-solar
longitude of 2.24° and at a latitude of +30° into a constant plus one term (dashed) or seven
terms (dot-dashed).

Insert fig 3-1 here.

! mu0 = vt3d_solar mu(lat, lon, lat0, lon0O, /lonavg)

2 sol terms = vt3d_sol terms diurnal (dist sol au, albedo, lat, h phase0,

lat sol, n_terms)
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Fig 3-1.! Solid gray: numerical calculation of insolation on a bare spot at 9.5
AU with 4 = 0.6, at latitude 30°, a sub-solar latitude of 2.24°, and an hour
angle at zero phase of -6 hours (-90°). The off-center maximum heating was
chosen to force complex coefficients of the sinusoidal expansion. Solid:
sinusoidal approximation with M=1, which captures the approximate phase
and amplitude of the solar forcing. Dashed: sinusoidal approximation, with
M=7, which is hard to see except at the "corners" near dawn and dusk because

of the accuracy of this approximation.

As discussed in more detail in Paper I, the temperature can be written in terms of

sinusoidal terms as well. If the density, specific heat, and thermal conductivity are constant
with depth, then the solution to the diffusion equation (Eq. 3.1-2) with flux specifying the

lower boundary condition (Eq. 3.1-1) is the sum of damped waves with wavelength

2a2mZ and e-folding distance of \V2mZ (Fig. 3-2), where

1

2 therminertia

vtylé_fig3 1, phase,

flux sol,

I'=\kpc

vt3d_thermalinertia (dens,

flux sol 1,

specheat,

(3.2-5)

flux sol 7

thermcond)
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is the thermal inertia (in cgs units of erg cm™ K™ 5™ or MKS units of tiu = J m? K s,

where tiu, or thermal inertia units, is the SI unit proposed in Putzig 2006), and

k k
7 = = |~ 3.2-6)!
r\@ pcw ( )

is the skin depth, as defined by Spencer et al. (1989) and HP96. Other authors use definitions
of the skin depths that differ by a constant from Eq. 3.2-6 (e.g., Mellon et al. 2008).

The solution to the conduction equation (3.1-2) can be written as

T()L,¢,Z,t) =- Fi/););¢) % + TO()\”¢) +Re

m=1

Efmw)e"’"“’”ml (3.2-77

where £=7/Z is identical to the unitless scaled depth introduced by Spencer et al. (1989).
Temperatures for cases where the thermal-physical properties are variable with depth are
treated elsewhere (Fivez & Thoen 1996; Grossel & Depasse 1998; Karam 2000).

Insert fig 3-2 here.

1 z skin = vt3d_skindepth (dens, specheat, thermcond, freq)

2 The general routine, for any number of locations, phases or depths, is
temp = vt3d_thermwave (temp terms, phase, dtemp dzeta, z skin, zeta)

For one or multiple location, phase = 0, and multiple depths, you can use
temp = vt3d_thermwave_ lloc_pO nz(temp terms, dtemp dzeta, zeta)
temp = vt3d_thermwave nloc_pO nz(temp terms, dtemp dzeta, zeta)
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Fig 3-2.! Example thermal wave with T0 = 74.3 K and fl= 12.5 K at two
phases (solid lines). The envelope of the damped waves is shown with dashed

lines, and every quarter wavelength is shown with horizontal dotted lines.

The goal is to use Eq. (3.2-7) to create initial conditions for numerical calculations in the
three dimensions of latitude, longitude, and depth, given the coefficients for the temperature.
There are three ways to do this. The simplest is to expand Eq. (3.1-3) to get the Fourier
terms of the temperature directly, as described in Paper I and recapped here. The second is to
follow this step by an adjustment of the average temperature, to ensure time-averaged energy
balance. The third is to expand into Fourier terms of (.

The average temperature, 7,, is found by substituting the sinusoidal forms of S and T into
Eq. (3.1-3) and taking the first-order, time-averaged component, resulting in Eq. (3.2-8). This
simply states that the mean temperature balances the mean solar insolation and the flux at the

lower boundary condition.

0=S5,(A¢)-eo[T,(1.9)] + F(2.9) (3.2-8)

Insolation Emission Lower boundary flux

1 vtylé fig3_2

2 temp 0 = vt3d_temp_ term0 bare(sol 0, flux int, emis)



L. Young —18— Volatile Transport Il (VT3D)

The temperature coefficients, ]A*m , are found for each m by also substituting S and 7 into
Eq. (3.1-3), taking the appropriate derivatives (d/dr —imw, d/dz %MZ'I), and taking
only those terms proportional to exp(imwt). The results are most simply expressed by
defining the following variables, which represent the derivative of energy flux or heating

with respect to temperature (in cgs units of erg cm™ s™ K" for the fundamental frequency:

@, = ol (3.2-9a)!
®,(T) = 4e0T’ (3.2-9b)?

As described in Paper I, a system where ®g is zero has temperatures that track the solar
forcing, while positive @y serves to dampen the amplitude of the temperature variation and
introduce a lag. The temperature variation (7,, ) as a function of the solar variation for bare or

volatile-covered area is found from:

\im®, + @, (T)|T, = S, (3.2-10)2
— -
Conduction Emission Insolation

The temperature is then calculated from 7 and f"m from Eq. (3.2-7).

Eq. (3.2-8) overestimates mean temperatures, with the discrepancy being worse with
larger peak-to-peak temperature variations, because the time average of T* is larger than T;'.
Once an estimate of the peak-to-peak variation is found, the value of 7, can be adjusted
downward so that the time-average thermal emission equals the sum of the insolation and
internal heat flux, iterating over Eq. (3.2-9b) and (3.2-10) until the mean thermal emission

converges on the mean absorbed insolation.

As described in Paper I, the time lag and smaller temperature variation can be described

by a dimensionless parameter, Og.

o, ol

®,(T)/4 eoT;

0,(T)= (3.2-11)

! phi s = vt3d_dfluxdtemp substrate(freq, therminertia)

2 phi e = vt3d dfluxdtemp emit (emis, temp)
3 temp terms = vt3d_temp terms bare(sol terms,flux int,emis, freq,
therminertia)
temp terms= vt3d_temp_ terms bare iter(sol terms,flux int,emis, freq,
therminertia, thermcond)
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The ratio ©s=4dDs/ Py is essentially the thermal parameter of Spencer et al. (1989), but

defined at the time-averaged local temperature, rather than at the subsolar temperature. As in

Paper I, Oy can be used to quantify the shift and decrease in amplitude of the response to

solar forcing (Eq. 3.2-12). See Paper I for more discussion on the interpretation of Eq. (3.2-

12) in terms of real quantities.

A

i8S, 4
"D (T,) 4+im®,

(3.2-12)

Figure 3-3 shows an example of the initial temperature at the surface for a purely

sinusoidal wave (M = 1) and for M = 7 given the same conditions as in Fig 3-2. The

combination of a 22.6 hour period and I"' = 16 tiu (appropriate for Mimas Region 1, Howett

etl al 2011) gives Os= 6.0.

Insert fig 3-3 here.

T T T T T
a0 - e, Numerical _
- o aa ™ ; n
L v N Approximation, M=1 .
| ) —
B ' mr——— — Approximation, M=7 4
S N . U Approximation, M=7,
C iterated T, ]
< B0 ]
¥ R i
| — —
£ C -
8 7°C ]
£ L i

R
& L i
70— ]
65— ]
60 [ ! ! ! L]
a 90 180 270 360
Phase, deg

Fig 3-3.! Example surface temperatures for the insolation shown in Fig 3-1,
with unit emissivity. The result of the numerical integration is shown as solid,
thick gray. Initial approximations to the temperature are shown for M = 1,

without an adjustment of T, to balance energy fluxes (solid), M = 7, without

! vtylé fig3 3



L. Young —20— Volatile Transport Il (VT3D)

an adjustment of 7j (triple-dot-dash), and M = 7 with an adjusted value of 7
(dashed), for a period of 22.6 hours and a thermal inertia of
16 tiu (for a thermal parameter ©g = 6.0).

In some situations of large variation in the solar forcing and small values of ®g, the

linearization of T* is poor, and it is better to expand in the emitted flux instead.

F®(A,¢,t)=e0T* =Re

Eﬁﬂ&@dﬂ] (3.2-13)

m=0

The mean term is found from Eq. (3.2-8): F, =S, + F . Before, we expanded the emitted

flux in terms of temperature, but now we expand temperature in terms of emitted flux:

T FF
e (3.2-14)
0 0

The conduction is a now a small correction to the thermal emission, so the error in the
linearization is confined to the second-order term. Substituting Eq. 3.2-14 into the original

equation for energy balance, Eq. (3.1-3), gives:

0= S‘, _ ﬁ,E _k\/%

m

T (3.2-15)

A e
Insolation  Emission  \e——or,——
Conduction

which, with some manipulation, gives an expression similar to Eq. (3.2-10):

. — 0.~y A
F, +\im—F = §, (3.2-16)
— 4 —
Emission \——,———  Insolation

Conduction

and one similar to Eq. (3.2-12):

AE 4 4
Fro§ 2
4+\/%®S

From F%, calculate the surface temperature and its Fourier terms from 7 = (F" /e0)

(3.2-17)!
1/4 ) In
some cases, more Fourier terms (M = 30 to 100) need to be used than when calculating the

temperature terms directly, to avoid ringing at sharp transitions in the solar forcing.

1 flux terms = vt3d _eflux terms bare(sol terms, flux int, emis, freq,

therminertia)
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The analysis in this section can be used for more complex insolation patterns as well.
Any insolation pattern, no matter how complex, can be decomposed with a Fast Fourier
Transform (FFT) algorithm. If the forcing happens on two different frequencies, such as
seasonal and diurnal, then the sums (in e.g., 3.2-7) can be performed over a discrete set of m,
not necessarily contiguous. For the specific case of combined seasonal and diurnal variation,
we can often decouple the two timescales (Young 2012a). First, calculate the seasonal
thermal wave as a function of time, using longitudinally averaged insolation. If the seasonal
and diurnal skin depths are sufficiently different, then the diurnal wave is superimposed on
the uppermost portion of the seasonal one, and the seasonal wave can be treated as a linear
contribution to the diurnal wave. This is mathematically identical to an internal heat flux
term, F, already introduced. In other words, the seasonal thermal heat flow to and from
deeper layers affects the diurnal temperatures by affecting the energy flux at the lower
boundary. This works because the orbital periods in the outer solar system are orders of
magnitude longer than the rotational periods. Pluto, for example, has an orbital period of 248
years and a rotational period of only 6.4 days. The seasonal scale height is larger than the

Y2 or a factor of 119. A typical depth for the lower

diurnal one by (248 years/6.4 days)
boundary is 6 diurnal skin depths. This is only 0.05 times the seasonal skin depth, or a tenth

of a tick in Fig 3-2, clearly in the linear regime of the seasonal wave.

3.3 Numerical solution for a single bare location (Area I or I1I)

For some applications, the results of the analytic calculations may be adequate. For
others, higher accuracy is needed. Even for these applications, the analytic solution provides

an initial condition that improves convergence.

The continuous equations of Section 3.1 are converted to a form suitable for computation.
This is done by discretizing the variables into L locations on the surface (indexed by /), J + 1
layers within the substrate (indexed by j), and choosing time step schemes that take the state
from time 7 to time n + 1 (i.e., no leap-frogging time step schemes). The general approach is
to treat the time step as a finite-difference diffusion problem, with flux conditions at both the

upper and lower boundaries (Press et al., 2007; Haltiner and Williams 1984).

Figure 3-4 represents the discretization of the numerical model. The substrate is divided
into J+/ layers, indexed with j = 0 for the top-most layer to j = J for the lowest layer, and
defined by a depth z; and a thickness A;. Depths (z) are less than or equal to zero, and become
more negative with increasing index. Thicknesses of the layers (A;) are positive. Thickness
can vary with index j to speed computation (Table 2). All layers except the top layer extend
from z,-A;/2 to z;+A;/2, with temperature 7;, defined at the center of the layer. The
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top layer extends from z = 0 to z = —A,, with the temperature 7}, defined at the top of the
layer. If the layering is the same across the globe, then z; and A ; are functions only of ;.
Density, specific heat, and thermal conductivity are constant within a layer, but can vary with
both depth and location, with values p, ;, ¢, ;, and k, ;. Substrate temperature varies with
location, depth, and time. Temperatures are continuous, and are linear between z; and the

layer boundaries. Conducted fluxes (k dT/dz) are continuous at layer boundaries.

The use of layers that are free to vary their thickness! with depth improves efficiency,
since the computational time is proportional to the number of layers, requiring only a little
additional computation at the beginning of a calculation. A common layering approach uses a
geometrically increasing thickness, where the thickness of each layer is some factor larger
than the layer above (typically a factor of 1.1 to 1.5, e.g., Hansen and Paige 1996; Keiffer
2013). When modeling a diurnal wave, this allows modest computational savings, since
geometrically thickening layers can span down to six skin depths with 2-3 times fewer layers
than for layers of equal thickness. Unevenly spaced layers is even more important for
practical modeling of the diurnal and seasonal wave simultaneously. Because the skin depth

is proportional to w™"

, the ratio of diurnal and seasonal skin depths equals the square root of
the ratio of their periods, if thermophysical properties are constant with depth. This is
important even for Mars, where the orbital period is roughly 669 times the rotation period, so
the seasonal skin depth is roughly 25 times the diurnal skin depth (if thermophysical
properties are constant with depth). In the outer solar system, the orbital periods can be quite
long, so that the equivalent ratio of seasonal to diurnal skin depths is 88 for Enceledus, 118
for Pluto, and 700 for Eris. If the thermal conductivity is greater at depth, these ratios can be
even larger. Here the savings for geometrically thickening layers is dramatic, allowing
calculation to 100, 1000, or even 10,000 diurnal skin depths with computational savings of
~20, ~100, or ~1000 respectively. For example, layers that begin with a thickness of 0.25
diurnal skin depths can reach 10,000 diurnal skin depths with only 41 layers for a thickening

factor of 1.5, or with 87 layers for a thickening factor of 1.2.

Insert fig 3-4 here.

1z = vt3d_zgrid(skindepth,z delta,n z)
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Fig. 3-4. Schematic of the layering scheme and energy fluxes. Top: layer j = 0

for bare areas (Areas I and III). Middle: interior layers, valid for j = 1 to J-1.

Bottom: j = J. Thick arrows near the left side of the plot represent energy

fluxes due to emission, insolation, or conduction. Thin arrows near the middle
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of the plot indicate layer depths and distances between layers. Thick lines with
large dots near the right side of the plot schematically represent temperatures.
Temperatures are tabulated at the top of layer 0, and at the middle of all other
layers, and are assumed to be linear with z within the layer. Conductive flux

(k dT /dz) is continuous across layer boundaries.

The goal is to cast the equations as matrix operations to take advantage of the fast array
operations that are available in many modern computer languages. The continuous equations
of Section 3.1 can be cast as explicit equations (Fig 3-5), where the new temperature depends
explicitly only on the previous temperature (Press et al. 2007; Haltiner and Williams 1984).
The explicit expressions for diffusion equations are only accurate to first order in the time
step, At, and require small time steps for stability. For explicit equations, the timesteps must
satisfy (At/P)<(Az/Z)’ /4w, or slightly more than 200 steps per period for a vertical
sampling of 4 layers per skin depth.

The explicit linearized problem can be described with a (/ +1)x(/ +1) tridiagonal
matrix (Fig. 3-5). The new temperatures depend on the current temperatures in the layer
above (with matrix element o, mnemonically "a for Above"), the current temperature in that
layer (with matrix element 1, mnemonically "4 for Here"), and the current temperatures in

the layer below (with matrix element , mnemonically "b for Below").

Insert fig 3-5 here.
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Fig 3-5. Schematic of an explicit time-step from time » to time n+1 for a
location / in Area I (bare, isolated), II (volatile-covered, isolated) or III (bare,
interacting). Dark gray elements (the temperatures and the elements of the
upper row) change with each time step. Light gray elements are independent
of time. White elements are zero.

Accuracy and stability can be improved by using implicit (Crank-Nicholson) methods,
which solve equations involving both the current and the next temperatures (Fig. 3-7), at the
cost of computational complexity (Press et al. 2007; Haltiner and Williams 1984). The
Crank-Nicholson scheme results in an equation that is accurate to second order in the time
step, and satisfies von Neumann stability criteria for all sizes of time step. The implicit
(Crank-Nicholson) problem uses two (/+1)x(/+1) tridiagonal matrices, with primed
elements on the right-hand side of the equation and double-primed elements on the left. The

goal of this section is to derive the matrix elements, which are summarized in Tables 3 to 5.

Insert fig 3-6 here.
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Fig 3-6. Schematic of an implicit time-step from time » to time n+1 for a
location / in Area I (bare, local), Il (volatile-covered, local) or III (bare,

isobaric), using the Crank-Nicholson scheme. Dark gray elements (the
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temperatures and the elements of the upper row) change with each time step.
Light gray elements are independent of time. White elements are zero. The
variables in brackets refer to the vectors of length J or J-1 indicated by the

double-arrowed lines.

Table 3. matrix elements for j = 0, Area I and III (bare)

Matrix equation Matrix elements
. . K.B
Explicit b = D
— 10n — T
Lo n/,o,nTz,o,n + ﬁl,O,nT;,l,n Y om D,
Mon =1= B,
- 4
_ S/,/z 8/,”0-(];,0,11)
Viow= (I)/T
J
Implicit (Crank-Nicholson) : Bow. _ Bion

" " ’ ' 10,n 2 ’ 10 — 2
7/’l,O,n];,O,rHl + ﬁl,O,nT;,l,rHl - 7/]l,O,nTL,O,n + ﬁ[,O,nI;,l,n + J/I,O,r ,

r. " _ "
771,0,n =1 ﬁ/,o,n’ 77l,o,n - 1+ﬁ/,0,n

@, is given by Eq. 3.3-10. @], is given by 3.3-18.
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Table 4. Matrix elements for j =1 .. J-1, all Areas!

Matrix equation Matrix elements
Explicit o T
N 6A 5
Ljntl al,sz,j—l,n + n/,sz,j,n + ﬁl,jT;,jH,n LTl
B T
1.j = QB
o, ]6,’ i
n,=1-a;,-B,
Implicit (Crank-Nicholson) a, a,
’ S . " >/
" " 4 _ o, = o =-
al,.iy;,j—l,ml +T’l,j7;,j,n+l + ﬁl,jTl,j+1,n+1 = v 2 ? /. 2
! / 4
al,jTl,j—l,n + nl,jTl,j,n + ﬁl,jTl,jn,n B = B, . B,
v 7’ VA 2

o1y R e o 1y R
77/,,/_1 a;, ﬁz,p 77/,‘,“1 s /31,_,‘

Table 5. Matrix elements for j = J, all Areas’

Matrix equation Matrix elements
Explicit o T
Ty =0 Ty, 0T, + 70y v 611?151,1

N, =1-a,

i

1J q)i]j

Implicit (Crank-Nicholson) , a, ., a, .
ai, Ty, Ty, = Gra =Ty 0 Froa T T Ty
ATy ML + 71y T];,J = l—a}jj; T];,J =l-a;,

@', is given by Eq. 3.3-5.

To find the energy balance in layer 0, integrate the conduction equation (Eq. 3.1-2) over

the top layer, from z = —Aj to z = 0. Add this to the energy balance equation (Eq. 3.1-3) to

get:
0 -
07 3 ar
p,.C —dz= S8, -¢, 07  —k— (3.3-1)
/0770 /. /.n /0,7 d
-A a7 — Vv z z=—A

0 Insolation Emission o

| —

Enthalpy, layer 0 Conduction

where the overbar indicates the time-averaged value over the time step #, to #,.;. The

subscript for time in the insolation and emission terms is n' to indicate that it varies over the

! alpha i = vt3d_alpha_interior(tau, del, del a)

beta i = vt3d_beta_interior(tau, del, del b)
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time interval from » to n+1. The change in enthalpy over layer 0 can be approximated as a

function of the temperature sampled at the top of the layer:

0
oT
PioCrp fEdZ = (I)ll-,IO(TI,O,nH - Tz,o,n) (3.3-2)
_A(J
where CIDﬁ ; has units of erg ecm™ s K, with the superscript H representing heat or enthalpy.
Eq. 3.3-2 samples the temperature of layer O at the top of the layer. If the temperature is
integrated over layer 0 instead, then the slope of the temperature through layer 0 needs to be

included; this depends on 7}, , and is a second-order effect that I ignore here.

Defining a unitless measure of the time step, 7, (radians per timestep):

T=(t,,, -1,)0 (3.3-3)

n+l T

and a unitless measure of the thickness of layer j expressed as a fraction of the skin depth
(c.f., Spencer et al. 1989)

0,

>J

A, (3.3-4)
-z _

gives

P - 01,1 A =6l,j(I)S(rl,j)
Lj 0
t.—t T

n+l

(3.3-5)

where @ is defined in Eq. (3.2-9a) and only depends on the physical properties of the
problem. In contrast, <I)f'j additionally includes non-dimensional factors that depend on the
numerical choices of Tand 9, ;. In general, I represent the fluxes-per-temperature that depend
only on the physical properties with a single subscript for the physical process (e.g., S or H),
and the ones that are discretized and depend on Tand 6, ; with the superscript for the process

and a subscript for the indices of location and time.

The average solar insolation between #, and f,1, S

Ln'>

depends on the geometry
(heliocentric distance, and subsolar latitude and longitude) and the albedo. If the insolation is
evaluated at the start of the timestep (f’n, =S, ,), then the results will be skewed in time by
half a timestep, which is acceptable when timesteps are small (e.g., Spencer et al. 1989), but
not at the larger timesteps allowed by the Crank-Nicholson method. A simple correction is to
average the insolation at the start and end of the timestep
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S, =S, +8,,)/2 (3.3-6)

7+l
The average thermal emission at the midpoint of the time interval is found by evaluating
the first-order Taylor expansion of 7* at the average temperature for the time interval,
(T, 901 = T,,,) /2, assuming that the emissivity is constant over the time interval.

- . 4
4
6/,/1'0-];,0,17' - 8/,170-(];,0,17) + q)/,n (f

/.,0,77+1 - ];,0,11)

(3.3-7)
where ®;, has units cgs of erg cm” s K, with the superscript E representing emission:

e (Tins) (3.3-8)

q)fn = 281,110—(7—;,0,/1 )3 = 2

where @, is defined in Eq. (3.2-9b). As with the enthalpy term, @, only depends on the
physical properties of the problem, and ®; ; is the value used in the descretized calculation.

Unlike the enthalpy term, &, and <I>f  changes with each time step.

The next term in Eq. (3.3-1) is the thermal conduction. For explicit equations, the
derivative is evaluated at the start of the time interval:

dT
(k_

-T,,) (3.3-9)

K.B
= (I)z,o (Tl,O,n

dz

z=-4,

' K. The superscript K represents thermal

where @/ has cgs units of erg cm™ s
conduction, and the superscript B represents conduction from the layer below. The expression

for def is

ko _ K Psdi)

== (3.3-10)

I.j = AB B
A, 6,,1.

where A7 is essentially the distance to the middle of the layer below, modified to ensure
continuity of fluxes at layer boundaries:
A,

k. A,
Alf,j=7’+k#%,j=l...1—l (3.3-11)!

1,j+1

and the unitless distances used for calculating thermal gradients from the layer below is

! vt3d _zdelta, z, z delta, z delta top, z delta bot
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A
8, = Z”f (3.3-12)

Lj

Even if z; and A; are constant from one location to the next, the dependence on k means that
Af}yj and A’fyj may vary with location. Again, @ only depends on the physical properties of
the problem, and de]iB additionally includes non-dimensional factors that depend on the

numerical implementation.

The more accurate and more stable Crank-Nicholson scheme (Press et al. 2007) replaces
the derivative in Eq (3.3-9) with the average of the derivatives calculated at the start and end
of the time step (at time #, and time #,+):

dz

1 1
=20 (Tioa =T )+ 505" (T = Tra) (3.3-13)

z=—-A¢

The explicit discretized equation for energy balance of layer 0 becomes

4
H £ K. B
(I)/,o (];,O,nﬂ - ];,0,1/) - S/,n' - 8/7;70'(];,0,”) - q)/,ﬂ (];,o,zm - ];,0,1/ ) - q)/p (];,O,// ];,1,”) (3.3-14)
v
Enthalpy, layer 0 Insolation Emission Conduction

while the implicit equation is

- 4
Vi £
q)/,O (];,0,/7+1 - ];,0,/7) - S/,ﬂ' - 8/,/10-(];,0,/1 ) - cI)/,/J (];,0,/7+1 - ];,0,/1 )
—

Enthalpy, layer 0 Insolation Emission
) 1 (3.3-15)
K.B _ R Y. _
__(I)/,o (];,O,n ];,1,17) q)/,o (];,o,nn T/,l,ml)
2 2
Conduction

Collecting terms for the explicit equation (only 7, ,,, on the left-hand side) results in:

0n+

(@7, +@7,)7,,,. =(® +@7, -0/7) 7, +(®}) 7, +?ﬁ,-e,ﬂo(7lw)4 (3.3-16a)

/. /,0,72+41 - /,0,2 VAW

and for the implicit equation (7}, and T}, ,,, on the left-hand side) results in:

K.,B K.B
o7 + @7 +(I)”0 7 - i 7, =
/0 I P /0,241 7 AW

K.B

q)/{’,b’
H £ /0
CI)/’O +P7 — >

7,0

7,

/0,2

];,1,11
(3.3-16b)

/.

+E—€/,”G(T )4

/0.7
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The goal is to now turn Eq. (3.3-16a) and (3.3-16b) into equations that express the matrix
multiplication shown in Fig. 3-5 and Fig. 3-6, respectively. For the top layer, the matrix

equations are

(3.3-17a)

= T +
1,0,n+1 TII,O,nT;,O,n +/3l,0,n Lln J/l,O,n

for explicit and

" " ' '
7/’l,O,n];,O,rHl + ﬁl,O,nT;,l,rHl - 7/]l,O,nTL,O,n + ﬁ[,O,nI;,l,n + J/I,O,n (33-17b)

for implicit time step schemes. Divide Eq. (3.3-15) by the total flux per temperature

T H E
D, =P+ Py, (3.3-18)

with units erg cm™ s K™, where the superscript T represents fotal, to get the matrix elements
for j = 0, Areas I and III (Table 3). The forcing is a function of time, and is subscripted .
Because the derivative of the thermal emission depends on time, the matrix elements f 1.,

and 1 1, also depend on time.

For interior layers, the integral form of the diffusion equations (Eq. 3.1-2), averaged over

time step 7 is

+A; /2

e oT dT dT

[ pe=—dz=|k=— k= . j=1.J-1 (3.3-19)
-0, 12 ot dz 40,12 dz z;-A; 12

Enthalpy of layer j Conduction

where the overbar indicates the time-averaged value over the time step ¢, to #,1.

In the lowest layer, as in the interior layers, the net change in enthalpy of the layer is
balanced by the difference between the flux entering from below and leaving from above
(Fig. 3-4). For layer J, unlike for layers j = 1... J-1, the flux from below is specified as a

lower boundary condition. The energy balance equation for the lowest layer is:

z/+Aj/2
oT dT .
[ pe—dz=|k= + F , j=J (3.3-20)
Z/—Aj/2 at dZ Z/+Aj/2 Low‘::ﬂux
Enthalpy of layer J Conduction

where F; is the heat flux at the lower boundary for location /.

The change in enthalpy over layer j (j = 1.. J) can be approximated as a function of the

temperature sampled at the middle of the layer:
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Z/+A//2df
H

o, | oa=0l(7,,.-7,,) (3.321)
z/.—A/./Z

The expressions for conduction into the layer above for from the layer j are similar to
those into layer 0 from layer 1 (Eq. 3.3-9 and 3.3-13). For the explicit scheme, it is:

dT
K ~or8(1, T, ) (3.3-22a)
Z;-A; /2
dT KA
K ~ofNT L, - T, (3.3-22b)
244, /2
and for the Crank-Nicholson implicit scheme it is:
dT oF? oFF°
kd_z = ;J (Tl,j,n _Tz,j+1,n)+ ;l (Tl,j,n+1 _Tz,j+1,n+1) (3.3-23a)
Z;-A; /2
dT prA piA
kd_z = ;J (Tl,j—l,n _Tz,j,n)"' ;l (Tl,j—l,n+1 _Tl,j,n+1) (3.3-23b)
240 /2
where @; * is specified by Eq. (3.3-10) and
k. @)
KA Lj S\LJ
A _ L 3.3-24
T, T o
T L AN
Lj = -+ j-1° J= (33-253)
2 1,j-1
A, kA,
Afj:_f Sl N TV | (3.3-25b)!
2k, 2
and
A
5 === (3.3-26)
Z,;

Substituting Eq. (3.3-21) and (3.3-22) into (3.3-19), the explicit equation forj =1 .. J-1 is

! vt3d _zdelta, z, z delta, z delta top, z delta bot
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@ (T,

Enthalpy of layer j Conduction

KA K.B
7-;,j,n) = q)l,j (T},j—l,n - ];,j,n) _q)l,j (T;,j,n

T (33-27)

,Jn+l -

and substituting Eq. (3.3-21) and (3.3-22) into (3.3-20), the explicit equation for the lowest
layer, j = J, is

H KA
O |T -T =T -T |+ F -
o\ et ” T 10 \Ltomn ™ tiam L (3.3-28)
——
Enthalpy of layer J Conduction Lower flux

Similarly, substituting Eq. (3.3-21) and (3.3-23) into (3.3-19), the implicit equation for j
=1.J-1is

KA KA
(I)’_J T T )+ & T -T -
2 L,j-l,n L,j,n l,j-1,n+1 l,jn+l

(ij(z,j,n+1 _Tt,j,n) = 2

Enthalpy of layer j

(3.3-29)
T

Ll

T,

)]

[1<I>fo’B(T

: 0w )+%¢>,’Tf (7;

O+l

Conduction

and substituting Eq. (3.3-21) and (3.3-23) into (3.3-20), the implicit equation for the lowest
layer, j =J, is

@K,A K.,A
H Lj Lj
" (T -T |=—4 (T -T |+—4 (T -T |+ F (3.3-30)
LI\ LJ.n+l LJ.n 1,j-1.n Ljn 1,j-1,n+1 1,j.n+l 1J
2 2 —_
Enthalpy of layer J Conduction Lower flux

Collect terms and divide by CI)fj, to get the matrix elements (Tables 4 and 5). For the

interior layers, the matrix elements 1, f1; and 1 1; are independent of time.

Fig. 3-7 compares the sinusoidal, explicit, and implicit calculations (at large and small
timesteps) for a bare spot at 9.5 AU with 4 = 0.6, e=1, and T’ = 16000 erg cm? s K™ = 16
tiu, at latitude of 30°, a sub-solar latitude of 2.24°, P = 22.6 hours, and an hour angle at zero
phase of -6 hours (-90°). Calculations were performed on a vertical grid with
6, = 6;3 =0, =1/4, except for the upper layer, where J,, =1/8. At small time steps, the
explicit and implicit calculations agree, and only the implicit calculations are plotted. The
implicit temperatures calculated at large time steps are similar to calculations with small time
steps. As expected from stability analysis (Haltiner & Williams 1984), the explicit
temperatures with large time steps show large, unstable fluctuations after only two time

steps, and are not plotted.

Insert fig 3-7 here
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Fig 3-7.! Surface temperatures as a function of phase for the first period of
numerical calculation, showing the benefit of a good initial condition. Top:
Initial condition with M = 1 (one sinusoidal term), without an adjustment of 7
to balance energy fluxes. Middle: Initial condition with M = 7 (7 sinusoidal
terms), without an adjustment of 7y. Bottom: Initial condition with M = 7,
with an adjustment of 7, (see note after Eq. 3.2-10). All plots show the
converged calculation calculated at 5000 time step per period for 20 periods
(thick gray line), explicit calculations at 240 time steps per period for a single
period (dashed line), and Crank-Nicholson implicit calculations at 24 time
steps per period for a single period (open circles, solid line). The thin lines
overlay the gray in places, and are difficult to see, indicating the quality of the

calculation.

Fig. 3-7 also compares the effect of the choices of three of the initial conditions shown in
Fig 3-3. For the simplest, the single frequency sine-wave (M = 1) with no adjustment to the
mean temperature, the numerical answer agrees well with the converged answer within 60°
rotational phase (Fig 3-8, top); the other initial conditions agree with the converged answer
even more quickly (within one time step, for the M=7 case with adjusted mean temperature).
The calculated temperatures for both M = 1 and M=7 are too warm at the end of one period if
the mean temperature for the initial condition was not adjusted (Fig 3-7, top and middle), but
reaches the proper temperature with adjustment (Fig 3-7, bottom). All three cases shown
have a similar convergence rate. Most of the gain is in the first period, with subsequent

periods improving the solution by 12-20% per period.
3.4 Matrix operations for single or multiple bare locations (Areas I and I1I)

3.4a. Overview and explicit timesteps

In this section, I present notes on how to solve the matrix equations in Figs. 3-5 and 3-6
in a way that takes advantage of the fact that for many problems substrate properties are often
constant with time and location. I show how the implicit and explicit equations can be
computed as a single matrix operation for those locations which share common substrate
properties. This speeds calculation because it avoids “for-loop” constructions, with a speed

savings that depends on the computer language involved. This section also shows how to

1 vtylé_fig3 7a
vtylée fig3 7b
vtylé fig3 7c
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precompute the matrices associated with the substrate: both the elements for explicit
calculations (the light gray elements in Fig 3-5, and the light-gray single-primed elements on
the right-hand side of Fig 3-6), and the Lower-Upper (LU) decomposition of the matrix
needed for implicit calculation (the light gray double-primed elements on the left-hand side
of the equation in Fig 3-6.). Since LU decomposition is the first of the two steps needed in
solving a tridiagonal matrix (Press et al. 1997), precomputing the LU decompositon of the

substrate portion of the tridiagonal matrix cuts computation time roughly in half.

The key to these efficiencies is to separate the calculations for the uppermost layer (j = 0)
from the lower layers (j = 1 to J). In addition to helping with the bare calculations, some of
the notions introduced here will be required for implicit calculations of the interacting

surfaces.

We separate the temperatures at a given location into a scalar describing the temperature

of layer 0, 7,,,, and a row vector of length J describing the temperatures of interior layers,
’I‘l L

T, =[TT.] (3.4-1)

With this separation, the timestep for Areas I and III can be written for the explicit

T b T
[ 10041 } _ [Th,o,n l,n] o [ 10 }4_ [Vl,o,n] (3.4-2)!
Tl,l..J,n+1 a, §, Tl,1..J,n g

which is displayed more graphically in Fig 3-8. 7,,, and T, are the scalar initial and final

timestep (Fig 3-5) as

temperatures in the top layer. T, ,, and T, , ,, are J-element column vectors with the
initial and final temperatures in layers 1 to J. This notation separates the time-varying matrix
elements (n,,,, b,,,7,,,) from the ones that are constant with time (a,, S, g, ). by, is a J-

element row vector with one non-zero element

bl,n = [ﬁl,(),n 0,0+ ’O] (34'3)

a,, S, and g, are constant for each timestep, and so are not subscripted with n. a, is a J-

element column vector with one non-zero element.

a,=[a,,.0,-,0] (3.4-4)

/

1 vt3d_step _expl 1lloc, alpha i, beta 0, beta i, gamma 0, gamma J,

temp 0, temp i
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Siisa JxJ tridiagonal matrix whose J-1 lower elements are [c,,.--a,, |; J diagonal

elements are [1,,.---n,, |; and J-1 upper elements are [g, .---B,,_, |- & is a J-element column
vector with one non-zero element:

g, =[0, .,o,yu]’ (3.4-5)

tn+1

Fig 3-8. Graphical schematic of an explicit time-step from time n to time n+1
for a single non-interacting location /, such as Area I (bare, isolated), Area II
(volatile-covered, isolated) or III (bare, interacting); Eq. (3.4-2). Compare
with Fig 3-5. To simplify the graphic, the time and location subscripts are
dropped (e.g., Mo for m;0,). The temperature array is divided into the
uppermost layer, 7, the next lower layer, 73, and remaining layers for j = 2..J,
T;. The elements of the substrate matrix S consist of the three arrays o s, N1,
and B;_r1. Darker elements with white lettering correspond to the dark gray
elements in Fig. 3-5, and change with each time step. Lighter elements with
black lettering correspond to the light gray elements in Fig. 3-5, and are
independent of time. White elements are zero.

Computation of Eq. (3.4-2) is displayed graphically in Fig 3-9. The uppermost
temperature, T,,,, is calculated by simple scalar arithmetic. The interior temperatures are
calculated by matrix multiplication using a matrix that is likely to be time-independent, with
additional terms added for T; and T.
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tn+1

Fig 3-9. Graphical schematic of the implementation of an explicit time-step
from time n to time n+1 for a single non-interacting location); Eq. (3.4-2).
Elements are labeled as in Fig 3-8. "*" indicates scalar multiplication (above
the dotted line) or element-by-element multiplication of two arrays (below the

dotted line). "X" indicates matrix multiplication.

In many applications, the substrate properties and internal heat flux are assumed to be
constant over much of the body. In that case, in Eq. 3.4-2, the substrate arrays, a, and g,, and
the substrate matrices, §,, are independent of location /. In this case, it is particularly efficient
to calculate an array of new temperatures in terms of old ones. If {L} = {l,m,- . } (where m is
simply a second location index, not to be confused with the order of Fourier decomposition
in Section 3.2) represents the set of locations which share a common a,,
S{L}, and g, (sothatayy =a;=a, = [0y, 0, ..., 01" is a J element column vector, oz, ; is
a scalar, S;;, = §;=S,, is a J x J element tridiagonal matrix, g, = & = &» = [Yiz1.1, 0, ..., 0]
is a J element column vector, and y;; is a scalar), then we can write the temperatures in
layer 0 as a row array of length L

T{L},o,ﬂ = [];,0,”’]:”,0,”" ) ] (3.4-6)

and the temperatures in the interior layers 1 .. J as a J x L matrix with J rows and L columns
formed by the concatenation of L temperature arrays of length J:

T,

{LY )T+l = [T T

Ll.JJn+1°"m]l.J n+l > ']

(3.4-7)

It is admittedly awkward that Ty, 0, is an array, while o, 1 is a scalar. I hope that context

and Appendix A can help.
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The surface temperatures are listed as a single 1-D array covering all the locations, rather
than as a rectangular matrix of longitude and latitude. This is to simplify the matrix
expressions of multiple locations. In addition, this allows for other divisions of the surface
rather than simply a rectangular division, which tends to have needlessly small surface
elements near the poles. Tiling schemes that maintain similar areas per tile need /2 fewer
tiles than equirectangular tiling schemes.

The new temperatures can be calculated in a way that takes advantage of array arithmetic:

T{L},o,,,,q = [nl,o,n Mnons" ] T{L},o,n + [ﬁl,o,nsﬁm,o,n" : ] T{L}J,n + [Y:,o,n’ym,o,n" : ] (3.4-8a)!

AT iy0n
0
T{L},l..],n+1 = S{L} ’ T{L},I.J,n ) (3.4-8b)’
0
v

The computation represented by Eq. (3.4-8) is represented graphically in Fig 3-10, where Eq.
(3.4-8a) is represented by the portion above the dotted line, and Eq. (3.4-8b) is represented
by the portion below the dotted line.

Fig 3-10. Graphical schematic of the implementation of an explicit time-step

from time n to time n+1 for multiple non-interacting locations (Eq. 3.4-8).

1 vt3d _step _expl nloc, alpha i, beta 0, beta i, gamma 0, gamma J,

temp 0, temp i
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Elements are labeled as in Fig 3-8. . "*" indicates element-by-element
multiplication of two arrays (above the dotted line) or the multiplication of
each row by a scalar (below the dotted line). "X" indicates matrix

multiplication.

3.4b. Implicit timesteps
With the division of temperatures into layer 0 and layer 1 .. J in Eq. (3.4-1), the implicit

timestep for a single location for Areas I and III (Fig 3-6) can be written as

~Tl',0,n _ [TI},?," b,l;n l T, N [Vl,o,n l (3.4-92)!
_]LLJW_ a, S ||T,,., g
TII”,O,n b;,l1l ];.O.VHI :|= i,O,n (3 4_9b)l
a’I' S,l’ rI‘l,l Jon+l _'I‘I,l_,J,n ]

7—;,0,"’ ];,O,n and T;

layer. T, ,,, T,,,, and T, , . are the J-element column vectors with the initial,

, are the (scalar) initial, intermediate, and final temperatures in the top

0+

intermediate, and final temperatures in layers 1 to J. As with the explicit equation, this
notation separates the time-varying matrix elements (7, /,,, b} ,b" .v,,,) from the ones
that are constant with time (aj, aj, S, §j, g,). Similarly to Eq. (3.4-3), b’ ~and b’ are J-

element row vectors with one non-zero element
bl =1B,-0,-0] (3.4-10a)

b, =18,,.0,--0] (3.4-10b)

1 vt3d _step cn lloc, alpha i, beta 0, beta i, gamma 0, gamma J,
temp 0, temp i, which calls:

vt3d _step impl lloc, alpha i, beta 0, beta i, gamma 0, gamma J,
temp 0, temp i

The lower-upper (LU) decomposition of the S'' matrix can be computed
before the time steps with:

spp_tridc = vt3d_cn_tridc(alpha i, beta i, spp indx)
in which case use

vt3d _step cn_ trisol lloc, alpha i, beta 0, beta i, gamma 0, gamma J,
spp_tridc, spp_indx, temp 0O, temp i, which calls:

vt3d _step impl trisol lloc, alpha 1, beta 0, gamma 0, gamma J,
spp_tridc, spp_indx, temp 0, temp i
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a, and a) are J-element column vectors with one non-zero element (compare Eq. 3.4-4).

Since they are constant with time, they are not subscripted with 7.
a) =[a;,,0,--01" (3.4-11a)

a) =[a],,0,--0]" (3.4-11b)

S, and §) are JxJ tridiagonal matrices, also constant with time, whose J-1 lower
elements are [agg,---a;,,] and [a;’z,---a;’J]; J diagonal elements are [713,1,"',772,1] and
[77?,1,""771”,1]2 and J-1 upper elements are [/5},1,'“,/5},1_1] and [/51”,1,'“,/51”,1_1] respectively. g is
a J-element column vector with one non-zero element, defined the same as Eq. (3.4-5). The
first half of the implicit calculation, Eq. (3.4-9a), is computed in the same way as the explicit
calculation, Eq. (3.4-2). The second half of the implicit calculation, Eq. (3.4-9b) is a

tridiagonal linear problem, shown graphically in Fig 3-11, and can be solved in time (J+1).

(O

Sll

tn+1

inter

Fig 3-11. Graphical schematic of an implicit time-step from an intermediate
temperature to the temperature at time n+1 for a single non-interacting
location, with local energy balance, such as Area I (bare, isolated), Area II
(volatile-covered, isolated) or III (bare, interacting); Eq. (3.4-9b). Compare
with Fig 3-6. The temperature array is divided into the uppermost layer, 7,
the next lower layer, 77, and remaining layers for j = 2..J, T;. The elements of
the substrate matrix S" consist of the three arrays a"»> s, M"i.s, and B" 1.

Darker elements with white lettering correspond to the dark gray elements in
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Fig. 3-6, and change with each time step. Lighter elements with black lettering
correspond to the light gray elements in Fig. 3-7, and are independent of time.
White elements are zero.

We treat Eq. (3.4-9b) as a banded tridiagonal matrix to take advantage of the fact that the

terms a]

and §) are constant with time. This is a special case of inversion by partitioning,
whose solution is presented in Press et al. (2007; section 2.7.4). A similar problem was
addressed by Xing-Bo (2009). This allows us to precompute the lower-upper (LU)
decomposition of §). The solution to Eq. (3.4-9b) can be written by defining two column

vectors ¥, and z;, of length J, and two scalars ¢;, and d;.:

y,=S"xa’ (3.4-12a)
z,=S"xT,, (3.4-12b)
Crn=bl, ¥, =BV (3.4-12¢)
d, =D, 2, =Bo.Z0n (3.4-12d)

with which the temperatures at the next time step for location / are

Tl,O,n - dl,n
Lo ==, (3.4-13a)
Mo —Cip
Tmn=2,-To,.Y (3.4-13b)

This solution can be confirmed by direct substitution of Egs. (3.4-13a,b) into Eq. (3.4-9b).
The solution is shown graphically in Fig 3-12. Note that the only the time-independent
substrate matrix needs to be inverted, and this can be done at the start of the computation,

rather than for each time step. Furthermore, the array y is also independent of time.
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P

yJ = S||-1 X

tn+1
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Fig 3-12. Graphical schematic of the solution to the banded tridiagonal matrix
for a single location. "*" indicates scalar multiplication (above the lowest
dotted line) or element-by-element multiplication of an array by a scalar

(below the dotted line). "X" indicates matrix multiplication.

For those locations with the same substrate properties (so that Sf,, =S} =8/ --- and
aj;, =aj =aj --), the solution can be calculated for several locations simultaneously, as with
the explicit scheme. Define the intermediate temperatures in layer O as a row vector of length
L

T

{L},O,n

=7, 1, (3.4-14)
and the intermediate temperatures in the interior layers 1 .. J as a J x L matrix:

T{L},L.J,n = [Tl,l.,],n ’Tm,l.J,n )t ] (3 .4- 1 5)

Define J column vector y;; (the same for all locations in {L} and independent of time,

so that y;, =y, =ym), aJ x L matrix Z;, , and row vectors ¢,, d,, and hg i of length L:

¥ =Y, =¥, =Sy xal, (3.4-16a)
Zyy, =22 = ST 10 (3.4-16b)
¢, =[crcrnr] (3.4-16¢)
d,=[d,,.d,,. ] (3.4-16d)

W, =, Moonr] (3.4-16¢)

The new temperatures are then
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on ~ Yn
T{L},o,n+1 - (3.4-17a)!

(3.4-17b)

where y =T 1is an outer product of a J-length column vector and an L-length row

vector, yieiding aJ x L matrix obtained by

y{L} X T{L},o,n+1 = [Tl,o,n+ly{L) ’ Tm,o,,,ﬂy{“ " ] (3.4-18)

The graphical schematic is shown in Fig 3-13.

1 vt3d_step_cn nloc, alpha i, beta 0, beta i, gamma 0, gamma J,

temp 0, temp i, which calls:

vt3d _step impl nloc, alpha i, beta 0, beta i, gamma 0, gamma J,
temp 0, temp i

The lower-upper (LU) decomposition of the S'' matrix can be computed
before the time steps with:

spp_tridc = vt3d_cn_tridc(alpha i, beta i, spp indx)
in which case use

vt3d _step cn_trisol nloc, alpha i, beta 0, beta i, gamma 0, gamma J,
spp_tridc, spp_indx, temp 0O, temp i, which calls:

vt3d _step impl trisol nloc, alpha 1, beta 0, gamma 0, gamma J,
spp_tridc, spp_indx, temp 0, temp i
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tn+1

Fig 3-13. Graphical schematic of the solution to the banded tridiagonal matrix
for mutliple locations. "*" indicates element-by-element multiplication of two

arrays (above the lowest dotted line). "X" indicates matrix multiplication
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(equivalent to the outer product of two arrays for the multiplication below the
lowest dotted line).

3.5 Example: Mimas

As a worked example, Fig 3-14 shows the surface temperatures on Mimas, following
Howett et al. (2011). Most of Mimas (Region 1) has a thermal inertia of 9 tiu and a bond
albedo of 0.6, while the anomaly (Region 2) has a high thermal inertia of 66 tiu and a bond
albedo of 0.59. The three snapshots are for sub-solar west longitudes of 167, 87, and 43°,
and the dashed lines indicate the visible surface (30° from the limb) for sub-spacecraft west
longitudes of 147, 180, and 83°. The color bar and scale are chosen to allow direct
comparison with Howett et al. (2011), their Figure 2. The temperatures were calculated on a
grid of 45 latitude by 90 longitude bins, each of which have their own thermal inertia. The

time step was once per degree of sub-solar longitude.
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Fig 3-14.! Model of Mimas's global temperature at selected subsolar
longitudes, following the thermophysical properties derived from Howett et
al. (2011). The dashed line represents the visible area of Mimas that
correspond to three particular observations of Mimas from Cassini (See
Howett et al. 2011, their Fig 2).

4. VT3D for local volatile-covered locations (Area II)

In this section, I consider locations that have volatiles on their surfaces, but for which the
energy balance is essentially local. For worlds where the surface pressure is too low to
effectively transport volatiles over the surface, the transport of energy, through latent heat of
sublimation and deposition, does not effectively influence on the surface temperatures. This
is the case on lo, and almost certainly the case on the large volatile-covered Kuiper-belt
objects when far from perihelion. These are the isolated, volatile-covered areas (Area II) in
Fig 2-2.

Within the substrate, the physics of thermal conduction and the lower boundary condition
for the volatile covered locations (Area II) is identical as for the bare locations (Areas I and
III, Section 3), and will not be repeated here. At the surface, on the other hand, the energy
equation contains two new terms, one related to the energy needed to heat the volatile slab,
and another related to latent heat exchange between the surface and the local gas column via
deposition and sublimation. The continuous form is discussed in Section 4.1 and analytic
expression for an initial condition is discussed in Section 4.2. Because the energy equations
are strictly local, the form of the numerical implementation is very similar to that in Section

3. Only the form of the matrix elements n, and f3, change, as discussed in Section 4.3.

4.1  Analytic expressions for isolated volatile-covered locations (Area II)

The energy equation at the surface balances net heating or crystalline phase changes with
absorbed sunlight, thermal emission, thermal conduction, and latent heat of

sublimation/condensation. The total energy equation is

oH aT om
4
m,—- = S -eoT" -k—| +L,—~" 4.1-1
"ot " 9 ot '
Insolation ml < =0 — =7
Enthalphy of volatile slab ) Conduction Latent heat

1 vtylé_fig3 14



L. Young —50— Volatile Transport Il (VT3D)

where my is the mass per area of the volatile slab, dH, /0t is the time derivative of the
enthalpy of the volatile slab in energy per mass (equal to ¢, d7T/dt if there is no phase change,
see Eq. 4.1-2, where cy is the specific heat of the volatile slab. Note ¢y is subscripted V' for
volatile, not V for constant volume), and Ls is the latent heat of sublimation. Ly is subscripted
with S to distinguish it from the latent heat of crystalline phase change (L¢) and or the

number of discrete locations on the surface (L, Section 3.3).

At the surface, a volatile slab is assumed to be isothermal within its vertical extent (See
Fig 4.1), with a temperature equal to that at the top of the substrate. As described in Paper I,
the isothermal slab was assumed in Hansen and Paige (1992) and Hansen and Paige (1996).
This has been justified (David Paige, personal communication) by assuming that if the slab
porous, it is in contact with the local atmosphere and the gas can isothermalize the solid;
conversely, if the slab is not porous (e.g., from annealing, Eluszkiewicz et al., 1998) then its
conductivity will be high, helping to isothermalize a thin enough slab. For very thick
deposits, such as the suspected N, reservoir seen on Pluto, one approach is to keep track of
mass per area of the volatiles available for sublimation as a separate quantity from the mass
per area that is isothermalized (Young et al., 2016). Layering within the volatile slab will be

treated in a later paper.

Energy Fluxes Thickness or Temperature
. Separation
I dm[‘fn A
ﬁ s dt S/ n 8l HG(];,O,I‘L)

volatile slab
'r '?‘A‘fyo AA, layer O
Ton—=T,. !
ko z,o,AB 11, v 2.1, layer 1
1,0

— T

Fig. 4-1. Schematic of the layering scheme and energy fluxes for layer j = 0,
Area II (volatile slab, local).

The insolation, emission, and conduction terms are identical to those in Eq. (3.1-3). The
first term of Eq. (4.1-1) describes the change in the enthalpy per area of the volatile slab,

which depends on the volatile-ice temperature and crystalline ice phase. Away from the
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temperature of a crystalline phase transition, the derivative of Hy with respect to 7 at constant
pressure equals cy, the specific heat of the volatile slab, Eq. (4.1-2a). Adding energy to the
slab raises its temperature. At the temperature of a crystalline ice phase transition, the latent
heat equals the difference in Hy between two phases (L¢); adding energy to the slab converts
ice from the low-temperature to the high-temperature phase without changing the

temperature. This gives:

0H, T
ey, T=T 4.1-2a
ot Vot ¢ ( )
oH, aX
= L —, T = T 4.1'2b
ot € ot ¢ ( )

where 7T¢ is the temperature of a crystalline phase transition, Lc is the latent heat of
crystalline phase change, and X is the mass fraction of the high-temperature phase. If ¢y is
treated as a constant, then we can write H, =c,T +L.X , which is proportional to the "pseudo

temperature" used by John Spencer (personal communication).

Tracking the enthalpy of the slab, rather than its temperature, was introduced because N,
has a reversible transition between the o and 3 phase at 35.6 K (e.g., Scott 1976), a relevant
temperature for Pluto, Triton, and elsewhere in the outer solar system. Some volatile ices
have no solid-state phase transitions at relevant temperatures, which simplifies matters.
Others have multiple transitions, or non-reversible transitions. In all cases, the enthalpy is the
general quantity that can account for phases as well as temperatures, and Eq. 4.1-2b

represents the "special case" of enthalpy change at a phase transition temperature.

Area II satisfies local energy and mass balance. Assuming negligible horizontal transport

of mass, any mass lost by the atmosphere either condenses or escapes.

dm, N dm,
dt dt

+E=0 (4.1-3)

where m, is the mass per area of the atmosphere, and E is the escape rate in mass per area per
time. Negative values of E can be used to account for injection into the atmosphere from
non-sublimation sources such as geysers (see Paper I). If the atmosphere is in vapor-pressure
equilibrium with the surface, then the mass of the atmosphere is a function only of the
surface pressure and effective gravity (defined by g = ps/my4, which is smaller than the
surface gravity for extended atmospheres by a factor of 1 - 2 H/R, where H is the scale height

and R is the surface radius, see Paper I):
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dm, 1dpy(T) dT

= (4.1-4)
dt g dT dt

where pg(T) is the equilibrium vapor pressure at temperature 7. The pressure derivative in

Eq. (4.1-4) can be evaluated using the Clausius-Clapeyron relation,

dpS (T) - LSmmolecpS
dr k,T?

(4.1-5)

where My 1S the mass of one molecule and kg is Bolzmann's constant. Substituting Eqgs.
(4.1-2a), (4.1-2b), (4.1-3), and (4.1-4) into Eq. (4.1-1) and collecting like terms yields:

_I_gdps(T) £ _

mVCV
—
Enthalpy of volatile slab g dT at
Latent heat , T#TC (4 1-63)
of sublimation
s . dT
S -gol'-k=—| - LE
Insolation ~ Emission dZ =0 atent heat of escape
Conduction
dX dr
4
ml.— = S -gol'-k— - LE  T=T¢ (4.1-6b)
dr Insolation  Emission dz 2=0 Latent heat of escape

Enthalpy of volatile slab Conduction

Eq (4.1-6a) is strikingly similar to the equivalent equation for the bare areas (3.1-3), differing
only by the inclusion of the enthalpy and latent heat terms on the left-hand side, and the
latent heat of the escaping atmosphere on the right side. The enthalpy and latent heat of
sublimation introduce terms proportional to the frequency, w, in the analytic equations
(Section 4.2). They also introduce two additional terms to the total expression for the change
in energy flux per temperature for the upper-most layer ((I),T,n) in the numeric solutions
(Section 4.3), but the form of the matrix equations is unchanged. When there is a phase
change, (4.1-6b), the analytic and numeric forms are both simpler, as the temperature does

not change with time.

4.2 Analytic approximation and initialization for isolated volatile-covered areas (Area II)

As in Section 3.2, an analytic form of the continuous equations (Eq. 4.1-6a, b) can be
found by decomposing the solar insolation and temperature into a sum of sinusoidal terms of
frequency w (Egs. 3.2-1, 3.2-7). Additionally, we specify that the temperature of the volatile

slab equals the substrate temperature at the substrate-slab interface
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TV (}\"¢’t) = T()MP,Z = O,t) (42-1)

The escape rate is decomposed into a sum of sinusoidal terms in an analogous manner to the

solar forcing

E(M¢.5) =Re

E E, (A,qs)e""""’} (4.2-2)

where @ =2 /P is the frequency of the diurnal or seasonal forcing, and Em is the complex

sinusoidal coefficient (the complexity is indicated by the hat).

As in Section 3.2, the average temperature is found by substituting the sinusoidal forms

of S and T into Egs. (4.1-6a, b) and taking the first-order, time-averaged component.

S A 4
0=5,(19)-co(Ty(A9)) + F(ro) - LiE(A9) (4.2-3)!
Insolationn Emission Flux at lower boundary ~ Latent heat of escaping gas

As in Section 3.2, the temperature coefficients, YA”m , are found by substituting the periodic
functions into Eq. (4.1-6), and taking only those terms proportional to exp(imwt). For
simplicity, if T # T¢, then we assume that the temperature does not cross a crystalline phase
boundary in the expansion. In addition to the expressions for the temperature dependence of

conducted and emitted energy flux, ®, and @, (Eq. 3.2-9a, b), I define two new variables:

®,(T)=wm,c, (4.2-4a)?
L. d
®,(T)=0=3Ls (4.2-4b)3
g dT,

dy is simply related the to specific heat per area of the volatile slab, being the energy per
degree per area. @4 is related to the energy needed for the atmosphere to vary its column
mass (atmospheric “breathing”). If the surface temperature rises, the equilibrium pressure
rises too. The column mass of the equilibrium atmosphere increases due to sublimation from
the surface. This takes energy, through the latent heat of sublimation. The result is that the
specific heat of the volatile slab and the atmospheric "breathing" delay and decrease the

thermal response (Paper I). The resulting expansion of 4.1-6a is:

1 temp 0 = vt3d_temp_term0_local(sol 0, flux int, emis, latheat, mflux esc)

2 phi v = vt3d_dfluxdtemp slab(freq, mass 0, specheat)

3 phi a = vt3d_dfluxdtemp atm(freqg, temp v, frac varea, gravacc,

name_species)
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Nim®y(Ty) + @, (T)+  im®,(T)) +im®,(T,)|T,
Conduction Emission Enthalpy of volatile slab Latent heat , T ;ﬁ TC (42_ 5)1
-8, - LE,

Insolation  Latent heat of escaping gas

If the equilibrium temperature is at a crystalline phase boundary, then the corresponding

equation for the change in the slab’s state is

A

iomm,L.X = S - LE, ,T=Tc (4.2-6)
| —— —
Enthalpy of volatile slab Insolation  Latent heat of escaping gas
As described in Paper I, we can define non-dimensional thermal parameters, analogous to
the thermal parameter of Spencer et al. (1989), to quantify the importance of heating of the
volatile slab and atmospheric breathing. The substrate thermal parameter, Os, is defined in

Eq. 3.2-11. Two new parameters are:

_ DT _
0,(T) = ®, (T4 (4.2-7)

_ 2,1 _
0.(1) = gt (4.2-8)

Substituting into Eq. (4.2-5) shows how the amplitude and phase of the thermal response
depends on the thermal inertia, the specific heat and depth of the volatile slab, and the extent

of the atmospheric “breathing.”

A

. S -LE 4
e (42-9)
C (T) 4+ \/;G)S +im® , +im®

As for the bare areas (Areas I and III), the expansion can be written in terms of the emitted

thermal flux in the case of large temperature variations, giving

! temp terms = vt3d _temp terms local(sol terms, flux int,emis, freq,
therminertia, is volatile, mass_volatile, specheat volatile,
gravacc, name_ species)

temp terms = vt3d_temp terms local iter(sol terms, flux int,emis, freq,
therminertia, thermcond, is volatile, mass volatile,
specheat volatile, gravacc, name_ species)
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S -LE (4.2-10)!
4+ \/%@S + im@v + im@A

~ (A ~ 4

4.3 Numerical solution for isolated volatile-covered areas (Area II)

The discretization for the interior layers (j = 1..J-1) and the lowest layer (j = J) is the
same for the isolated, volatile-covered locations (Area II) as it is for the bare locations (Areas
I and III). The discretization for the volatile slab and the upper two layers are shown in Fig 4-
1. Although the physics is different in the presence of a volatile, the numerics are nearly

identical for all calculations on a local level, whether volatiles are present or not.

First consider usual case where the volatile slab is not at a crystalline phase transition
temperature. As with Areas I and III, to find the energy balance in layer 0, integrate the
conduction equation (Eq. 3.1-2) over the top layer, from z = —Ay to z = 0. Add this to the
energy balance equation (Eq. 4.1-6a) to get Eq. (4.3-1), the volatile-covered equivalent to Eq.
(3.3-1):

0 L dp T
loclofaT I‘/Clv aT S S( )dT
’ dt " dt dT dt
-A g

0
%/—/
[N — .
Enthalpy, volatile slab o
Enthalpy, layer 0 P) Latent heat, volatile slab

(4.3-1)
o« o |, 4T -
S - oT")-lk— - L Ei,
ln' 1,0,n S
—— — dz —A —
Insolation Emission =8 Latent heat, escape

Conduction

where the overbar indicates the time-averaged value over the time step ¢, to #,1.

The enthalpy of layer 0, insolation, emission, and conduction are the same as for Areas I
and III (Section 3.3).

The second term in Eq (4.3-1) reflects the change in the enthalpy of the volatile slab with
temperature. The volatile slab mass, mlvn , can change over the time interval. However, this
change is going to be small unless the slab is about to completely sublime, in which case this
term contributes little. Ignoring the change in volatile slab mass during the time interval, this

term becomes:

1 flux terms = vt3d _eflux terms_local (sol terms, flux int, emis, freq,
therminertia, is volatile, mass_volatile, specheat volatile, gravacc,
name_ species, term terms=temp terms)
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chvgzq)V

Ll g I,n( 10,141 _Tz,o,nn) (4.3-2)

where clv is the specific heat of the volatile slab at location /, ®;, has units of erg cm” s

K', and the superscript ¥ stands for volatile slab

v v
v CI)V (mv) _ m, ¢, (4.3-3)
T T

In

The third term in Eq (4.3-1) is related to the amount of latent heat required sublime the
atmospheric mass needed to maintain vapor-pressure equilibrium with a higher surface

temperature. Linearizing the change in surface pressure with respect to time gives

Ly dp(T)dT _ _,

g dT  dt = l,n( 1,0,n+1 -T,

/,0,n+1) (4-3'4)

where @, has units of erg ecm™ s K, and the superscript 4 stands for atmosphere.

ot -2 (TTz,o,n) _ % ( dpé(TT>| )% (4.3-5)

|T/ O

The temperature dependence of pressure is highly non-linear. If this is a dominant source of
error, then one either chooses a small T, or iterates from an initial guess at a temperature

T,/3"7 to an improved temperature 7, .. In the latter case, by Taylor expansion of p around

approx
]; On+l 2

L_dp (T L
LD L), o) )| s
g dT dt gAl_ ,0,n+ ,0,n+ ,0,n+ dT - 0,n
This can be cast in a form parallel to that of Eq. (4.3-4) by
Lidp DAl _ o (7 1 Yy p? (4.3-7)
1,0,n+1 1,0.n l.n

¢ dT dt

where the derivative in ®* is evaluated at the current guess at a temperature 77>, The
In g p 1,0,n+1

term £, has units of erg cm™s™, and combines mathematically with the solar forcing.

Fly =2 o) - o{7, )] - (T =T ), (43-8)
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By writing Eq. (4.4-7) in terms of the change in temperature relative to the previous time step
(ie., T,,,, —T,,), rather than in terms of the smaller change in temperature relative to the
current guess (i.e., T,,,,, = 7,5"1), Eq. (4.4-7) can be simply combined with the other terms
in the discretized energy equation. On the first iteration, 7,%"f =T,,, , and Eq. (4.3-7)
reduces to Eq (4.3-4), so Eq. (4.3-7) can be used with very little added computational

1,0,n+1 1,0,n°

complexity.

The escape rate, E, if present, can be calculated at the start or mid time, similarly to the

insolation.

Substituting the expressions for the explicit equations gives an equation similar to Eq.
3.3-14:

H \% A
P (T T )+q> (T _T )+q> (T T )+FA=
1,0 1,0,n+1 1,0,n Ln 1,0,n+1 1,0,n ln 1,0,n+1 1,0,n Ln

Enthalpy, layer 0 Enthalpy, volatile slab Latent heat, volatile slab
_E . e _ (4.3-9)
S  -e o|T -0 T -T |-o*°|\T -T |- LE
I.n ln 1,0,n ln 1,0,n+1 1,0,n 1,0 1,0,n 1Lln S In
—— —
Insolation Emission Conduction Latent heat, escape

Collecting terms for the explicit equation gives

(cb” +@F + @'+ )T
1,0 In ln ln

Lonel

H E % A K.B K.B
(q)z,o + q)l,n + (I)[,n + (I)l,n B q)z,o )Tl()n + (q)/,o )Tlln (4.3-10)

1, 1,0.n

— 4
+(S e o(T ) _F'_LE
n ln In S Iln

As in Section 3.3, divide by @], with units erg cm” s K, where the superscript T
represents fotal, and the total "flux-per-temperature” now includes terms for enthalpy of the
slab and interaction with the atmosphere

O =D+ D/, + D] +D;}

ln ln

(4.3-11)

The explicit equations for Area Il can be written in a form that is identical to the explicit
equation for the bare areas, Areas I and II (See Fig 3-6), with the resulting matrix elements
given in the first row of Table 6.
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Table 6. Matrix elements for j = 0, Area 11, 7#T¢

Matrix equation Matrix elements
Explicit oFF
T 00t =MionTion* Broslinn +Viom Bron = q)[T
N
Mow =1=Bon
_ . S
S -¢ o(T ) “F'-LE
_ l.n 1,0,n ) S In
Viow = o7
I,n
Implicit (Crank-Nicholson) . Bon. o Bios

] " — 2 y 1,0, ’ s 1,0 -
Mollona + /31,0T1,1,n+1 =MoL, + ﬁ[,OTl,l,n Yo " 2 2

®F7 is given by Eq. 3.3-10. ®], is given by 4.3-11.

The implicit form of the energy balance equation for Area Il away from a crystalline
transition temperature is found by substituting the Crank-Nicholson expression for the

conduction term into Eq. 4.3-1. The energy balance for the implicit equation is

<I>H(T _T )+q>V(T _T )+(I>A(T _T )+FA=
1,0 l.n ln 1,0,n I,n

1,0,n+1 1,0,n 1,0,n+1 1,0,n 1,0,n+1

Enthalpy, layer 0 Enthalpy, volatile slab Latent heat, volatile slab
4
E
S  -¢ o|T -9 (T -T 4.3-12
Ln l.n 1,0,n l.n 1,0,n+1 1,0,n ( )
—
Insolation Emission
K.B K.B _
1,0 (T -T )_ 1,0 (T -T )_ L E
1,0,n 1l,n 1,0,n+1 1,1,n+1 S In

. Latent heat, escape
Conduction

Collecting terms for the implicit equation gives the volatile-covered equivalent to 3.3-
16b:

K.B (I)K,B
7 +@F +@ 4P 4 LT L0 =
1,0 L.n Ln l,n 2 1,0,n+1 2 1,1,n+1
K.B (I)K’B
H E A
d" +@F +¥ 4+t - LT 4| LT (4.3-13)
1,0 In In l,n 2 1,0,n+1 2 I,l,n

4 -
A
S ¢ O'(];,O,n) _F;,n_LSEI,n'

l.n l.n

Again, divide by @], with the resulting matrix elements given the second row in Table 5.
The matrix elements for j = 1 to J are identical as for the bare areas, Areas I and III (Section
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3.3; Tables 3 and 4). The methods for solving the matrix equations are identical as for the

bare areas, Areas I and III (Section 3.4).

If the volatile slab is at a crystalline transition temperature, then T, =T, and the

,0,n+

matrix elements are particularly simple for both the explicit and implicit form (Table 7).

Table 7. Matrix elements for j = 0, Area II, 7=T¢

Matrix equation Matrix elements
Explicit Bron =0
Tguar =MyTon+ Boliin +Viga Mon =1
Yioa =0
Implicit (Crank-Nicholson) Bron=0: Big=0

" " — 1 / =1 LA—
M oL 0mat ¥ Blolima =Mol0n + BoTliin +Viom o= ;=1

Once the new temperature is found, the change in the mass flux (mlvn+1 - mlvn ) is found by
using local energy balance, Eq. (4.3-14). This is simply the discretized form of Eq (4.1-1).
This applies whether the temperature is at a crystalline transition temperature or not, and

whether the time step is calculated explicitly or implicitly.

ZVCV 1,0,n+1 L0n _
n
At
Enthalpy of volatile slab ) . (4 3 ) 1 4)
4 3 r -T m —-m
S —-le O T +4€ o T _T —k 1,0.n Iln +L [,n+1 In
In In 1,0,n In 1,0,n+1 1,0,n S
- Az At
Insolation
Emission Conduction Latent heat

4.4 Matrix operations for single or multiple isolated volatile-covered locations (Area II)

As with Areas I and III, computation can be sped up considerably by taking advantage of
matrix operations to calculate the temperature evolution on multiple locations with a single
operation. The form of the matrices for isolated volatile-covered locations (Area II) is the
same as for bare locations (Areas I and III). Therefore, once the matrix elements are found,

the calculations can proceed identically to Section 3.4.
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4.5 Example: KBOs with bare areas or locally-supported atmospheres

As an example, consider a point on the equator of a generic KBO with 4 = 0.7, ¢ = 0.9,
no internal heat flux or mass loss, 50 cm s™ surface gravity, and an equatorial sub-solar
latitude, at a range of heliocentric distances (7) from 30 to 80 AU (Fig 4.2). The thermal
parameter for the substrate (©s) ranges from ~4-17 for 5 tiu (similar to those found by
Lellouch et al. 2013), and ~1600 to ~7000 for 2100 tiu (pure, compact water ice). The
thermal parameter for heating one g cm™ of a volatile slab (©y) is 7 times larger than ©y for
the 5-tiu case, or 27 toll7, so it is not insignificant. Both @5 and Oy increase with
heliocentric distance, since their numerators stay constant and their denominators
(proportional to T°) decrease. Thus, the same object can be a slow rotator at perihelion and a
fast rotator at aphelion. The atmospheric thermal parameter (0,), which has equilibrium
pressure in the numerator, varies by 5-7 orders of magnitude over the range of » from 5.2 x
10 to 8.6 x 10 for Ny and 1.0 to 1.5 x 10”7 for CHa.

For simplicity, the remainder of Fig 4.2 only contrasts a bare substrate with thermal
inertia of 5 tiu, with a surface that is either N,-covered or CHy-covered. The effect of the
decreasing temperature and increasing @g with 7 is clear in the progression for the substrate
temperatures in the second panel, which plots the temperature for a bare substrate as a black
solid line. The N, atmospheric "breathing" (green dashed line) has little effect at 70 AU,
modifies the temperatures at 60 AU; by 40 and 30 AU, it nearly flattens out the temperature
variation. The atmospheric breathing shifts the maximum by 90° phase, while the thermal
conduction into the substrate shifts it by 45°; this is most evident when ©,4 is comparable to
Og, such as for N, near 60 AU or CHy (red triple-dot-dashed line) near 30 AU. This has the
effect of decreasing the peak temperature, and increasing the temperature at both the dawn
and dusk limbs.

The third panel of Fig. 4.2 shows the increase in the mean and amplitude of the
temperature for a bare substrate (gray fill) with decreasing heliocentric distance. For N-
covered areas (green slanted fill), the temperatures are similar to the bare temperatures
beyond ~70 AU. Closer than that, first the maximum temperature decreases while the dusk
temperature rises, then the minimum and dawn temperature rise in tandem, until finally the
maximum, dusk, dawn, and minimum temperatures all converge inward of 40 AU. For CHy-
covered areas (red vertical fill), the temperatures match the bare temperatures beyond ~40
AU; inward of 40 AU, as with the N», the maximum temperature decreases while the dusk
temperature rises, with the slight rise in the minimum and dawn temperatures. The

corresponding minimum, dawn, dusk, and maximum pressures are shown in the final panel.
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Fig 4-2.! Example temperatures and pressures for an equatorial location on a
KBO with 4 = 0.7, ¢ = 0.9, and non-interacting areas with N,, CHa, or bare of
volatiles, with equatorial illumination. Top: Thermal parameters for two
values of thermal inertia, for 1 g of slab at 1.3¢7 erg g' K, and for
atmospheric "breathing" by N, (green dashed) and CHj (red triple-dot-
dashed). Second: Temperature for I'=5 tiu over a single day for bare (solid,
black), N,-covered (green dashed, indistinguishable from bare at 70 AU), and
CHgy-covered (red triple-dot-dashed, indistinguishable from bare at 40 AU and
farther) at selected distances. Third: Minimum, dawn, dusk, and maximum
temperatures over a range of distances for bare (gray), N>-covered (green),
and CHy-covered (red) areas. Fourth: Minimum, dawn, dusk, and maximum
pressures over a range of distances for N>-covered (green) and CHy-covered

(red) areas.

5. VT3D for interacting volatile-covered areas (Area IV)

Currently, Pluto and Triton are expected to have similar surface pressures over the entire
globe, independent of local insolation (Trafton & Stern 1983, Trafton 1984, Spencer et al.
1987). N, sublimes from areas of high insolation, with latent heat loss balancing the excess
insolation. Sublimation winds carry this mass to areas of low insolation, where N, is
deposited, adding latent heat as well as solid N, (Fig 2-2B). As long as the atmosphere is
dense enough, transport of mass and latent heat will keep the volatile ice temperatures nearly
constant over the globe. Through vapor-pressure equilibrium, the surface pressures will also
be nearly constant. If the atmosphere is thin enough so that the sublimation winds are a
significant fraction of the sound speed, then the surface pressures will vary over the globe.
This case can be handled efficiently by treating the surface as a "splice" between the
interaction regions or isobaric regions, which share the same surface pressure, and local

regions, for which the surface pressure varies with location (Fig 2-2C).

! vtylé_fig4 2 which calls
vt3d_1lloc_diurnal local, constants, input, grid, program, output

and
vtylé _figd 2 plot, dist sol au, tod, theta sva, temp term 0, temp, p, $

name therminertia, n _per period
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In this section, I consider areas that have volatiles on their surfaces and which interact to
share the same volatile ice temperature and surface pressure. This includes the entire globe
for dense atmospheres, or the interacting portions of the splice for intermediate atmospheres
(See Fig 2-2B, 2-2C). I will discuss the continuous equations in Section 5.1, analytic
equations in Section 5.2, the discrete equations in Section 5.3, and efficient solutions to the
matrix equations in Section 5.4. In Section 5.5, I present a worked example of Pluto's

seasonal activity, with code and output in the supplementary materials.

5.1 Continuous expressions for interacting volatile-covered locations (Area IV)

For interacting volatile-covered locations, Area IV, energy is transported between
locations through mass transport of volatiles through the atmosphere and the latent heat of
sublimation. What ties the multiple locations together is (1) a common volatile-ice
temperature, 7, and (2) conservation of mass over the interacting regions. This latter
includes the atmosphere over all areas that share a single surface pressure, whether bare
(Area III) or volatile-covered (Area IV), because raising the surface pressure increases the
atmospheric mass over all locations that share a common surface pressure. That is, if the
surface pressure of the atmosphere increases in the region of effective transport, the mass of
the atmosphere will increase above both the volatile-covered areas (Area IV) and the bare
areas (Area III). The expression for mass balance in the area of effective transport is found
by integrating Eq. 4.1-4 over both Area Il and Area IV:

d 1 dp,(T) dT
[ Dvago [ 1D (g (5.1-1)
Qu+Qpy dt Qup +Qpy
where Qq and Qv represent the solid angle of areas III and IV. Both the surface pressure
and the temperature of the volatile slab are constant over Areas IIl and IV; the terms
involving gravity, pressure, and temperature can be factored out of the middle integral.
Futhermore, the mass flux for Area III is zero, so that the first integral can be evaluated over
just Area IV. With these changes, the mass balance equation becomes
f dm, d _ldps(Tv)di

Q= Q +Q )- [EdQ (5.1-2)
Qpy dt 8 dTV dt ( " IV) 9111[91V

The areal average of the mass flux over Area IV is:

<di>5 ! fdidQ (5.1-3a)
dt |~ Qo di
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where brackets represent an areal average over Area IV. The atmosphere escapes from above

both bare and volatile-covered areas, so the areal average of E is taken over Areas III and IV:

(E) = ﬁ [ Edg (5.1-3b)

m IV Qu+Qy
where primed brackets represent an areal average over Area III and Area IV.

fr is the fraction of the interacting areas (III and IV) covered with volatiles. In Paper I,
which only treated a global atmosphere, this was fraction of the surface covered by volatiles.

Here, with the possibility of a spliced atmosphere, the expression is written more generally.

QIV
£2111 + QIV

fv (5.1-4)

With these definitions, the equation for mass balance over the areas of isobaric surface

pressure becomes

<dmv>_ 1 dps(Ty) dT;, _L<E>’
a )" e ar, a7y,

= (5.1-5)
Eq. 5.1-5 illustrates the significance of the fraction of the surface covered by volatiles, fy.
If the volatile ices are confined to a small patch, then that patch has to lose a lot of mass to

supply an increase of the entire atmosphere in the isobaric area.

The local energy balance is the same as for localized volatile-covered areas, Eq. (4.1-1).
Integrating Eq. 4.1-1 over Area IV, and substituting the equation for conservation of mass
over isobaric areas, yields an equation for energy balance over all of Area IV, using the same

notation for spatial averages as in Eq. 5.1-3a.

L, dp(T)|oT
(myc,) o Ls dps(T) 10T _
U e ar |
Enthalpy of volatile slab =~ ~——"—
Latent heat R T?ETC (51-63)
dT L(E)
sy —(eort (kX V- LAE)
1 T N dZ z=0 fv
nsolation Emission —

Conduction Latent heat of escaping gas

T L(E)
(m )LD = (s) —(e)or* ~(k 9 )- s(E) ,T=Tc  (5.1-6b)
dl InMon \E__V—_J dZ z=0 fV
mission . J — J

Enthalpy of volatile slab Conduction Latent heat of escaping gas
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While the temperature of isolated volatile-covered areas depend only on local conditions (Eq
4.1-6a,b), the volatile ice temperature in the interacting areas depends on the spatial average
of energy sources and sinks.
5.2 Analytic approximation and initialization for interacting volatile-covered locations (Area
1y

The analytic form of the continuous equations (Eq. 5.1-6) is very similar to that for the
1solated volatile-covered areas, Area II, described in Section 4. As in Section 4, the solar
forcing, the atmospheric escape, and the thermal wave are (1) decomposed into sinusoidal
terms (3.2-1 for absorbed insolation, 3.2-7 for temperature, and 4.2-2 for escape), (2)
substituted into Eq 5.1-6, and (3) isolated term-by-term. The m=0 term gives the expression

for the time-averaged temperature:

!
4
= —(e)oT + F - L(E -
—— R —— | —
Insolation Emission Flux at lower boundary  Latent heat of escaping gas

To find the variation in the temperature (the terms with m = 1 and higher), substitute the
expressions for solar forcing, temperature, and escape into Eq. 5.1-6, expand the thermal
emission term to first order in 7, and take only those terms proportional to exp(imwt). This
expression is simpler with the spatially averaged versions of the "flux-per-temperature”

expressions:

(@)= (T) (5.2-2a)

(®,(T))=4(e)oT’ (5.2-2b)
(D, )=w{myc,) (5.2-2¢)
(@ ,(T)) = w%% (5.2-2d)

If the substrate under all of the volatile ices has the same thermophysical properties, then
the first two terms reduce to their local equivalents: Eq. 3.2-9a, b. Likewise, if the specific
heat of the volatile ices are the same over Area IV, then the third equation (Eq. 5.2-2¢) differs
from its local equivalent (4.2-4a) simply by replacing the local volatile slab mass with the
areal average. If there is no bare ground in the isobaric area (that is, if no locations are Area
II0), then fy = 1, and the last expression (Eq. 5.2-2d) is identical to its local equivalent (4.2-
4b). However, if only part of the isobaric area is volatile-covered, then (@, (7)) >®,(7). A
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change in volatile temperature increases the atmosphere above both bare and volatile-covered
locations in the isobaric areas, so more mass is exchanged between the surface and
atmosphere, and more latent heat of sublimation is required. This means that the latent heat
term is more effective at suppressing the temperature variation when there is a smaller
fraction of surface volatiles. For temperatures away from a crystalline phase, with these

substitutions, the spatially averaged energy equation is:

m

— T+ Te (5.2-3)

Conduction Emission Enthalpy of volatile slab Latent heat
A

T e

@<@S>+<¢E(Tv)>+ @ +im<q>A(Tv)>f

m

Insolation  Latent heat of escaping gas

If the equilibrium temperature is at a crystalline phase transition, then the corresponding

equation for the change in the slab’s state is

iom(m, L X, = <S> - ﬂ L T=Te (5.2-4)

v . —
Enthalpy of volatile slab Insolation (R —
Latent heat of escaping gas

5.3 Numerical solution for interacting volatile-covered locations (Area IV)

Fig 5-1 shows the interaction between different locations in Area IV. There is no
horizontal heat flow within the substrate. However, the volatile slabs exchange energy
through latent heat of sublimation and condensation, and share a single temperature, 7y. The
temperature of the volatile ice slab therefore depends on the insolation over the entire
volatile-covered interacting region, and the conduction from each of the substrate layers
(layer 0) that immediately underlie the volatile ice slab. The temperatures of each of the top-
most substrate layers depend, in turn, on the single volatile slab temperature, through thermal

conduction.
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Energy Fluxes Thickness or Temperature
. Separation
dm!
A l.n 4
LS )dt Sl, gl,nO‘(Y—;lv)
volatile slab
ZoaTnV
4‘ ?A‘io @AO layer 0
k ﬂ !E! z T |ayer1
1,0 AB 1°%11,n
1,0
—_> T
location |
4 L dm:m
A ' dt Sm n Sm "O(Y:'V )4
volatile slab
Zo’TnV
'1‘ ?Alfn,o’l‘AO layer O
v i
k ’[;l _Tm,l,n L Zl’Tmln Iayer1
m,0 AB o
"o —> T
location m

Fig. 5-1. Schematic of the layering scheme and energy fluxes for layer j = 0,
areas IV (interacting volatiles). Two interacting regions are shown, for
locations / and m (not to be confused with Fourier term m). Typically there are
multiple interacting regions. The dashed gray line indicated that the areas are

connected through the latent heat term.

Because there is no horizontal heat flow within the substrate, the discretization for layers
j =2 ..J is the same as the other areas, so that much of the matrix form for the explicit
equations is tridiagonal (Fig. 5-2). However, because volatile slabs of the areas interact (Fig
5-1), the explicit discretized equation for the new 7 has non-zero coefficients accounting for
the conduction upward from each of the j = 1 layers (the upper row of the matrix). Similarly,
the explicit discretized equation for each new 77 has non-zero coefficients accounting for the

conduction downward from each of the j = 0 slabs, all assumed to be at 7. The resulting
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matrix, with non-zero elements on the left-most column and top-most row, is a banded

tridiagonal matrix.

Vi

ﬂl,O,nWl ﬁm,O,nwm

o P

\4 \4 / ‘ / \ \74
P

Tnn a, U B T,

T.0l = Q| My T,,
P P

mln+l am,l nm,l ﬁm Al Tm,l,n

Tm,],n +1I am,l 7,’m J Tm,] N
e ————————— ——

YIn J

Fig 5-2. Schematic of an explicit time-step from time # to time n+1 for two

locations, / and m, in Area IV (volatile-covered, interacting). Dark gray

elements (the temperatures and the elements of the upper row) change with

each time step. Light gray elements are independent of time. White elements

are zero. w; and w,, are the areal weights for locations / and m.

The implicit (Crank-Nicholson) form of the matrix equations has a similar form, with a

banded tridiagonal matrix on both the left and right hand sides of the equation.
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q Blw BLw, T, o By B T, v,
/) N /
7 ’ T 7 y 7 [
] A Al 1A
Yii|VY
A
-—v ——
o

[Vm,J] /
Fig 5-3. Schematic of an implicit time-step from time #» to time n+1 for two
locations, / and m, in Area IV (volatile-covered, interacting), using the Crank-
Nicholson scheme. Dark gray elements (the temperatures and the elements of
the upper row) change with each time step. Light gray elements are
independent of time. White elements are zero. The variables in brackets refer

to the vectors of length J or J-1 indicated by the double-arrowed lines.

The elements of the substrate arrays are derived from the discretation of the conductivity
equation, Eq. (3.1-2), as before. The matrix elements for the substrate—the light gray
elements in Figs 5-2 and 5-3—are unchanged from the previous cases. This holds even for
the first layer, j = 1. The dependence of the temperature of the first layer at location /, 7,
depends only on the temperature below (7},) and above (77). For Area IV, the assumption is
that 70 = Ty (that is, the upper surface of the substrate equals the volatile slab temperature,
Fig 5-1). While this changes the format of the matrices (the line of a's in the left-most
column in Fig 5-2 and 5-3), it does not change the value for the a's themselves. To find the
elements for the implicit arrays o, n,;, B,; (j =1 ..J) and the lower-boundary element vy, ,,
or their explicit counterparts (primed for the right-hand side and double-primed for the left)
consult Tables 3 and 4.

The elements for the volatile slab—the dark gray elements on the top row of Figs 5-2 and

5-3—are related to, but different than, the corresponding elements for Area II (volatile-
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covered, non-interacting). As before, I first solve for temperatures away from the solid phase
transition (7 # T¢). For Area IV, I integrate the conduction equation (Eq. 3.1-2) over the top
layer, average that over Area IV, and add the result to Eq. 5.1-6a to replace the term with
conduction at z = 0 (at the slab-substrate interface) with one at —A, (at the bottom of the first
substrate layer). Taking the time average from time n to n+1 (indicated by overbars) yields
Eq. 5.3-1, the areal averaged equivalent to Eq. 4.3-1. Compared with Eq. 4.3-1, Eq. 5.3-1 has
areal averages for the thermophysical parameters (density, specific heat, mass of a slab,
thermal conduction, emissivity), areal averages for the solar gain and heat lost by escape, and
the inclusion of fy, the fraction of the interacting area that is covered by volatiles, in the latent

heat and escape terms.

<POCO>} aT(Z)a’z+ <mvc >£ +iMd_T=

ot ot, fg dT dt
0
Enthalpy, volatile slab .
Enthalpy, layer 0 Latent heat, volatile slab -
, (5.3-1)
dT LS<E >
n
<S,> —(<g >oT“)— -
n n
A S dz| _, 1,
Insolation Emission 0 —

Conduction Latent heat, escape

where (p,c,) 1s the areal average of the product of density and specific heat in layer 0, with
cgs units of erg K™' cm™, and (myc, ) 1s the areal average of the product of volatile slab mass

and specific heat in the volatile slab, with cgs units of erg K™ cm™.

The treatment of the first term is similar to that in the bare case; see the discussion near
Eq. 3.3-2. As before, the temperature of layer 0 is sampled at the top of the layer. Because
this is the slab-substrate interface, the temperature of layer 0 equals the volatile slab
temperature within Area IV: 7, =7". With the assumption that we can sample the
temperature at the top of layer 0, the enthalpy term depends only on the change in the volatile

slab temperature:

(pics) [ Sz (@} )12, -1 (5.3-2)

_A()

Enthalpy, layer 0

where <<I)gl >, like (I)fj (Eq. 3.3-5), has units of erg cm™ s K'!, with the superscript H
representing heat or enthalpy. The discrete form for the areal average (cf. Eq. 5.1-3a) is

simply the weighted average of the local values, summed over the locations within Area IV,

{Ly}:
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(@)= Y waol, (5.3-3)!
1€{Ly}

The weights (Eq. 5.3-4) are simply the ratio of the solid angle of each location (€,) to
the total solid angle of Area IV:

w=-— 3 (5.3-4)
QIV I€{Ly}

Continuing to treat Eq. 5.3-1 term-by-term, the change enthalpy of the volatile slab also

depends on the change in volatile slab temperature; see discussion near Eq. 4.3-2 and 4.3-3.

<mvcv>% =<q)r‘l/>(n‘:1 _Tnv) (5.3-5a)
Enthalpy, volatile slab
(@)= > wd), (5.3-5b)
1€{Ly}

The latent heat term is the same over all locations, but differs from the local equivalents
(Eq. 4.3-4 to 4.3-8) by the factor of fy:

Ly dp (1) ATy a\(mv v\ L /ot
F;Z—TE=<CI)H>(TM—T” )+(F) (5.3-6a)

Latent heat, volatile slab

(o)) =@}/ £, (5.3-6b)

(FY=F! £, (5.3-6¢)

The insolation terms is simply the areal average of the insolation at each location in Area
IV:

(5,)= 3 ws, (5.3-7)

The thermal emission depends on the areal average of the emissivity:

(&.)oT)=(e)o (T, ) +(@r )T -T)) (5.3-8a)

Emission

! avg = vt3d locavg(val, weight)
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(&)=Y, we, (5.3-8b)
IE{Ly}
(@) =2(e,)o (1)) (5.3-8¢)

For explicit equations, the expression for the areal average of thermal conduction is found

by taking the areal average of Eq. 3.3-9, and making the substitution that 7, =7,":

n

>~ > W (1) -T,,,) (539
7=—A,

IE€{Ly}

Conduction

where @;° is given by Eq. 3.3-10. Similarly, the expression for the implicit (Crank-
Nicholson) equations takes the areal average of Eq. 3.3-13:

dT 1 1

<k— > S WOl (T Ty )+t S w1 -T,) 310
dz =4 1€{Ly} IE{Ly}
Conduction

Finally, the escape rate is calculated by the average over all the interacting regions, Area
IIT and Area IV:

Ly(E) _L w,E,, (5.3-11a)
fv fv IE{Lyy+Ly }
Latent heat, escape
, 1
Wi=—— Q, (5.3-11b)
QIII + QIV 1€{Lyy+Lpy}

Substituting the expressions for the explicit equations gives

(@) o -m () -

Enthalpy, layer 0 Enthalpy, volatile slab Latent heat, volatile slab

!

L, <E> (5.3-12)

() {ledelrr) o)) 3 weteler ) S

Insolation Enmissi Y
mission Latent heat, escape

Conduction

Collecting terms for the explicit equation gives
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(@)@} (r )+ (@) =3 ) E wd)f(;BTlM (53-13)

As in Section 3.3 and 4.3, divide by < n>, with cgs units erg cm™ s K™, where the
superscript 7 represents fotal. The total "flux-per-temperature" includes terms for enthalpy of

the slab and interaction with the atmosphere

(@] )= (@) Y+ (@) )+(D) )+(D)) (5.3-14)
The resulting of dividing Eq. 5.3-13 by 5.3-14, and the resulting matrix elemens, are given in
Table 8.

The implicit (Crank-Nicholson) equation (5.3-15) differs from equation (5.3-12) only

with the substitution of the conduction term:

SO N R M A R

Enthalpy, layer 0 Enthalpy, volatile slab Latent heat, volatile slab

@ _[<gn> U(Tnv)4 +<‘I’f>(T,Xl ‘Tnv)] (5.3-15)

Insolation

Emission

! 1 LS<En>
i wq)”(T ) 2 ch>”( ) - I
, n+ lln+l 2

216{le} P lEL fv

Conduction Latent heat, escape

Collecting terms for the implicit equation gives
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(@ (ot} e(or)o(or)+ (@)
(o (o) (or)o(or)- ;<<D“>

1
TV += Y w@l'T =
n+l I 1,0 [Lln+l
21

e{LN}
+_ E w® T (5.3-16)

This equation is used to derive the elements for the matrix elements in Figs. 5-2 and 5-3,
given in Table 8.

Table 8. Matrix elements for j = 0, Area IV, T#T¢

Matrix equation Matrix elements
Explicit orF
n+l 7/’n T;lv + EwlﬂIOn Lln +’J/n ﬁl,O,n - <(I)T>
I€{Ly} "
Tln = 1 - E W[ﬁl 0.n

Implicit (Crank-Nicholson) g = Bion. Bl - /510"
,anv+] + szﬁmn L = e e
€L,y } TI;,V =1- Ewlﬁl,,O,n; M = =1- szﬁzon
n'T, + szﬁmn a ¥ Yn IS } S}
1€{Ly )

@’ is given by Eq. 3.3-9. (®] ) is given by 5.3-14.

The discrete form of the equation for the change in temperature at a crystalline phase is

trivial, since the volatile slab temperature does not change from time » to time n+1 in Eq.
5.1-6b.
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Table 9. Matrix elements for j= 0, Area IV, T=T¢

Matrix equation Matrix elements
Explicit Bio,=0
Ty, =nT, + Ewlﬂz,o,nTl,l,n +7, T’r‘z/ =1
1€{Ly} }/’\q/ =0
Implicit (Crank-Nicholson) Blo,=0; By,=0
Mo T + 2 wBl T, =M, T, + E L Mo=1 m;=1
IE{Ly} IE{Ly}

5.4 Matrix operations for interacting volatile-covered locations (Areas IV)
5.4a. Overview and explicit timesteps

In Section 3.4, I divided the temperature into the upper layer and the interior layers (Eq.
3.4-1), as a means to speeding up calculations in Areas I, II and III. In Area IV, this division
is required, as the temperature of each of the upper layers (7, ) is equal to a single value for
the volatile slab temperature, (7). With this, the matrix equation in Fig 5-2 can be written:

7—;1‘11 TI: bl,n bm,n Y:LV )/:l/
T,,.al|=]a S 0 [x|T,,, |+|& (5.4-1)
Tm,l Jn+l am O Sm Tm,l Jan gm

The matrix elements 1’ and y, are defined in Table 8 or 9. The b arrays are similar to Eq.
(3.4-3), except that the weighting factor is included: b, , = [w, Bion 00] The a arrays are
defined in Eq. (3.4-4), the S is defined in the text between Eq. 3.4-4 and 3.4-5, and the g
array is defined in Eq. 3.4-5. Eq. 5.4-1 is represented graphically in Fig 5-4.
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B 0
A
S
Qi
S
tn+1 tn

Fig 5-4. Graphical schematic of the implementation of an explicit time-step
from time n to time n+1 for multiple interacting locations in Area IV (Eq. 5.4-
1). Compare with Fig 5-2. The temperature array is divided into the
temperature of the volatile slab, 7", (this is identical to the temperature in the
uppermost layer, 7p), the next lower layer, 73, and remaining layers for j =
2..J, T;. The elements of the substrate matrix S consist of the three arrays o _,
N1, and Pi_ri. Darker elements with white lettering correspond to the dark
gray elements in Fig. 5-2, and change with each time step. Lighter elements
with black lettering correspond to the light gray elements in Fig. 5-2, and are

independent of time. White elements are zero.

The new temperature of the volatile slab depends on the substrate (Eq. 5.4-2a); this is
similar to Eq. 3.4-8a, but slightly simpler. The multi-location matrix equation for the
temperatures of the substrate (Eq. 5.4-2b) is also similar to the non-interacting equivalent
(Eq. 3.4-8b), differing only in that the topmost substrate temperature equals the temperature
of the volatile slab.

T;X-l = nr‘z/]—;zv + [Wzﬁz,o,n ’wm m,O,n’. : ] : T{L},l,n + yr‘;/ (54‘23)
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A T

(5.4-2b)

T{L},l..J,n+1 = S{L} 'T{L},l..J,n )

Viey

Graphically, this is represented by Fig 5-5.

tn+1

Fig 5-5. Graphical schematic of the implementation of an explicit time-step
from time n to time n+I1 for multiple interacting locations (Eq. 5.4-2).
Elements are labeled as in Fig 5-5. "*" indicates scalar multiplication (above
the dotted line) or element-by-element multiplication of two arrays (above and

below the dotted line). "X" indicates matrix multiplication.

5.4b. Implicit timesteps
For the implicit case, it is most straight-forward to write the Crank-Nicholson scheme in

terms of intermediate temperatures for the volatile slab 7" and substrate, 7, .

1) n' b, b, 1) vy
I =| a, § 0 x| T,,. [+ &
L0 S T,
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nv " " v Vv
T’n bl,n bm,n ]-;’l+1 ]-;1
" " ind
a Sz 0 x Tl,l..J,n+l = Ll.Jn (5.4-3b)
n 14 ~.
am O Sm Tm,l Jon+l Tm,l o

For the other areas, the banded tridiagonal matrix was a computational convenience. For
Area IV, it is the most direct way of solving Eq. 5.4-3b. The solution to Eq. (5.4-3b) can be
written by defining two column vectors y, and z,of length J (defined as in 3.4-16a, 16b),

and two scalars ¢, and d,;:

€, = Eb;”n Y, = szﬁ;fo,n)’z,o (5.4-4a)
d,= Eb}f’ﬂ Y= Ew, 0000 (5.4-4b)
with which the temperatures at the next time step for location / are
T -d
L=~ (5.4-5a)
n - Cn
’I‘I,I,J,n+l = Zl,n - Tn‘:]yl (5.4-5b)

This solution can be confirmed by direct substitution into Eq. (5.4-3b). The solution is shown
graphically in Fig 5-6. Note that only the time-independent substrate matrix needs to be
inverted, and this can be done at the start of the computation, rather than for each time step.

Furthermore, the array y is also independent of time.
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P

+1
tn tn+1
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Fig 5-6. Graphical schematic of the implementation of an implicit time-step
from time n to time n+1 for multiple non-interacting locations (Eq. 3.4-8).
Elements are labeled as in Fig 3-9. "*" indicates element-by-element
multiplication of two arrays (above the dotted line). "X" indicates matrix
multiplication (equivalent to the outer product of two arrays for the

multiplication below the lowest dotted line).

5.5 Example: PNV9 from Young 2013

As a worked example, Fig 5-7 shows the results of the calculations used for case PNV9
(permanent northern volatile #9) from Young 2013. This example was illustrated in Fig 1 of
Young (2013) and Fig 3 of Olkin et al. (2015). The format of the figure is a still from the
movies that show the seasonal evolution, as shown in various talks (e.g., Young 2012a). The
code is included in the supplemental materials as v¢y/6 fig5 7. The code included here is
taken from the code actually run for Young (2013), with only superficial changes, to allow
myself or others to reproduce the results of Young (2013) and Olkin et al. (2015).

A~=0.60, €,=0.80, A;=0.20, €,=1.00, =3.16E+06 erg/cm® s”? K, N,= 16.0 g/cm?
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Fig 5-7.1 Upper title: the Bond albedo and emissivity of the volatile (4, and
ey), the Bond albedo and emissivity of the substrate (4s and €5), the thermal
inertia of the substrate (I'), and the globally averaged N, inventory (N). Top
right: Pluto's temperature and volatile mass for the listed year (2014.6). The
subsolar latitude and heliocentric radius are listed (48° and 32.7 AU). The
purple line gives an indication of the direction and magnitude of the
sublimation winds, running from the North to the South. Blue indicates the
volatile mass, where volatiles are present; the thickness of the bars are
proportional to the mass, and the maximum mass is indicated (66.6 g/cm?).
The thin solid line indicates the surface temperature, which is a uniform 39.0
K for volatile covered areas, and is just above 40 K for bare areas (south of
~20°). Top left: Pluto as seen from the sun. Volatiles and substrate are shaded
by their respective albedos. Pluto is tilted by the subsolar latitude. When
plotted as a movie, the size of Pluto varies with the inverse of the heliocentric
distance. Bottom left: graphical depiction of the seasonal volatile evolution.
The shape of the orbit is in scale with Pluto's eccentricity. The 12 light and
dark gray "pie pieces" mark out equal durations in the orbit, with the sun at
the vertex of the pie pieces. The circles represent Pluto as seen with a zero
sub-observer latitude. The pole is a squat bar running behind the circles. The
circles and the pole bar are oriented so that the pole is perpendicular to the
Pluto-sun line at the two equinoxes and so the summer hemisphere is oriented
toward the sun. The red line and the circle outlined in red represent Pluto's
position and state at the listed year (2014.6). Within the circles, lighter gray

shows the location of volatiles, and darker gray shows substrate. Lower right:

! vtylé _fig5 7, which calls
res = pluto_mssearch func(run, av, ev, as, es, ti, mvtot, n off, res all)
vtyl6é _plutostill mssearch func, run, res, yr still

vtyl6é_pluto_mssearch resub mat, flag frostslab, time delta, n loc, n z,
emis, temp surf, eflux sol, mass_slab, specheat frost, z delta,

z delta bot, dens, specheat, thermcond, eflux int, beta,alpha bot,
alpha mid

vtyl6é pluto_mssearch resub_timestep, flag atm, freq, time delta, gravacc,
name_species, flag stepscheme, n loc, lat, n_z, z delta,z delta bot,

is xport, angarea delta, emis, temp surf, eflux sol, mass_slab,

specheat volatile, dens,specheat,thermcond, alpha top,

alpha mid, alpha bot,beta, denom, eflux net, temp, temp volatile,

temp next, temp volatile next, angarea atm, mflux

vtyl6_plutowrite mssearch_func, run, res_all
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Surface pressure (log scale) and geometric albedo (linear) as a function of
year, with the listed year marked by a small red circle. The pressure at the
listed year is indicated (33 pbar), and the years of the equinoxes and solstices

are marked.

In order to relate skin depth to depth with physical units, the substrate is assumed to have
a density, p, of 0.93 g cm™ and the skin depth, Z, is assumed to be 15 m; from the specified
thermal inertia, I, Eq. 3.2-5 and 3.2-6 define the specific heat, ¢, and the thermal
conductivity, k. The specific heat of the volatile, cy, (I remind the reader that the V" is for
volatile, not volume) is assumed to be that of N, (), or 1.3e7 erg g K™ (Spencer & Moore
1992).

The run is initialized with the entire surface of Pluto covered with N, at aphelion, and the
initial surface and subsurface temperatures are calculated assuming that the entire surface
was volatile-covered and interacting over the previous Pluto year. The solar forcing is
calculated assuming orbital elements of eccentricity of 0.254, inclination of 23.439°,
Longitude of Ascending Node of 43.960°, argument of perifocus of 183.994°, last periapsis
at Julian date 2447899.597, mean motion of 0.00392581°/day, a semi-major axis of 39.79700
AU, and a pole with right ascension 132.993° and declination -6.163° (see code for full
precision). The diurnally averaged absorbed solar flux was calculated at 240 time steps over
Pluto's orbit, at each of 60 latitude bands, and expanded to M = 2 (constant and two
sinusoidal terms). The initial temperature field is calculated from the sinusoidal expansion of
the absorbed solar flux, assuming a flux from the interior of 6 erg cm™ s™'. This follows the
prescription of Section 5.2, except that the atmospheric "breathing" term is ignored (it is
small on the seasonal timescales, Young 2013). The substrate uses a "medium" grid, with 19
layers of width 0.4 Z, where Z is the skin depth. The top layer is half that, or 0.2 Z.

6. Conclusions

A variety of mathematical techniques for speeding up thermophysical models or volatile
transport models have been presented. They include an improved initial condition, an implicit
time-step step scheme, and a matrix formulation that allows for the calculation of several

locations at once. These can be used separately or in combination.

This formulation described here has been previously applied to Pluto's diurnal cycle with
volatile distributions and albedos that vary with both latitude and longitude (Young 2012a).
The speed gains allowed me to perform a wide parameter-space search of Pluto's seasonal

cycle in anticipation of New Horizons (Young 2013). This work has also been used to study
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KBO seasons (Young and McKinnon 2013) and the first Pluto volatile transport models to

include an N, reservoir (Young et al. 2015).

I hope you will find some of the techniques useful.
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Appendix A
Table Al. Variable Names
Variable | Name Units (cgs) Comments
o, Matrix element at location /, layer j unitless Section 3.3, Fig 3-6, Table 4 & 5
Q) Matrix element for locations in set {L}, layer j unitless Section 3.4, Fig 3-10
B, Matrix element at location /, layer j, j > 0 unitless Section 3.3, Fig 3-6, Table 4 & 5
Bron Matrix element at location /, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3
B'ron Matrix element at location /, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3
B"10.n Matrix element at location /, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3
erg cm”
KT 12
r Thermal inertia . Eq. 3.2-5
(tiu in
MKS)
Yiys Matrix element for locations in set {L}, layer j unitless Section 3.4, Fig 3-10
Yion Matrix element at location /, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3
A; Thickness of layer j cm Fig 3-5, Section 3.3.
Af/ Distance to layer below cm Eq. 3.3-11
Afjj Distance to layer above cm Eq. 3.3-25a,b
At Time step s Section 3.3.
Oy Unitless thickness of layer j unitless Eq.3.3-4
52’ , Unitless distance to layer above unitless Eq. 3.3-26
5/5)/, Unitless distance to layer below unitless Eq. 3.3-12
€ Emissivity unitless Fig 2-1, Section 3.1
- Em1s§1v1ty at location / and time #, for discrete unitless Section 3.3
' equations
< 5”> iﬁl;sllyty, for discrete equations, averaged over unitless Eq. 5.3-8b
M40 Matrix element at location /, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3
N Lon Matrix element at location /, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3
N"10. Matrix element at location /, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3
77: Matrix element for interacting volatiles unitless Section 5-2, Fig 5-2, Table 8 & 9
n;v Matrix element for interacting volatiles unitless Section 5-2, Fig 5-3, Table 8 & 9
TIZV Matrix element for interacting volatiles unitless Section 5-2, Fig 5-3, Table 8 & 9
utr Matrix element at location /, layer j, j > 0 unitless Section 3.3, Fig 3-6, Table 4 & 5
'y Matrix element at location /, layer j, j > 0 unitless Section 3.3, Fig 3-6, Table 4 & 5
n"y, Matrix element at location /, layer j, j > 0 unitless Section 3.3, Fig 3-6, Table 4 & 5
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Table Al. Variable Names, cont
Variable | Name Units (cgs) Comments
S Thermal parameter, atmosphere unitless Eq. 4.2-8
(CH Thermal parameter, substrate unitless 3.2-11
(017 Thermal parameter, volatile slab unitless Eq. 4.2-7
A Latitude radian Section 3.1
Mo Sub-solar latitude radian Section 3.1
Wo Cosine of solar incidence angle unitless Eq.3.1-5
T Unitless depth unitless After Eq. 3.2-7.
p Density gcm” Section 3.1
01/ Density at location /, layer j gcm” Section 3.3
2
o Stefan-Boltzmann constant ;r_% :1’111 Fig 2-1, Section 3.1
T Unitless time step unitless Eq.3.3-3
¢ Longitude radian Section 3.1
do Sub-solar longitude radian Section 3.1
2 -1
D, "Flux-per-temperature," atmosphere Ie(r% om-s Eq. 4.2-4a
N "Flux-per-temperature," atmosphere, for discrete ergcm™ s’
. . 5 Eq. 4.3-3
n equations K
<<I>"> "Flux-per-temperature," atmosphere, for discrete ergcm” s’ Ea. 433
" equations, averaged over Area IV K! q-
2 -1
o "Flux-per-temperature," emission Ie(r% om-s Eq. 3.2-9b
" _ _ [ ool : 2 -l
(I)IE_ Flux' per-temperature," emission, for discrete er_% cm”s Eq. 3.5-8
A equations K
" _ _ [ ool : 2 -l
<¢)r> Flux' per-temperature," emission, for discrete er_% cm”s Eq. 5.3-5b
equations, averaged over Area [V K
” "Flux-per-temperature," enthalpy of the substrate, ergcm™ s’
(2 . . N Eq 3.3-5
4 for discrete equations K
"Flux-per-temperature," enthalpy of the top layer o om? g
<<I)g’ > of the substrate, for discrete equations, averaged ;% em s Eq. 5.3-3
over Area [V
" _ _ [ . 2 -l
o~ Flu)f per tempergture, conduction from above, er_% cm”s Eq. 3.3-24
g for discrete equations K
" _ _ [ . 2 -l
o~ Flu)f per tempergture, conduction from below, er_% cm” s Eq. 3.3-10
g for discrete equations K
2 -1
Dy "Flux-per-temperature," substrate Ieg% om-s Eq. 3.2-9a
" _ _ [ : 2 -l
[T Flux' per-temperature," total, for discrete er_% cm”s Eq. 3.3-18,43-11.
“ equations K
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Table Al. Variable Names, cont

Volatile Transport Il (VT3D)

Variable | Name Units (cgs) Comments
Oy "Flux-per-temperature," volatile slab Ie(r% em” s Eq. 4.2-4b
(1) | i e ey e RS g st
) Frequency of solar forcing s Section 3.2
Qun Solid angle of Area III ster Section 5.1
Quy Solid angle of Area IV ster Section 5.1
A Albedo (approx. 4;, or Ay) unitless Discussion following Eq. 3.1-5
A Hemispheric albedo unitless Eq3.1-4.
As Spherical albedo (aka Bond albedo) unitless Discussion following Eq. 3.1-5
a J-element columl} vector with one non-zero unitless Eq. 3.4-4
element for location /
a, ii::zglillftoi(iiiz?offtor with one non-zero unitless Eq. 3.4-11a
al ii::zglillftoi(iiiz?offtor with one non-zero unitless Eq.3.4-11b
a,, J-element columI} ve_ctor with one non-zero unitless Section 3-4
i element for location in set {1}
b, J-element row vector with one non-zero element. unitless Eq. 3.4-3
b, J-element row vector with one non-zero element. unitless Eq. 3.4-3
bi,, J-element row vector with one non-zero element. unitless Eq.3.4-10a
bi,, J-element row vector with one non-zero element. unitless Eq. 3.4-10b
cr Specific heat of volatile erg K' g f/l'oglci—ille,ASection 3.1V for
C,V Specific heat of volatile, , for discrete equations erg K'g'  Eq.4.3-2. Vfor Volatile.
c Specific heat of the substrate erg K' g Section 3.1.
cly Specific heat at location /, layer j erg K' g Section 3.3.
Cln Scalar for solving banded tri-diagonal matrix unitless Eq. 3.4-12¢
[V Row vector for solving banded tri-diagonal matrix  unitless Eq. 3.4-16¢
din Scalar for solving banded tri-diagonal matrix unitless Eq. 3.4-12d
d, Row vector for solving banded tri-diagonal matrix  unitless Eq. 3.4-16d
E Escape rate gem™® s Section 4.1
E, Sinusoidal coefficient of £ gem™® s Eq. 4.2-2, Section 4.2. Complex
F* Emitted thermal flux ergem”s’  Eq.3.2-13
Er Complex coefficients for F* ergem”s’  Eq3.2-13
F Heat flow at lower boundary ergem”s’  Fig2-1, Section 3.1
F/, Correction term for flux due to latent heat ergem™s’  Eq. 4.3-8
< F:> Correction term for flux due to latent heat, erg om? s Eq. 5.3-6¢

averaged over Area [V
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Table Al. Variable Names, cont

Volatile Transport Il (VT3D)

Variable | Name Units (cgs) Comments
F; Heat flow at lower boundary for discrete equations  ergem™s”  Eq. 3.3-20
5 Fraction of the interacting area that is volatile- unitless Eq. 5.1-4
covered
g Effective gravity cms™ Section 4.1
o J-element columl} vector with one non-zero unitless Eq. 3.4-5
element for location /
J-element column vector with one non-zero unitless Section 3.4
8t/ element for locations in set {;} '
Hy Enthalpy of the volatile erg g’ Fig 2-1, Section 3.1
h Hour angle radian Section 3.1
hg Hour angle at time =0 radian Section 3.2
P Maximum hour angle of sunlight radian Eq. 3.2-3
o Row vector for solving banded tri-diagonal matrix  unitless Eq. 3.4-16d
H Pressure scale height cm Section 4.1 only
j Index for layers integer Fig 3-5, Section 3.3.j=0 .. J.
J Index of lowest layer integer Fig 3-5, Section 3.3.
-1 -
k Thermal conductivity ?rsg K" em Fig 2-1, Section 3.1
kg Bolzmann's constant erg K! Section 4.1
-1 -
ke Thermal conductivity at location /, layer j ?rs‘(?le M Section 3.3
L¢ Latent heat of crystalline phase change erg g’ Section 4.1
Lg Latent heat of sublimation erg g’ Fig 2-1, Section 3.1
/ Index for location integer Section 3.3
L Number of locations integer Section 3.3
(L} Set of locations with shared substrate properties & Set Section 3.4
internal heat flux
{Liv} Set of locations in Area IV Set Section Section 5.3
M Number of orders of sinusoidal expansion integer Section 3.2
m Order of sinusoidal expansion integer Section 3.2
m Another index for location integer Section 3.4, 5.3
my Mass per area of the atmosphere gcm™ Section 4.1
Muyolec Mass per molecule ;g molecule Section 4.1
my Mass per area of the volatile slab gcm™ Fig 2-1, Section 3.1
mlv Mass'per area of the volatile slab for discrete ¢ cm’ Eq. (4.3-2)
M equations
n Index for time integer Section 3.3
P Period of solar forcing s Section 3.2
Ds Vapor pressure pbar Section 4.1
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Table Al. Variable Names, cont

Volatile Transport Il (VT3D)

Variable | Name Units (cgs) Comments
r Heliocentric distance AU Eq3.1-4.
R Surface radius cm Section 4.1 only
S Absorbed insolation ergem”s’  Fig2-1, Section 3.1; Eq 3.1-4.
So Constant term for § in analytic expansion ergem”s’  Eq3.2-1
S‘m Complex coefficients for S in analytic expansion ergem”s’  Eq3.2-1
St avu Solar flux at 1 AU erg em?s!  Section 3.1
S J x J tridiagonal matrix for location / unitless Section 3.4
S’, J x J tridiagonal matrix for location / unitless Section 3.4
S'[' J x J tridiagonal matrix for location / unitless Section 3.4
Sy J xJ tridiagonal matrix for locations in set {L} unitless Section 3.4
T Temperature K Fig 2-1, Section 3.1
To Constant term for 7 in analytic expansion K Eq. 3.2-7
YA‘m Complex coefficients for 7 in analytic expansion K Eq. 3.2-7
Tion Discrete surface temperature at location /, time n K Section 3.4
T Row vector of discrete substrate temperatures K Eq. 3.4-1
Tyjn Temperature of location /, layer j, time n K Fig 3-5, Section 3.3
Row array of length L with temperatures of .
Tizson locations in set {L}, layer 0, time n K Section 3.4
J x L matrix with temperatures of locations in set .
K t 4
Tivsam {L}, layers 1..J, time n Section 3
= Intermediate temperature of location /, layer 0
T b 2 . 4-
H0-n | time n for Crank-Nicholson timesteps K Eq. 3.4-9
~ J-element column vector of intermediate
T, temperature of location /, layers 1..J, time n for K Eq. 3.4-9a
Crank-Nicholson timesteps
. Fig 2-1, Section 3.1. Constant over
Ty Temperature of the volatile K Area IV,
T" Temperature of the volatile for discrete equations K Fig 2-1, Section 3.1. Constant over
" Area IV.
t Time s Fig 2-1, Section 3.1
wy Areal weight of location / with respect to Area III unitless Eq.5.3-4
Areal weight of location / with respect to Area III .
4 -
W and IV unitless Eq. 5.3-11b
v, {n (;(t)rlil;mn vector, for solving banded tri-diagonal unitless Eq. 3.4-12a
Vi {n (;(t)rlil;mn vector, for solving banded tri-diagonal unitless Eq. 3.4-16a
B Depth em Fig 2-1, Section 3.1. Zero at top of

substrate, negative at depth.
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Table Al. Variable Names, cont

Variable | Name Units (cgs) Comments
Fig 3-5, Section 3.3. Middle of
z; Depth of layer j cm layer j for j > 0; zo = 0 (top of
layer).
2, J col}lmn vector, for solving banded tri-diagonal unitless Eq. 3.4-12b
’ matrix
Zy, J x L matrix, for solving banded tri-diagonal unitless Eq. 3.4-16b

matrix

Z Skin depth cm Eq. 3.2-6
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Appendix B

Table B2 and B3 are alphabetical lists of the IDL procedures and functions that directly
implement the model described in this paper and are included in the supplementary material.
Other routines are taken from elsewhere in the layoung IDL library, and from the astron
library. As of the date of publication, these are  accessible at
http://www.boulder.swri.edu/~layoung, and http://idlastro.gsfc.nasa.gov. Figures were
made with IDL Version 8.4.1, Mac OS X (darwin x86_64 m64).

Table B2. IDL routines in layoung/vol xfer/vty16/

Calling sequence Notes
vtylé6_fig3 1 Fig3.1
vtyl6_fig3 2 Fig3.2
vtyl6_fig3 3 Fig3.3
vtyl6_fig3 7a Fig3.7a
vtyl6_fig3 7b Fig 3.7b
vtyl6_fig3 7c Fig 3.7c
vtyl6_fig3 14 Fig 3.14
vtyl6_fig4 2 Fig4.2
vtyl6_figd 2 plot, dist sol au, tod, theta sva, temp term 0, temp, p, $ Fig4.2
name_therminertia, n_per_period

vtyl6_fig5_7 Fig 5-7
res = vtyl6_fig5_7 func(run, av, ev, as, es, ti, mvtot, n_off, res_all) Fig 5-7
vtyl6_fig5_ 7 mat, flag frostslab, time delta, n loc, n z, Fig 5-7

emis, temp_surf, eflux_sol, mass_slab, specheat_frost,
z_delta, z_delta_bot, dens, specheat, thermcond, eflux_int,
beta,alpha_bot, alpha mid

vtyl6_fig5 7_still, run, res, yr_still Fig 5-7

vtyl6_fig5_7_timestep, flag atm, freq, time delta, gravacc, name_species, Fig 5-7
flag_stepscheme, n_loc, lat, n_z, z delta,z delta bot, is xport, angarea delta, emis,
temp_surf, eflux_sol, mass_slab, specheat volatile, dens,specheat,thermcond,
alpha_top, alpha_mid,alpha bot,beta, denom, eflux net, temp, temp_volatile,
temp_next, temp_volatile next, angarea atm, mflux

vtyl6_fig5 7 write, run, res all Fig 5-7
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Table B3. IDL routines in layoung/vol xfer/vt3d/

Volatile Transport Il (VT3D)

Calling sequence Notes
vt3d_1loc_diurnal_local, constants, input, grid, program, output Fig4.2
alpha i=vt3d_alpha_interior(tau, del, del a) Table 4 & 5
beta_i=vt3d_beta_interior(tau, del, del_b) Table4 & 5

spp_tridc = vt3d_cn_tride(alpha i, beta i, spp_indx)

Table 4 & 5, Fig 3-6, 3-8

phi_a = vt3d_dfluxdtemp_atm(freq, temp v, frac varea, gravacc, name_species)

Eq. 4.1-5,4.2-4b, 5.2-2d

phi_e = vt3d_dfluxdtemp_emit(emis, temp)

Eq. 3.2-9b

phi_v = vt3d_dfluxdtemp_slab(freq, mass 0, specheat) Eq. 4.2-4b

phi_s = vt3d_dfluxdtemp_substrate(freq, therminertia) Eq. 3.2-9a

flux_terms = vt3d_eflux_terms_bare(sol_terms, flux int, emis, freq, Eq. 3.2-17
therminertia, term_terms=temp_terms)

flux_terms = vt3d_eflux_terms_local(sol terms, flux_int, emis, freq, therminertia, | Eq. 4.2-10

is_volatile, mass volatile, specheat volatile, gravacc, name_species,

term_terms=temp terms

avg = vt3d_locavg(val, weight) Eq. 5.3-3

z skin = vt3d_skindepth(dens, specheat, thermcond, freq) Eq. 3.2-6

sol_terms = vt3d_sol_terms_diurnal(dist sol au, albedo, lat, h_phase0, lat sol, Eq3.2-4a,b, ¢

n_terms)

mu0 = vt3d_solar_mu(lat, lon, lat0, lon0)

Eq. 3.1-5 (Eq 3.2-4a for
longitudinal averaged wo)

sol = vt3d_solwave(sol terms, phase) Eq. 3.2-1
vt3d_step_cn_1lloc, alpha i, beta 0, beta i, gamma 0, gamma J, temp 0, temp i Eq. 3.4-9a, 3.4-9b
vt3d_step_cn_nloc, alpha i, beta 0, beta i, gamma 0, gamma J, temp 0, temp i Eq. 3.4-18

vt3d_step_cn_trisol_1lloc, alpha i, beta 0, beta i, gamma 0, gamma J, spp_tridc,
spp_indx, temp 0, temp i

Eq. 3.4-9a, 3.4-9b

vt3d_step_cn_trisol_nloc, alpha i, beta 0, beta i, gamma 0, gamma J, Eq. 3.4-18
spp_tridc, spp_indx, temp 0, temp i
vt3d_step_expl_lloc, alpha i, beta 0, beta i, gamma 0, gamma J, Eq.3.4-2

temp 0, temp i

vty16_step_expl_nloc, alpha i, beta 0, beta i, gamma 0, gamma J,
temp 0, temp i

Eq. 3.4-8a, 3.4-8b

vt3d_step_impl_1lloc, alpha i, beta 0, beta i, gamma 0, gamma J, Eq. 3.4-9b
temp 0, temp i

vt3d_step_impl_nloc, alpha i, beta 0, beta i, gamma 0, gamma J, Eq. 3.4-18
temp 0, temp i

vt3d_step_impl_trisol_1lloc, alpha 1, beta 0, Eq. 3.4-9b

gamma 0, gamma J, spp_tride, spp_indx, temp 0, temp i

vt3d_step_impl_trisol nloc, alpha 1, beta 0, gamma 0, gamma J, Eq. 3.4-18

spp_tridc, spp_indx, temp 0, temp i

temp_0 = vt3d_temp_term0_bare(sol 0, flux_int, emis) Eq. 3.2-8

temp_ 0 = vt3d_temp_term0_local(sol 0, flux int, emis, latheat, mflux_esc) Eq. 4.2-3

temp_terms = vt3d_temp_terms_bare(sol terms,flux_int,emis,freq,therminertia) Eq. 3.2-10
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temp_terms= vt3d_temp_terms_bare_iter(sol terms,flux int,emis,freq, Eq. 3.2-10
therminertia, thermcond)

temp_terms = vt3d_temp_terms_local(sol terms,flux int,emis,freq, Eq. 4.2-5
therminertia, is_volatile, mass_volatile, specheat_volatile,
gravacc, name_species)

temp_terms = vt3d_temp_terms_local_iter(sol terms,flux_int,emis,freq, Eq. 4.2-5
therminertia, thermcond, is_volatile, mass_volatile, specheat_volatile, gravacc,
name_species)

temp = vt3d_thermwave(temp terms, phase, dtemp dzeta, z skin, zeta) Eq. 3.2-7
temp = vt3d_thermwave_lloc_p0_nz(temp terms, dtemp dzeta, z skin, zeta) Eq. 3.2-7
temp = vt3d_thermwave_nloc_p0_nz(temp terms, dtemp_dzeta, z_skin, zeta) Eq. 3.2-7
therminertia = vt3d_thermalinertia(dens, specheat, thermcond) Eq. 3.2-5
vt3d_zdelta, z, z delta, z delta top, z delta bot Eq. 3.3-11, 3.3-25a,b

z = vt3d_zgrid(skindepth,z_delta,n z) Section 3.3




