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Abstract

Calculation of a stellar occultation lightcurve from an assumed refractivity profile

involves the integral of the refractivity or its derivatives along the line-of-sight through an

atmosphere. For the general case, normal numerical integration can be time consuming for

least-squares fitting with a modest number of free parameters, or for calculation at a fine

grid for comparison with local refocusing ("spikes") in a lightcurve. A new method, based

on the Fourier decomposition of the refractivity profile, can rapidly calculate the line-of-

sight integrals needed for occultations. The method is formulated for small planets, to be

applicable to Pluto and Triton. The Fourier decomposition method may have

applicability to a wider range of atmospheric studies.

Subject headings: methods: numerical — occultations
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1. Introduction

With the passage of Pluto into the galactic plane, there have been a recent influx of

extremely high-quality occultation lightcurves (e.g., Pasachoff et al. 2005, Young et al.,

2008), allowing an investigation of Pluto's atmospheric structure as a function of time,

latitude, and local time of day. While the relationship between the atmospheric structure

and the occultation lightcurve has been solved for the case of temperatures proportional

to powers of the radius (Elliot & Young 1992, Eshleman & Gurrola 1993), the

temperature profiles actually encountered in atmospheres are more complicated.

Furthermore, the quality of the recent Pluto occultations can support least-squares fitting

to a larger number of free parameters. Chamberlain & Elliot (1997) present a method of

calculating a grid of occultation lightcurves from arbitrary atmospheric models. While this

improved computation speed, direct integration can still be prohibitively slow for fitting

models complex  enough to fully interpret these recent data.

A second problem in occultation studies that is limited by computation speed is the

study of the characteristics of the smallest scale structures in dense planetary

atmospheres, usually referred to as spikes. These are caused by temperature fluctuations

that appear to be similar in character to saturated gravity waves seen in the Earth's

atmosphere (McLandress 1988). Of particular interest are the power spectrum of the

temperature fluctuations and the histogram of temperature gradients. Unfortunately, the

power spectra of temperature fluctuations tend to be muted and distorted when derived

from Abel transforms, which cannot account for ray crossing, wave optics, or the finite

sizes of stars (Sicardy et al. 1999). Forward modeling can account for these effects

explicitly. However, an extremely rapid method of calculating occultation lightcurves with

forward modeling must be used to study waves at the smallest sizes.

Such a method of rapid computation of occultation lightcurves uses Fourier

decomposition of the refractivity profile. The key to this method is the definition of the

refractivity profile as the product of a baseline refractivity profile that is roughly

exponential with radius and a scaling factor that is decomposed into its Fourier
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components. The exponential term from the baseline atmosphere can then be combined

with the sine and cosine terms in the Fourier decomposition to form expressions with

imaginary scale heights. This leads to expressions for the pressure, line-of-sight integral of

refractivity, bending angle, and bending angle derivative based on simple manipulations of

the Fourier decomposition of the refractivity. To demonstrate the method, Section 2

reviews the general occultation equations, Section 3 presents the equations for the

baseline profiles of refractivity, its line-of-sight integral, bending angle, bending angle

derivative, and pressure, all in forms most useful to the subsequent application to the

general refractivity profile. The heart of the method is demonstrated in Section 4, with

detailed derivations for the line-of-sight integral of refractivity and for pressure. A simple

example is presented in Section 5. The possible applications of the model are discussed in

Section 6.

2. General Occultation Equations

In this section, I present the equations relating the refractivity to other quantities,

without derivation. The reader is referred to e.g., Elliot & Young (1992), Wasserman &

Veverka  (1973), or Eshleman & Gurrola (1993) for further background.

The pressure (p) is related to the refractivity (ν) by

€ 

p(r) = g( ′ r )µ( ′ r )mamu
L

ν STP ( ′ r )
ν ′ r ( )d ′ r 

r

∞

∫ (1)

where r is the radius from the planet center, r' is the variable of integration, g is the

gravitational acceleration, µ  is the molecular weight, mamu is the weight of an atomic mass

unit, νSTP is the refractivity at standard temperature and pressure, and L  is Loschmidt's

number. Often, pressure is written in terms of the scale height (H), as dlnp = –dr/H. Here

we write the pressure as an integral of refractivity for use with the Fourier decomposition

of refractivity later. For constant atmospheric composition, µ and νSTP are independent of

r. However, since Earth-based stellar occultations typically probe near the homopause of

the occulting atmosphere, we write the pressure in the general form.

We derive the temperature (T) using the ideal gas law, so that
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€ 

T(r) =
p(r)ν STP (r)
kLν(r)

. (2)

The line-of-sight integral of refractivity (α) is given by

€ 

α(r) = 2 ν( ′ r ) ′ r 
′ r 2 − r2

d ′ r 
0

∞

∫ , (3)

and the bending angle (θ) is

 

€ 

θ(r) =
dα(r)
dr

. (4)

For planets with spherical symmetry, the bending angle and its derivative are needed to

calculate an observed lightcurve. The radius in the shadow plane (ρ) is

 

€ 

ρ(r) = r + Dθ(r) . (5)

where D  is the observer-atmosphere distance. The flux from a single location in the

atmosphere, for a spherical atmosphere with no extinction, is:

 

€ 

φ(r) =
1

1+ Dθ(r) /r
×

1
1+ Ddθ(r) /dr

. (6)

3. Baseline Atmosphere

Throughout, I use the small-planet assumptions, where gravity varies as r-2, and terms

to first few orders in the ratio of scale height over radius are kept. This will allow this

method to be used for Pluto, where the radius is only ~20 times larger than the scale

height. The starting point of this formulation is the baseline refractivity (

€ 

ν ), where

baseline quantities are indicated with an overbar, to distinguish them from the general

atmosphere in section 4. The intent is to describe an analytic refractivity profile that

approximates the general profile over the region of interest. This requires a baseline

refractivity that depends on three parameters—two to ensure a match between the

baseline refractivity and the general profile at the ends of the region of interest, and one to

control the curvature of the log of refractivity.
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A suitable choice for a baseline atmosphere is one with constant composition and

temperature that varies as rb
. This model has two advantages. First, the temperature never

reaches negative values, and second, this class of atmosphere has been previously studied

in the context of occultations (Elliot & Young 1992, Eshleman & Gurrola 1993).  With

these assumptions, the refractivity over the region of interest can be described as

€ 

ν (z) = ν ref
r
rref

 

 
  

 

 
  

−b

e−z / Href (7)

where the pseudo-altitude (z) is defined by

€ 

z ≡
rref

1+ b
 1 -  r

rref

 

 
  

 

 
  

-(1+b)

 
 

 

 
 

 

 

 
 

,b ≠ −1

rref ln r /rref( ) b = −1

 

 
  

 
 
 

. (8)

Note that z is a function only of radius (r), the reference radius (

€ 

rref ), and the temperature

power (b). In particular, z does not depend on the scale height or temperature. For large

planets, or for temperatures varying in proportion to gravity (b = –2), z ≈ r – rref is the

altitude above the reference radius. The ratio of the radius to the pressure scale height (λ)

at radius r is given by

€ 

λ =
rref
Href

 

 
  

 

 
  

r
rref

 

 
  

 

 
  

−(1+b )

. (9)

For b > –1, z has a maximum value of 

€ 

rref /(1+ b), and α  is infinite for 1 > b  ≥ –1

(Eshleman and Gurrola 1993). This is resolved physically by noting that the equations of

hydrostatic equilibrium fail as λ≈1, so that Eq. (7) is valid only for radii below the

exobase. It is resolved mathematically by integrating Eq. (3) to the exobase, rather than

infinity. For b = –1, the functional form of the refractivity is a power law (Eshleman and

Gurrola 1993). We define z in Eq. (8) to allow the combination of a real scale height with

imaginary arguments in the Fourier decomposition.
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The line-of-sight integral of refractivity (α) is derived in the Appendix, using the same

approach applied to the bending angle integral in Elliot & Young (1992). To first order in

the ratio of scale height to radius (δ=1/λ), this is

 

€ 

α (z) = ν (z)r 2πδ 1+
9 − b
8

δ +O δ 2( ) 

  
 

  
. (10)

The baseline quantities can be written as a lead term (fL) multiplied by a series in δ.

 
  

€ 

f (z) ≡ fL 1+ f1δ + f2δ
2 + f3δ

3 + f4δ
4 +L[ ] (11)

The full coefficients to fourth order are given in Table 1. The corresponding leading

terms and coefficients for baseline bending angle (

€ 

θ ), and bending angle derivative

(

€ 

dθ /dr ) are also given in Table 1, using the expansions from Elliot & Young  (1992).

The pressure can be derived from the refractivity either by the application of the ideal

gas law or by the integral in Eq. 1. Starting with Eq. 1 makes explicit how the pressure

depends on the scale height, for use with the complex scale height in Section 4. For

gravity proportional to r–2 and constant composition, the pressure becomes

€ 

p (r) = ν (r)g(r)µmamu
L

ν STP

( ′ r /r)−(2+b )e−( ′ z −z) / Href d ′ r 
r

∞

∫ (12)

where z' is defined by Eq. 8, substituting r' for r. Performing the integral gives

€ 

p (r) = ν (r)g(r)µmamu
L

ν STP

rδ . (13)

The baseline temperature (

€ 

T ) is given by the ideal gas law, Eq. 2.

€ 

T (r) =
g(r)µmamu

k
rδ (14)

4. Fourier Decomposition

The refractivity can be generalized for non-constant scale heights by writing the

refractivity as the product of a scale factor (

€ 

σν ) and the baseline refractivity:
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€ 

ν(z) =σν (z)ν (z) =σν (z)ν ref (r /rref )
−b e−z / Href (15)

We express the scale factor as a Fourier transform in vertical wavenumber (m). We

introduce the operators F and F-1 as the forward and inverse Fourier transforms, so that

€ 

ˆ σ ν (m) = F{σν }(m) := e− imzσν (z)dz
−∞

∞

∫ (16)

€ 

σν (z) = F −1 ˆ σ ν{ }(z) := 1
2π

eimz ˆ σ ν (m)dm
−∞

∞

∫ (17)

Substituting Eqs. 15 and 17 into Eq. 3, we have

 

€ 

α(z) = 2 ν ref ( ′ r /rref )−b e− ′ z / Href 1
2π

eim ′ z ˆ σ ν (m)dm
−∞

∞

∫
 
 
 

 
 
 

′ r 
′ r 2 − r2

d ′ r 
0

∞

∫ (18)

We then define a complex scale height Hm

 

€ 

Hm =
Href

1− imHref

(19)

so that

 

€ 

−
′ z 

Href

+ im ′ z = −
′ z 

Hm

(20)

and reverse the order of integration

 

€ 

α(z) =
1

2π
ˆ σ ν (m) 2 ν ref ( ′ r /rref )−b e− ′ z / Hm

′ r 
′ r 2 − r2

d ′ r 
0

∞

∫
 
 
 

 
 
 

dm
−∞

∞

∫ . (21)

Following Eq. (10), this becomes:

 

€ 

α(z) =
1

2π
ˆ σ ν (m) 2πδm rν ref (r /rref )

−b e−z / Hm 1+
9 − b

8
δm

 

  
 

  
 
 
 

 
 
 
dm

−∞

∞

∫ (22)

where

 

€ 

δm =
Hm

rref

 

 
  

 

 
  

r
rref

 

 
  

 

 
  

1+b

=
Hm

Href

δ . (23)
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By writing 

€ 

exp(−z /Hm ) = exp(−z /Href )exp(imz)  and pulling out of the integral all

terms that are independent of m, this can be written as the following sum:

 

€ 

α(z) = ν (z)r 2πδ 1
2π

ˆ σ ν (m) Hm

Href

e−z / Hm

 
 
 

  

 
 
 

  
dm

−∞

∞

∫ +
 

 
 
 

+
9 − b

8
δ

 

  
 

  
1

2π
ˆ σ ν (m) Hm

Href

e−z / Hm
Hm

Href

 
 
 

  

 
 
 

  
dm

−∞

∞

∫
 

 
 
 

(24)

At this point, it is convenient to define the following function,

 

€ 

Sβ (z) = F −1 ˆ σ ν (m) Hm /H0( )β{ }(z)[ ] . (25)

with which Eq. 24 becomes

 

€ 

α(z) = ν (z)r 2πδ S1/ 2(z) +
9 − b
8

δS3 / 2(z) +O(δ 2)
 

 
 

 

 
 . (26)

The pressure integral proceeds similarly. Substituting Eqs. 15 and 17 into Eq. 1 gives

€ 

p(r) = g( ′ r )µ( ′ r )mamu
L

ν STP ( ′ r )
ν ref ( ′ r /rref )−b e− ′ z / Href 1

2π
eim ′ z ˆ σ ν (m)dm

−∞

∞

∫
 
 
 

 
 
 

d ′ r 
r

∞

∫ . (27)

As before, reversing the order of integration gives

€ 

p(r) =
1

2π
ˆ σ ν (m) g( ′ r )µ( ′ r )mamu

L
ν STP ( ′ r )

ν ref ( ′ r /rref )−b e− ′ z / Href eim ′ z d ′ r 
r

∞

∫
 
 
 

 
 
 

dm
−∞

∞

∫ . (28)

The inner integral becomes, with Eq.13,

€ 

p(r) =
1

2π
ˆ σ ν (m)ν (r)g(r)µmamu

L
ν STP

rδme
imzdm

−∞

∞

∫ . (29)

As with the α decomposition, factoring out terms that depend on r allows pressure to

be expressed in terms of Fourier transforms

€ 

p(r) = ν (r)g(r)µmamu
L

ν STP

rδ 1
2π

ˆ σ ν (m) Hm

Href

eim ′ z dm
−∞

∞

∫ , (30)

expressed simply as
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€ 

p(r) = ν (r)g(r)µmamu
L

ν STP

rδS1(z) (31)

The bending angle and bending angle derivative also involve only the linear operators

of integration and differentiation, allowing a similar manipulation of the decomposed

refractivity. To first order in δ, these are

€ 

θ(z) = −ν (z) 2π /δ S−1/ 2(z) −
3− 3b
8

δS1/ 2(z) +O(δ 2)
 

 
 

 

 
 (32)

€ 

dθ(z)
dr

=
ν (z)
r

2π
δ 3

S−3 / 2(z) +
1+15b
8

δS−1/ 2(z) +O(δ 2)
 

 
 

 

 
 . (33)

In analogy to Eq. 11, the pressure, line-of-sight integral, bending angle, and bending

angle derivative can be written to higher order in δ as

 
  

€ 

f (z) ≡ fL Sβ + f1Sβ +1δ + f2Sβ +2δ
2 + f3Sβ +3δ

3 + f4Sβ +4δ
4 +L[ ] (34)

where β is the power of δ in the leading term, given in Table 1.

5. Example: isothermal atmospere with a single wave

I tested this method numerically with an example of a baseline atmosphere with b = 0,

Href = 2/π, and rref = 40/π, where Href and rref are in arbitrary units. I then added a single

wave to the baseline refractivity, 

€ 

σν (z) =1+ εν cos(m0z) , with εν = 0.1, m0 = 2π. This

combination gives rref/Href = 20, so that small-planet effects cannot be ignored, and Href m0

= 4, so the wavelength is small compared with the scale height. The choice of m0 =

2π gives a vertical wavelength (Lz = 2π/m0) of 1. The refractivity was calculated on an

evenly spaced grid of pseudo-altitude z, with 32 points per wavelength, spanning z = -5.5

to z =19.6.

The Fourier method was tested against previously written and tested benchmark code

that calculates the line-of-sight integral for an arbitrary grid of function values and radii.

This routine treats successive pairs of radii as the bounds of an atmospheric shell. Within

each shell, the integrand is treated as an exponential with a single scale height. For each

shell, the minimum and maximum value of the distance along the line of sight

(

€ 

x = ( ′ r 2 − r2)1/ 2) is found. The function is evaluated at 20 points per shell, evenly spaced
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in x. The perturbation term (

€ 

ε f = ( f − ′ f ) / ′ f ) found by the benchmark calculation is

shown as thin, solid lines in Fig 1. The perturbation term calculated by the method

outlined in this paper is plotted with thick dashed lines in Fig. 1, showing the good

agreement between the two methods.

It is useful to consider the effect on a single wave with wavenumber m0 where

m0 Href >> 1, so that

 

€ 

Hm

Href

≈
i

m0Href

. (35)

In this case,  the Fourier transform of ν is only non-zero at wavenumbers -m0, 0, or m0

€ 

ˆ σ ν = πεν (δ(−m0) + δ(m0)) + 2πδdirac (0) (36)

where 

€ 

δdirac is the Dirac delta function (not to be confused with the ratio of scale height to

radius, δ).

Application of Eq. 25 yields

€ 

Sβ (z) = εν m0Href( )
−β
cos m0 z + Lzβ /4( )[ ] +1 (37)

In the limit of large-planets (δ<<1) and short wavelengths (m0 Href >> 1), the

application of Eq. 37 shows that the amplitudes of the scaled perturbations of p and α are

smaller than for ν (Eqs. 38a,b), and shifted to smaller r, while the opposite is the case for

θ and dθ/dr (Eqs. 38c, d). Because the pressure perturbations are small compared to the

refractivity (or density), the temperature perturbation is approximately equal in

magnitude to the refractivity (or density) perturbation, but opposite in sign (Eq. 38e).  

€ 

εp ≈ εν (m0Href )
−1 cos m0 z + Lz /4( )[ ] (38a)

€ 

εα ≈ εν (m0Href )
−1/ 2 cos m0 z + Lz /8( )[ ] (38b)

€ 

εθ ≈ εν (m0Href )
1/ 2 cos m0 z − Lz /8( )[ ] (38c)

€ 

εdθ / dr = εν (m0Href )
3 / 2 cos m0 z − 3Lz /8( )[ ] (38d)
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€ 

εT = −εν cos m0z[ ] (38e)

The approximate wave relations are plotted as thin dot-dashed lines in Fig. 1. These

demonstrate the relative magnitudes and phase shifts. The difference between the

approximate relations and the perturbations calculated by direct integration or Fourier

decomposition is due to the relatively large size of δ (1/20) and the relatively small size of

m0 Href (4).

6. Discussion

The method was motivated by the two problems raised in the introduction: the need

to fit more complex thermal models to recent Pluto stellar occultations, and the need for a

forward modeling approach for the study of small-scale structure indicated by spikes in

stellar occultations of the jovian planets and Titan. However, the method laid out in this

paper is very general, and decomposition of an atmospheric profile may have utility for a

larger range of problems.

The approximate wave relations can be used to quickly derive at what radii waves of a

given wavelength and amplitude will violate the assumptions of the Abel inversion of

stellar occultations lightcurves.

Wavelet analysis can be easily done by noting that a wavelet is often expressed

compactly in the spectral domain. The relationship derived here between the Fourier

components of various atmospheric quantities means that the spectral components of a

wavelet in θ or dθ/dr can be written down directly, given the spectral components in the

corresponding wavelet in refractivity.

Because the phase delay is proportional to the line-of-sight integral of refractivity,

this method is applicable to radio occultations as well as stellar, with the caveat that the

source's path through the atmosphere is straight.

The equations for α can be easily modified to calculate the line-of-sight integral of

absorption, making this method useful for UV occultations. Having a rapid method of

calculating UV stellar occultation spectral light curves will allow a more thorough study of

the sensitivity of derived temperatures to the upper boundary conditions.
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Finally, the approach outlined here can be applied to any linear operator acting on a

roughly exponential function of radius, such as atmospheric absorption viewed at a range

of emission angles.

This research was initially motivated by Uranian occultation data provided by

Richard French, who also contributed to the original, large-planet formulation of this

method. Discussions with Edward Dunham helped with make this applicable to small

planets. The flow of this paper was greatly improved by discussions with Eliot Young,

Marc Buie, and Catherine Olkin. This research was supported, in part, by NASA grant

NNG-05GF05G,
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Appendix A: Series form of the Line-of-sight integral of refractivity

The derivation of the series approximation to the line-of-sight integral of refractivity

(α) follows that of Elliot & Young 1992 (EY92). For this appendix, I use the terminology

from EY92, which differs slightly from the terminology used in the body of the paper.

Given temperature and molecular weight profiles written as

€ 

µ = µ0(r /r0)
−a (A1)

and

€ 

T = T0(r /r0)
b (A2)

from which λg, the ratio of radius to scale height, is

€ 

λg (r) = λg0(r /r0)
−(1+a+b ) (A3)

and the refractivity is

€ 

ν(r) = ν 0
r
r0

 

 
 

 

 
 

−b

exp
λg (r) − λg0
1+ a + b

 

 
 

 

 
 (A4)

I use the same geometry as in EY92, where x is the coordinate that lies along the path

of the ray and has its origin at the closest approach of the ray to the center of the planet.

If r is the radius at closest approach, and r' is the radius at x, then

€ 

′ r 2 = x 2 + r2 (A5)

The line-of-sight integral of refractivity is

€ 

α(z) = ν ( ′ r )dx
−∞

∞

∫ = ν (r) r
′ r 

 

 
 

 

 
 

b

exp λ( ′ r ) − λ(r)
1+ a + b

 

  
 

  
dx

−∞

∞

∫ (A6)

 I make the same substitution as in EY92 (

€ 

δ ≡1/λg (r)) and define the same variable of

integration, y
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€ 

y = (x /r) 1/(2δ) (A7)

Eq. A6, expressed in terms of y, is

 

€ 

α(z) = ν (r) 2δr 1+ 2δy 2( )
−b / 2

exp
1+ 2δy 2( )

−(1+a+b ) / 2
−1

1+ a + b( )δ

 

 

 
 

 

 

 
 
dy

−∞

∞

∫ (A8)

Expanding the integrand in a series in δ gives

 

€ 

α(z) = ν(r) 2δr e−y
2

1− by 2 +
3+ a + b
2

 

 
 

 

 
 y 4

 

 
 

 

 
 δ +O δ 2( )

 
 
 

 
 
 
dy

−∞

∞

∫ (A9)

Using

 

€ 

yne−y
2

dx
−∞

∞

∫ =
Γ (n +1) /2( ), neven

0 nodd
 
 
 

(A10)

and integrating term-by-term, we get

 

€ 

α(z) = ν(r) 2δrAα (δ,a,b) (A11)

where

  

€ 

Aα (δ,a,b) =1+
9 + 3a
8

−
b
8

 

 
 

 

 
 δ +

345 + 310a + 65a2

128
+
23+ 5a
64

b − 7b
2

128
 

 
 

 

 
 δ

2

+
9555 +15155a + 7665a2 +1225a3

1024
+
5455 + 4970a +1015a2

1024
b +

452 + 35a
1024

b2 − 75
1024

b3
 

 
 

 

 
 δ

3

+
21 65295 +153204a +130666a2 + 47764a3 + 6271a4( )

32768
+
21 18401+ 29993a +15482a2 + 2491a3( )

8192
b

 

 
 
 

+
7 35879 + 32778a + 6399a2( )

16384
b2 +

21 321− 29a( )
8192

b3 − 5509
32768

b4
 

 
 
 δ

4 +L

(A12)
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Fig 1.—Plot of the perturbation terms of temperature (T), pressure (p), refractivity

(ν), line-of-sight integral of refractivity (α), bending angle (θ), and bending angle derivative

(dθ/dr). Refractivity was calculated with b = 0, εν = 0.1, m = 2 π, Href = 4/m, and rref =

20Href (see text). Solid lines show the calculation using traditional line-of-sight integrals as

in Chamberlain  & Elliot (1997). Thick dashed lines show the calculation with the Fourier

decomposition method presented here, calculated to first order in the ratio of the scale

height to radius, showing good agreement with direct integration. Thin dot-dashed lines

plot the approximate wave relations, showing how the relative amplitudes and phase

shifts of the various atmospheric quantities.


