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Abstract 
Several distant icy worlds have atmospheres that are in vapor-pressure equilibrium with 

their surface volatiles, including Pluto, Triton, and, probably, several large KBOs near 
perihelion. Studies of the volatile and thermal evolution of these have been limited by 
computational speed, especially for models that treat surfaces that vary with both latitude and 
longitude. In order to expedite such work, I present a new numerical model for the seasonal 
behavior of Pluto and Triton which (i) uses initial conditions that improve convergence, (ii) 
uses an expedient method for handling the transition between global and non-global 
atmospheres, (iii) includes local conservation of energy and global conservation of mass to 
partition energy between heating, conduction, and sublimation or condensation, (iv) uses 
time-stepping algorithms that ensure stability while allowing larger timesteps, and (v) can 
include longitudinal variability. This model, called VT3D, has been used in Young (2012), 
Young (2013), Olkin et al. (2015), Young and McKinnon (2013), and French et al. (2015).  

Keywords: Pluto, atmosphere; Pluto, surface; Atmosphere, evolution; Trans-neptunian 

objects 
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1. Introduction 

Pluto and Triton have atmospheres whose pressures have been measured by stellar 
occultations (e.g., Young et al. 2008a, Olkin et al. 1997) and spacecraft (Gurrola 1995, 
Krasnopolsky et al. 1993, Stern et al. 2015). These measurements reveal atmospheres for 
Pluto and Triton that are global in extent, almost certainly controlled by vapor-pressure 
equilibrium of the surface N2 ice, (Spencer et al. 1997, Yelle et al. 1995), similar to the role 
of CO2 on Mars (Leighton and Murray 1996).  

Vapor pressure is an exceedingly sensitive function of temperature, and early models 
predicted that the surface pressures of Pluto and Triton would vary by orders of magnitude 
over their years (e.g., Hansen and Paige 1992, 1996; Moore and Spencer 1990; Spencer and 
Moore 1992). Those early models were based on a single observation of the atmospheric 
pressure, either the Triton flyby in 1989 or the definitive discovery Pluto occultation in 1988 
(e.g., Elliot and Young 1992). Since that time, further occultations have shown a large 
increase in the atmospheric pressures of both Pluto and Triton since the late 1980's (Elliot et 
al. 1998; Elliot et al. 2003). Other advances in the past decade include an improved 
understanding of the surface compositions of Pluto and Triton (Grundy and Buie 2001, 
Grundy et al. 2010). It is time for new models (Young 2012, Young 2013, Olkin et al. 2015, 
Hansen et al. 2015). This work describes the model used by Young (2012, 2013) and Olkin et 
al. (2015). 

Since the rash of models in the 1990's, the large, volatile-covered ice worlds Pluto and 
Triton have been joined by other large, volatile-covered bodies in the outer solar system, 
including the large Kuiper Belt Objects (KBOs) Eris, Sedna, Makemake, Haumea, Quaoar 
(Schaller and Brown 2007), and 2007 OR10 (Brown et al. 2011). Some of these should have 
atmospheres at some time in their orbit. In particular, the 98% albedo of Eris argues for a 
perihelion atmosphere that collapses near aphelion, freshening Eris's surface (Sicardy et al. 
2011). 

I present a new model for volatile transport on Pluto, Triton, and other volatile-covered 
bodies in the outer solar system. As with previous models (Hansen and Paige 1992, 1996; 
Moore and Spencer 1990; Spencer and Moore 1992), this model includes transport of volatile 
mass and latent heat, the thermal inertia of a volatile slab, internal heat flux, and thermal 
conduction to and from the substrate. The major improvements over previous models are 
improved numerical stability, strict mass conservation including atmospheric escape, a new 
method for handling the transition between a global and non-global atmosphere, and 
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longitudinal variability. The model is designed to be flexible in order to easily accommodate 
details such as a change in N2 emissivity with crystalline phase (Stansberry and Yelle 1999).  

Although motivated by volatile-covered bodies, the speed improvements make this of 
interest for other computationally difficult problems of thermal evolution, such as Mercury or 
Mimas. The intent is that this model will find wide utility in the community. Examples of 
possible applications include (i) comparison of modeled pressures with occultation results, 
(ii) comparison of modeled thermal emission with Spitzer observations, and (iii) the 
exploration of volatile transport on other large, volatile-covered KBOs. Therefore, this paper 
takes an approach similar to that used in Numerical Recipes (Press et al. 1992), which has 
found wide adoption within the planetary science community.  In particular, it presents a 
description of the numerics in enough detail for the reader to implement all equations.  

We give an overview of the VT3D model in Section 2, and show its application to areas 
bare of volatiles (Section 3), volatile-covered areas with local atmospheres (Section 4), and 
volatile-covered areas with efficient transport of mass and latent heat (Section 5). In each of 
Section 3-5, we present the continuous equations; recap the analytic results of Young 2012 
(hereafter Paper I) for use both in initial conditions and the numerical solution; and present 
the numerical implementation, in which these equations are linearized, discretized, cast into 
matrix form, and solved. Compared with previous models of volatile transport (and, to some 
extent, thermophysical models of airless bodies), the model developed here and in Paper I 
introduces several new concepts. These include the following: 

1. Using analytic approximations for the temperature variation for initial conditions. 

2. Approximating a surface in transition between a global, Pluto-like surface and a local, 
Io-like surface as a splice between areas of local and non-local transport of mass and latent 
heat (See Fig 2-2). 

3. Closing the time-dependent energy equation for volatile-covered areas by requiring 
mass balance. 

4. Linearizing the equations for volatile transport, and casting them in matrix form, 
simplifying the program structure needed for modeling Pluto, Triton, Eris, and other KBO. 

5. Implementing numerically stable methods that allow larger time steps, and take 
advantage of the fast matrix-based calculations of modern computer languages. 
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2. VT3D (Volatile Transport, 3-Dimensions) overview 

This paper and Young 2012 (Paper I) are intended to be the first two in a series of models 
of increasing complexity. Paper I derived an analytic expression for surface and subsurface 
temperatures assuming (i) albedos and compositions that vary with latitude and longitude, (ii) 
a static distribution of volatile and bare surface elements, (iii) a single volatile species, (iv) 
volatile temperatures that are constant within a volatile slab and across the surface, and (v) 
substrate properties (density, specific heat, thermal conductivity) that could vary with 
location but not depth. The analytic results presented in Paper I can be used for physical 
intuition, diurnal variation, seasonal variation under certain circumstances (such as 
completely volatile-covered bodies), quick estimations of temperatures, testing of numerical 
code, and initialization of temperatures for numerical simulations. These are elaborated in 
Sections 3.2, 4.2, and 5.2.  

This paper, Paper II, focuses on the numerical calculations for volatile transport and 
surface and subsurface temperatures. As with Paper I, this model assumes a single volatile 
species and volatile temperatures that are constant within a volatile slab. This paper extends 
Paper I in that: (i) substrate properties are allowed to be variable with depth, (ii) the latent 
heat of solid-phase transitions are treated (e.g., between α and β N2), (iii) volatile-covered 
areas can sublime to become bare, and cold bare areas can become volatile-covered, and (iv) 
there is a smooth transition between the case where the surface pressure is globally isobaric 
(similar to Pluto's current atmosphere), and one where surface temperatures and pressures 
can vary with location. Multiple species and layers within the volatile slab are planned for 
Paper III. A more accurate model of the variation involved in the transition case is planned 
for Paper IV. 

As in Paper I, the conceptual framework is built on the physical processes considered by 
Spencer and Moore (1992), Moore and Spencer (1996), Hansen and Paige (1992) and 
Hansen and Paige (1996, HP96), as illustrated in Fig 2-1. These include thermal conduction 
into and within a substrate, a heat flux at the lower boundary, absorbed sunlight, and thermal 
emission.   

Insert fig 2-1 here. 
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Fig. 2-1. Schematic of the frost heat balance equation solved by the analytic 
model (based on Hansen and Paige 1996). Locally, we balance absorbed 
insolation, S, emitted thermal energy εσT4, and latent heat of sublimation or 
condensation, LS dmV/dt, where mV is the mass per area of the volatile slab and 
LS  is the latent heat of sublimation. Additionally we balance (i) heat to and 
from the substrate, k dT/dz, where k is the thermal conductivity and dT/dz is 
the vertical gradient of temperature, and (ii) the heat capacity of the 
isothermal ice layer, mV dHV/dt ≈ mV cV dTV/dt, where HV is the enthalpy and 
cV is the specific heat of the volatile slab (subscript V for volatile). At the 
lower boundary, there is a heat flow of F. All variables except TV are free to 
vary with latitude and longitude. Compared with Young (2012; Paper I), this 
figure illustrates (i) heating within the substrate for vertically varying k, and 
(ii) enthalpy of the ice slab, HV, to allow the treatment of solid-phase 
transitions. 

The latent heat of sublimation term of the energy equation depends on the mass flux  
(dmV/dt in Fig. 2-1). For extremely thin atmospheres, such as on Io or possibly currently on 
Eris, some atmospheric flow occurs, but is ineffective in changing local surface temperatures 
(Fig 2-2, left). In this case, the volatile slab temperature is controlled by local conditions 
only. The volatile slab temperature and the local atmospheric pressure are generally higher in 
areas of high insolation. For thin atmospheres, we assume no atmosphere over the bare areas. 
This approach allows efficient calculation of surface and subsurface temperatures. Once 
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temperatures are calculated, one can calculate Iapetus-style cold trapping or Io style flow 
after-the-fact; this is not treated in this paper. 

In thicker atmospheres, such as on the current Pluto and Triton, the atmosphere 
efficiently transports mass and latent heat across the entire globe (Fig 2-2, center). As 
quantified by Trafton and Stern (1983), the pole-to-pole pressure differences are small as 
long as the sublimation wind is much less than the sound speed. In this case, the mass flux is 
calculated by ensuring global mass balance, including the mass of the atmosphere over both 
volatile-covered and bare areas (Trafton & Stern 1983; Young 1992; Hansen and Paige 1992, 
1996; Young 2012). 

Accurately modeling the transition between a global and local atmosphere is too complex 
and computationally expensive to treat here. In future papers, we plan to treat this using 
vertically integrated hydrodynamic equations, as has been done for Io (Ingersoll et al. 1985, 
Ingersol 1989). In this paper, I treat the atmosphere as a splice between isolated locations 
with local atmospheres and ineffective transport of mass and latent heat (Fig 2-2 Right, Areas 
I and II), and interacting locations that share a single surface pressure, with effective 
transport of mass and latent heat (Fig 2-2 Right, Areas III and IV).  

Insert fig 2-2 here. 

   
Fig. 2-2. Schematic of the transport of mass and latent heat over a surface in 
this model. Dark and light surface areas represent areas devoid of or covered 
with volatiles, respectively. The mottled outline around the body represents a 
atmosphere of varying surface pressure. Short arrows represent mass 
exchange between the surface and atmosphere, and large curved arrows 
represent net flow within the atmosphere. Left: For low-pressure atmospheres 
(such as current Eris), the mass and latent heat balance are local, the surface 
pressure depends on local heating, and the surface is covered with Areas I 
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(bare) and II (volatile-covered). At each location, the surface and atmosphere 
exchange volatiles, indicated by the double-headed arrows, but neighboring 
locations are isolated from each other. Center: For high-pressure atmospheres, 
such as the current Pluto or Triton, all the volatiles interact with each other. 
The mass and energy balance is global, the surface pressure is constant over 
the globe, and the surface is covered with Areas III (bare) and IV (volatile-
covered). There is net sublimation at the summer pole (indicated by an arrow 
pointing from the surface at the top of the figure), net deposition at the winter 
pole (indicated by an arrow pointing from the atmosphere at the bottom of the 
figure), and balanced exchange of volatiles at mid latitudes (indicated by 
double-headed arrows). Right: Intermediate cases are treated with the 
computationally efficient method of splicing local and isobaric areas.  

Table 1. Area Types 

 Bare Volatile-covered 

Isolated 

Area I 
Energy budget does not include latent heat. 

Atmospheric pressure is negligible. 
Section 3. 

Area II  
Energy budget includes latent heat, without 

mass or energy transfer from other locations. 
Atmosphere is in vapor-pressure equilibrium 
with the surface, with surface pressures that 

vary with location. 
Section 4. 

Interacting 

Area III 
Energy budget does not include latent heat. 
Atmospheric pressure is constant over all 

locations in Area III and IV.  
Section 3. 

Area IV 
Energy budget includes latent heat, with mass 

or energy transfer from other locations. 
Atmosphere is in vapor-pressure equilibrium 
with the surface, with a surface pressures is 

constant over all locations in Area III and IV. 
Section 5. 

In the following sections, I develop the VT3D model for both isolated and interacting 
bare areas (Areas I and III), the local volatile-covered areas (Area II), and the interacting, 
isobaric volatile-covered areas (Area IV). In each, I present the equations for energy balance, 
and describe the analytic approximation that can be used as effective initial conditions.  The 
problem is discretized in location, depth, and time, and the energy balance equations are 
linearized. This leads to two forms of matrix equations. The explicit equations involve 
multiplication of the current temperature array by a tridiagonal or banded tridiagonal matrix, 
while the implicit equations (in this case, a Crank-Nicholson timestep scheme; Press et al. 
1992) involve multiplication of both the current and next temperature array by tridiagonal or 



L. Young –9– Volatile Transport II (VT3D) 
 
banded tridiagonal matrices. The elements of the matrices are derived, and notes on how to 
solve the resulting equations are given. 

The primary advantage of VT3D is its speed (Table 2). Many of the speed gains are 
applicable to bare locations, and can speed up calculations involving spatially resolved 
thermal measurements, measurements involving seasonal, diurnal, and eclipse time scales, 
and other applications. Therefore, I present the formulation for bare locations first, in Section 
3, and only then turn to volatile areas. 

Table 2. Elements of VT3D relating to computational speed 

Feature Speed 
factor 

Notes See Sections 

Initialize with analytic 
approximation 

~4 Allows spin-up in only a few 
periods, rather than 10-20. 

3.2 (Areas I, III) 
4.2, 5.2 (Areas II, IV) 

Uneven layer 
thickness 

~2-1000 Allowing layers to increase 
their thickness with depth 
decreases the number of layers 
needed. 

3.3 (All Areas) 

Implicit time steps 
(Crank-Nicholson) 

~50 Stable for large timesteps. 
Requires solution of 
tridiagonal or banded 
tridiagonal matrices 

3.3 (Areas I, III) 
4.3, 5.3 (Areas II, IV) 

L-U decomposition of 
substrate sub-matrix 

~2 Speeds up the solution of 
tridiagonal or banded 
tridiagonal matrices 

3.4 (All Areas) 

Decouple seasonal and 
diurnal forcing 

~15,000 Decreases the number of time 
steps by the ratio of orbital to 
rotational period 

3.3 (All Areas) 

Calculate temperatures 
on multiple locations 
with a single operation 

Depends 
on the 
language 

Avoids costly "for loops" 3.4 (Area I, II, III) 
5.4 (Area IV) 

Global tiling 1.6 Can decrease the number of 
required tiles 

3.4 (All Areas) 

Combine mass and 
energy equations 

10 Avoids having to calculate a 
range of mass fluxes and then 
test for conservation of mass  

n/a (Area I, III) 
4.2 (Area II) 
5.2 (Area IV) 

3. VT3D for bare locations (Areas I and III) 
Fig 2-2 and Table 1 recap the definitions of Areas I and III and their interaction with the 

atmosphere. For Area I (bare, no mass exchange, no atmosphere), the physics in VT3D is 
identical to the well-known thermophysical model (TPM) used to interpret thermal emission 
from airless bodies (e.g., Thomas et al. 2000; Spencer et al. 1989; Harris 1988). Heating in 
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the top-most layer is balanced by thermal emission, insolation, and conduction; heating in 
interior layers is balanced by conduction only; heating in the lower layer is balanced by 
conduction and a flux condition at the lower boundary.  

Area III (bare, no mass exchange, isobaric atmosphere) represents, for example, the 
"bedrock" H2O on current-day Triton. There is no volatile slab and no sublimation. The 
difference between the two bare area types are (i) Area III is a potential deposition or 
sublimation site, and (ii) an increase in the volatile temperature for Area IV (volatile-
covered, isobaric) also increases the pressure over Area III, so the atmosphere above Area III 
needs to be included in mass balance equation for Area IV. As long as there is no 
condensation (which will alter the state from bare to volatile-covered), the energy balance for 
Area III is the same as for Area I. Therefore, both bare areas, I and III, are treated in this 
section.  

These equations demonstrate several aspects of the numerical power of VT3D. In Section 
3.1 and 3.2, I show the analytic expressions for the initial conditions, and show that a simple 
calculation can approximate the numerical solution. In Section 3.3, I present the explicit and 
implicit (Crank-Nicholson) numerical solutions for a single bare location, showing that 
solutions spin up in less than a quarter period.  In Section 3.4, I show a compact 
representation of the linearized, discretized equations.  

3.1 Areas I and III : Continuous expressions for bare areas 

At the lower boundary, there may be heat flow, F, which is balanced by downward 
thermal conduction from a positive thermal gradient:  

 

€ 

k ∂T
∂z z→ zmin

= −F  (3.1-1) 

where k is the thermal conductivity,  and T is the temperature. As with Paper I, z is a height 
coordinate, defined to be zero at the top of the substrate and decreasing downward. Thus, z = 
0 at the substrate-volatile interface for locations where there is a volatile slab, or at the 
surface on volatile-free areas.  

Within the substrate, we assume there are no heating sources, so net conductive heat flux 
is balanced by changes in the temperature of the substrate:  

 

  

€ 

ρc ∂T
∂t

Enthalphy of substrate
   

=
∂
∂z
k ∂T
∂z

Conduction
   

 (3.1-2) 
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where ρ is the density, c is the specific heat at constant pressure for the substrate, t is time, 
and T is the temperature.  

The energy balance at the surface balances net heating with absorbed sunlight, thermal 
emission, and thermal conduction. There is no latent heat of sublimation or condensation. 
The total equation is 

 

  

€ 

0 = S
Insolation
 − εσT 4

Emission
 − k ∂T

∂z z=0

Conduction
     

 (3.1-3) 

where S is the absorbed solar energy, and ε is the emissivity, and σ is the Stefan-Boltzmann 
constant.  

The first term of Eq. (3.1-3) describes the solar energy absorbed by the volatile slab, in 
power per area. For Triton, Pluto, Eris and other large KBOs, the fraction of sunlight 
absorbed by the atmosphere is small, and we do not need to alter S to account for 
atmospheric absorption. The absorbed solar energy at a particular location and time of day 
depends on the solar flux at 1 AU, S1AU, the heliocentric distance, r, the hemispheric albedo, 
Ah, and the cosine of the solar incidence angle, µ0 (where  µ0 is 0 when the sun is below the 
horizon). 

 

€ 

S =
S1AU
r2
(1− Ah )µ0 = SSSµ0 (3.1-4) 

where SSS is the absorbed insolation at the sub-solar point. µ0 depends on latitude, λ, sub-
solar latitude, λ0, and the hour angle, h (where h is the difference between the location's 
longitude and the subsolar longitude, defined to increase with time at any given location).  

 

€ 

µ0 =max 0,sinλ sinλ0 + cosλcosλ0 cosh( )  (3.1-5) 

The hemispheric albedo, Ah, is a local quantity, also known as the directional-hemispherical 
reflectance, hemispherical reflectance, or plane albedo (Hapke 1993). It is defined as the ratio 
of the total scattered power to the incident collimated power, 

€ 

(S1AU /r
2)µ0, and depends on 

the location on the surface and the incidence angle. It is useful to approximate the 
hemispheric albedo by its average over all incidence angles, or 

€ 

AS = 2 Ahµ0dµ0∫ , where AS is 
known as the spherical reflectance, spherical albedo, or the Bond albedo (note, however, that 
Bond albedo is strictly defined for an entire surface). For typical phase functions in the outer 
solar system, substituting AS for Ah tends to slightly underestimate solar heating for direct 
illumination and overestimate solar heating for large incidence angles. Since there is 
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typically large uncertainty in the values of AS or Ah due to uncertain phase functions, this 
distinction is usually ignored. 

The second term of Eq. (3.1-3) represents thermal energy emitted by the substrate. For a 
physical surface, this term might include such effects as self-heating from crater sides 
(Spencer 1990; Rozitis and Green 2011). In VT3D the emissivity, ε, is treated as a parameter 
that defines the power per area lost by thermal emission. Since ε can vary with location and 
time, it can be used to encompass these more subtle physical effects. 

The final term of Eq. (3.1-3) represents thermal conduction from the substrate. If the 
substrate just below the interface is warmer than the surface temperature (dT/dz < 0), then 
conduction expressed by this term warms the surface. 

3.2 Areas I and III : Analytic approximation and initialization bare areas  

This section expands on key results of Paper I. The purpose is to introduce variables that 
will be used later, and to show the equations that will be used to initialize numerical 
calculations. For more discussion of the derivation, see Paper I.  

If the solar insolation, S, at latitude λ and longitude φ is a known function of time, t, with 
period P, then it can be approximated as a sum of M+1 sinusoidal terms  

 S(λ,φ, t) = Re Ŝm (λ,φ)e
imωt

m=0

M

∑
"

#
$

%

&
'  (3.2-1) 

where ω = 2π / P  is the frequency of the diurnal or seasonal forcing, and Ŝm λ,φ( ) are the 
complex sinusoidal coefficients, with the hat indicating complex quantities. The coefficients 
are derived from the insolation in an expression closely related to the Fourier transform: 

 Ŝm λ,φ( ) = 1
P

S(λ,φ, t)e−imωt dt
0

P
∫  (3.2-2) 

A common application is diurnal forcing. For areas in permanent darkness, the solution is 
trivially 

€ 

ˆ S m (λ,φ) = 0 . For others, the diurnally averaged insolation can be expressed 
analytically (e.g., Levine et al. 1977). One first finds the maximum hour angle of 
illumination, hmax, (hmax = π for areas of constant illumination) 

 

€ 

coshmax =min −tanλ tanλ0,1( ) (3.2-3) 

where λ is the latitude and λ0 is the sub-solar latitude, as before. The average insolation is a 
real quantity, so written without the hat, and is given by 
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€ 

S0 =
sinλ sinλ0hmax + cosλcosλ0 sinhmax

π
SSS  (3.2-4a) 

The decomposition of the solar forcing can also be written analytically. For a location that 
has hour angle h0 at time t = 0, the first term is  

 

€ 

ˆ S 1 =
2sinλ sinλ0 sinhmax

π
+

cosλcosλ0 hmax + sinhmax coshmax( )
π

$ 

% 
& 
& 

' 

( 
) 
) 
SSSe

ih0  (3.2-4b) 

and, for m > 1, 

€ 

ˆ S m =
2sinλ sinλ0 sinmhmax

mπ
+

2cosλcosλ0 j coshmax sinmhmax − sinhmax cosmhmax( )
π m2 −1( )

% 

& 
' 
' 

( 

) 
* 
* 
SSSe

imh0 (3.2-4c) 

If the latitude of the surface element or the sub-solar latitude are near equatorial, then the 
solar terms are dominated by the first two terms, then diminish quickly with higher order; at 
the equator, the magnitudes of the terms are proportional to 1, π/2, 2/3, 0, –2/15, etc., (Paper 
I).  Fig. 3-1 shows an example of the decomposition of insolation for a body with a sub-solar 
longitude of 2.24° and at a latitude of +30° into a constant plus one term (dashed) or seven 
terms (dot-dashed). 

Insert fig 3-1 here. 
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Fig 3-1. Solid gray: exact calculation of insolation on a bare spot at 9.5 AU 
with A = 0.6, at latitude 30°, a sub-solar latitude of 2.24°, and an hour angle at 
zero phase of -6 hours (-90°). The off-center maximum heating was chosen to 
force complex coefficients of the sinusoidal expansion. Dashed: sinusoidal 
approximation with M=1, which captures the approximate phase and 
amplitude of the solar forcing. Dot-dashed: sinusoidal approximation, with 
M=7.  

As discussed in more detail in Paper I, the temperature can be written in terms of 
sinusoidal terms as well. If the density, specific heat, and thermal conductivity are constant 
with depth, then the solution to the diffusion equation (Eq. 3.1-2) with flux specifying the 
lower boundary condition (Eq. 3.1-1) is the sum of damped waves with wavelength 

€ 

2π 2mZ  and e-folding distance of 

€ 

2mZ  (Fig. 3-2), where 

  Γ = kρc  (3.2-5) 

 

is the thermal inertia (in cgs units of erg cm-2 K-1 s-1/2, or MKS units of tiu = J m-2 K-1 s-1/2), 
and 
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 Z = k
Γ ω

=
k
ρcω

 (3.2-6) 

is the skin depth, as defined by Spencer et al. (1989) and HP96. Other authors use definitions 
of the skin depths that differ by a constant from Eq. 3.2-6 (e.g., Mellon et al. 2008). 

The solution to the conduction equation (3.1-2) can be written as 

 

€ 

T(λ,φ,z,t) = −
F(λ,φ)

ω

ζ
Γ

+ T0(λ,φ) + Re ˆ T m (λ,φ)eimωt + imζ

m =1

M

∑
) 

* 
+ 

, 

- 
.  (3.2-7) 

where 

€ 

ζ = z /Z  is identical to the unitless scaled depth introduced by Spencer et al. (1989). 
Temperatures for cases where the thermal-physical properties are variable with depth are 
treated elsewhere (Fivez & Thoen 1996; Grossel & Depasse 1998; Karam 2000).  

Insert fig 3-2 here. 

 

Fig 3-2. Example thermal wave with 

€ 

ˆ T 0  = 74.3 K and 

€ 

ˆ T 1= 12.5 K at two phases 
(solid lines). The envelope of the damped waves is shown with dashed lines, 
and every quarter wavelength is shown with horizontal dotted lines.  

The goal is to use Eq. (3.2-7) to create initial conditions for numerical calculations in the 
three dimensions of latitude, longitude, and depth, given the coefficients for the temperature. 
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There are three ways to do this.  The simplest is to expand Eq. (3.1-3) to get the Fourier 
terms of the temperature directly, as described in Paper I and recapped here. The second is to 
follow this step by an adjustment of the average temperature, to ensure time-averaged energy 
balance. The third is to expand into Fourier terms of (T4).   

The average temperature, 

€ 

T0 , is found by substituting the sinusoidal forms of S and T into 
Eq. (3.1-3) and taking the first-order, time-averaged component, resulting in Eq. (3.2-8). This 
simply states that the mean temperature balances the mean solar insolation and the flux at the 
lower boundary condition.  

 0 = S0 λ,φ( )
Insolation
 

−εσ T0 λ,φ( )"# $%
4

Emission
  

+ F λ,φ( )
Lower boundary flux
   (3.2-8) 

The temperature coefficients, 

€ 

ˆ T m , are found for each m by also substituting S and T into 
Eq. (3.1-3), taking the appropriate derivatives (

€ 

d /dt →imω , 

€ 

d /dz→ imZ −1), and taking 
only those terms proportional to exp(imωt). The results are most simply expressed by 
defining the following variables, which represent the derivative of energy flux or heating 
with respect to temperature (in cgs units of erg cm-2 s-1 K-1) for the fundamental frequency: 

 

€ 

ΦS = ωΓ (3.2-9a) 

 

€ 

ΦE (T) = 4εσT 3 (3.2-9b) 

As described in Paper I, a system where ΦS is zero has temperatures that track the solar 
forcing, while positive ΦS serves to dampen the amplitude of the temperature variation and 
introduce a lag. The temperature variation ( T̂m ) as a function of the solar variation for bare or 
volatile-covered area is found from: 

 
  

€ 

imΦS
Conduction
   +ΦE (T0)

Emission
   

# 

$ 
% 
% 

& 

' 
( 
( 

ˆ T m = ˆ S m
Insolation
  (3.2-10) 

The temperature is then calculated from 

€ 

T0  and T̂m  from Eq. (3.2-7). At this point, the 
value of 

€ 

T0  can be adjusted downward so that the time-average thermal emission equals the 
sum of the insolation and internal heat flux. 

Eq. (3.2-8) overestimates mean temperatures, with the discrepancy being worse with 
larger peak-to-peak temperature variations, because the time average of T 4  is larger than 

€ 

T0
4 .  

€ 

T0  can be adjusted downward once an estimate of the peak-to-peak variation is found, as 
described below. 
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As described in Paper I, the time lag and smaller temperature variation can be described 
by a dimensionless parameter, ΘS.  

 ΘS (T ) =
ΦS

ΦE (T0 ) / 4
=

ωΓ
εσT0

3  (3.2-11) 

The ratio ΘS=4ΦS/ΦE is essentially the thermal parameter of Spencer et al. (1989), but 
defined at the time-averaged local temperature, rather than at the subsolar temperature. As in 
Paper I, ΘS can be used to quantify the shift and decrease in amplitude of the response to 
solar forcing (Eq. 3.2-12). See Paper I for more discussion on the interpretation of Eq. (3.2-
12) in terms of real quantities. 

 T̂m =
Ŝm

ΦE (T0 )
4

4+ imΘS

 (3.2-12) 

Figure 3-4 shows an example of the initial temperature at the surface for a purely 
sinusoidal wave (M = 1) and for M = 7 given the same conditions as in Fig 3-3. The 
combination of a 22.6 hour period and Γ = 16 erg cm-2 s-1/2 K-1 gives ΘS = 6.0. 

Insert fig 3-3 here. 
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Fig 3-4. Example surface temperatures for the insolation shown in Fig 3-2, 
with unit emissivity. The result of the numerical integration is shown as solid, 
thick gray. Initial approximations to the temperature are shown for M = 1, 
without an adjustment of 

€ 

ˆ T 0  to balance energy fluxes (dashed), M = 7, 
without an adjustment of 

€ 

ˆ T 0  (dash-dot), and M = 7 with an adjusted value of 

€ 

ˆ T 0 (triple-dot-dash), for a period of 22.6 hours and a thermal inertia of  
16 tiu (for a thermal parameter ΘS = 6.0).   

In some situations of large variation in the solar forcing and small values of ΘS, the 
linearization of T4 is poor, and it is better to expand in the emitted flux instead.  

 FE (λ,φ, t) ≡ εσT 4 = Re F̂ E
m (λ,φ)e

imωt

m=0

M

∑
#

$
%

&

'
(  (3.2-13) 

The mean term is found from Eq. (3.2-8): F0
E = S0 +F . Before, we expanded the emitted 

flux in terms of temperature, but now we expand temperature in terms of emitted flux: 

 T̂ m

T0
≈
F̂ E

m

4F0
E  (3.2-14) 
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The conduction is a now a small correction to the thermal emission, so the error in the 
linearization is confined to the second-order term. Substituting Eq. 3.2-14 into the original 
equation for energy balance, Eq. (3.1-3), gives: 

 0 = Ŝm
Insolation
 − F̂m

E

Emission
 −

k im
Z

T̂m
Conduction
 

 (3.2-15) 

which, with some manipulation, gives an expression similar to Eq. (3.2-10): 

 F̂m
E

Emission
 + im ΘS

4
F̂m

E

Conduction
  

= Ŝm
Insolation
  (3.2-16) 

and one similar to Eq. (3.2-12): 

 F̂m
E = Ŝm

4
4+ imΘS

 (3.2-17) 

From FE, calculate the surface temperature and its Fourier terms from T = (FE /εσ )1/4 . In 
some cases, more Fourier terms (M = 30 to 100) need to be used than when calculating the 
temperature terms directly, to avoid ringing at sharp transitions in the solar forcing.  

The analysis in this section can be used for more complex insolation patterns as well. 
Any insolation pattern, no matter how complex, can be decomposed with a Fast Fourier 
Transform (FFT) algorithm. If the forcing happens on two different frequencies, such as 
seasonal and diurnal, then the sums (in e.g., 3.2-7) can be performed over a discrete set of m, 
not necessarily contiguous. For the specific case of combined seasonal and diurnal variation, 
we can often decouple the two timescales (Young 2012). First, calculate the seasonal thermal 
wave as a function of time, using longitudinally averaged insolation. If the seasonal and 
diurnal skin depths are sufficiently different, then the diurnal wave is superimposed on the 
uppermost portion of the seasonal one, and the seasonal wave can be treated as a linear 
contribution to the diurnal wave. This is mathematically identical to an internal heat flux 
term, F, already introduced. In other words, the seasonal thermal heat flow to and from 
deeper layers affects the diurnal temperatures by affecting the energy flux at the lower 
boundary. This works because the orbital periods in the outer solar system are orders of 
magnitude longer than the rotational periods. Pluto, for example, has an orbital period of 248 
years and a rotational period of only 6.4 days. The seasonal scale height is larger than the 
diurnal one by (248 years/6.4 days)1/2, or a factor of 119.  A typical depth for the lower 
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boundary is 6 diurnal skin depths. This is only 0.05 times the seasonal skin depth, or a tenth 
of a tick in Fig 3-2, clearly in the linear regime of the seasonal wave. 

3.3 Numerical solution for a single bare location (Area I or III) 

For some applications, the results of the analytic calculations may be adequate. For 
others, higher accuracy is needed. Even for these applications, the analytic solution provides 
an initial condition that improves convergence.  

The continuous equations of Section 3.1 are converted to a form suitable for computation. 
This is done by discretizing the variables into L locations on the surface (indexed by l), J + 1 
layers within the substrate (indexed by j), and choosing time step schemes that take the state 
from time n to time n + 1 (i.e., no leap-frogging time step schemes). The general approach is 
to treat the time step as a finite-difference diffusion problem, with flux conditions at both the 
upper and lower boundaries (Press et al., 1992; Haltiner and Williams 1984).  

Figure 3-5 represents the discretization of the numerical model. The substrate is divided 
into J+1 layers, indexed with j = 0 for the top-most layer to j = J for the lowest layer, and 
defined by a depth zj and a thickness Δj. Depths (z) are less than or equal to zero, and become 
more negative with increasing index. Thicknesses of the layers (Δj) are positive. Thickness 
can vary with index j to speed computation (Table 2). All layers except the top layer extend 
from 

€ 

z j −Δ j /2 to 

€ 

z j + Δ j /2 , with temperature Tl,j,n defined at the center of the layer. The 
top layer extends from z = 0 to z = –Δ0, with the temperature Tl,0,n defined at the top of the 
layer. If the layering is the same across the globe, then 

€ 

z j  and 

€ 

Δ j  are functions only of j. 
Density, specific heat, and thermal conductivity are constant within a layer, but can vary with 
both depth and location, with values 

€ 

ρl, j , 

€ 

cl, j , and 

€ 

kl , j . Substrate temperature varies with 
location, depth, and time. Temperatures are continuous, and are linear between zj and the 
layer boundaries. Conducted fluxes (

€ 

k dT /dz) are continuous at layer boundaries. 

The use of layers that are free to vary their thickness with depth improves efficiency, 
since the computational time is proportional to the number of layers, requiring only a little 
additional computation at the beginning of a calculation. A common layering approach uses a 
geometrically increasing thickness, where the thickness of each layer is some factor larger 
than the layer above (typically a factor of 1.1 to 1.5, e.g., Hansen and Paige 1996; Keiffer 
2013). When modeling a diurnal wave, this allows modest computational savings, since 
geometrically thickening layers can span down to six skin depths with 2-3 times fewer layers 
than for layers of equal thickness. Unevenly spaced layers is even more important for 
practical modeling of the diurnal and seasonal wave simultaneously. Because the skin depth 
is proportional to ω-1/2, the ratio of diurnal and seasonal skin depths equals the square root of 
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the ratio of their periods, if thermophysical properties are constant with depth. This is 
important even for Mars, where the orbital period is roughly 669 times the rotation period, so 
the seasonal skin depth is roughly 25 times the diurnal skin depth (if thermophysical 
properties are constant with depth). In the outer solar system, the orbital periods can be quite 
long, so that the equivalent ratio of seasonal to diurnal skin depths is 88 for Enceledus, 118 
for Pluto, and 700 for Eris. If the thermal conductivity is greater at depth, these ratios can be 
even larger. Here the savings for geometrically thickening layers is dramatic, allowing 
calculation to 100, 1000, or even 10,000 diurnal skin depths with computational savings of 
~20, ~100, or ~1000 respectively. For example, layers that begin with a thickness of 0.25 
diurnal skin depths can reach 10,000 diurnal skin depths with only 41 layers for a thickening 
factor of 1.5, or with 87 layers for a thickening factor of 1.2. 

Insert fig 3-5 here. 
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Fig. 3-5. Schematic of the layering scheme and energy fluxes. Top: layer j = 0  
for bare areas (areas I and III). Middle: interior layers, valid for j = 1 to J–1. 
Bottom: j = J. Thick arrows near the left side of the plot represent energy 
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fluxes due to emission, insolation, or conduction. Thin arrows near the middle 
of the plot indicate layer depths and distances between layers. Thick lines with 
large dots near the right side of the plot schematically represent temperatures. 
Temperatures are tabulated at the top of layer 0, and at the middle of all other 
layers, and are assumed to be linear with z within the layer. Conductive flux  
( ) is continuous across layer boundaries.  

The goal is to cast the equations as matrix operations to take advantage of the fast array 
operations that are available in many modern computer languages. The continuous equations 
of Section 3.1 can be cast as explicit equations (Fig 3-6), where the new temperature depends 
explicitly only on the previous temperature (Press et al. 1992; Haltiner and Williams 1984). 
The explicit expressions for diffusion equations are only accurate to first order in the time 
step, Δt, and require small time steps for stability. For explicit equations, the timesteps must 
satisfy (Δt / P) ≤ (Δz / Z )2 / 4π , or slightly more than 200 steps per period for a vertical 
sampling of 4 layers per skin depth.  

The explicit linearized problem can be described with a (J +1)× (J +1)  tridiagonal 
matrix (Fig. 3-6). The new temperatures depend on the current temperatures in the layer 
above (with matrix element α, mnemonically "a for Above"), the current temperature in that 
layer (with matrix element η, mnemonically for "h for Here"), and the current temperatures 
in the layer below (with matrix element β, mnemonically "b for Below").  

Insert fig 3-6 here. 

€ 

k dT /dz
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Fig 3-6. Schematic of an explicit time-step from time n to time n+1 for a 
location l in Area I (bare, isolated), II (volatile-covered, isolated) or III (bare, 
interacting). Dark gray elements (the temperatures and the elements of the 
upper row) change with each time step. Light gray elements are independent 
of time. White elements are zero.   

Accuracy and stability can be improved by using implicit (Crank-Nicholson) methods, 
which solve equations involving both the current and the next temperatures (Fig. 3-7), at the 
cost of computational complexity (Press et al. 1992; Haltiner and Williams 1984). The 
Crank-Nicholson scheme results in an equation that is accurate to second order in the time 
step, and satisfies von Neumann stability criteria for all sizes of time step. The implicit 
(Crank-Nicholson) problem uses two (J +1)× (J +1)  tridiagonal matrices, with primed 
elements on the right-hand side of the equation and double-primed elements on the left. The 
goal of this section is to derive the matrix elements, which are summarized in Tables 3 to 5.  

Insert fig 3-7 here. 
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=

€ 

×

€ 

+

€ 
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Fig 3-7. Schematic of an implicit time-step from time n to time n+1 for a 
location l in Area I (bare, local), II (volatile-covered, local) or III (bare, 
isobaric), using the Crank-Nicholson scheme. Dark gray elements (the 
temperatures and the elements of the upper row) change with each time step. 
Light gray elements are independent of time. White elements are zero. The 
variables in brackets refer to the vectors of length J or J–1 indicated by the 
double-arrowed lines.  

Table 3. matrix elements for j =  0, Area I and III (bare) 

Matrix equation Matrix elements 
Explicit 

€ 

Tl,0,n+1 =ηl,JTl ,0,n + βl ,0Tl,1,n + γ l ,0,n  

€ 

βl ,0,n =
Φl ,0

K ,B

Φl ,n
T

 
 

€ 

ηl,0,n =1− βl,0,n  
 

γ l ,0,n =
S l ,n ' −εl ,nσ Tl ,0,n( )

4

Φl ,n
T

 
Implicit (Crank-Nicholson) 

€ 

" " η l,0Tl ,0,n+1 + " " β l ,0Tl,1,n+1 = " η l,0Tl ,0,n + " β l,0Tl ,1,n + γ l ,0,n  

€ 

" β l ,0,n =
βl ,0,n
2
; " " β l,0 = −

βl ,0,n
2  

€ 

" η l,0 =1− " β l ,0,n; " " η l, j =1+ " " β l,0,n  

€ 

Φl,0
K ,B  is given by Eq. 3.3-9. 

€ 

Φl,n
T

 
is given by 3.3-17. 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ € 

€ 

×

€ 

" " η l,0,n

€ 

" " β l ,0,n

€ 

" " α l ,1.. J[ ]

€ 

" " η l ,1.. J[ ]

€ 

" " β l,1.. J −1[ ]

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ 

€ € 

€ 

Tl,0,n

€ 

×

€ 

Tl ,1.. J ,n[ ]

€ 

γ l,0,n

€ 

γ l,J

€ 

" η l,0,n

€ 

" β l ,0,n

€ 

" α l ,1.. J[ ]

€ 

" η l ,1.. J[ ]

€ 

βl,1.. J −1[ ]

€ 

+

€ 

Tl,0,n+1

€ 

=

€ 

Tl ,1.. J ,n+1[ ]
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Table 4. Matrix elements for j = 1 .. J–1, all Areas 

Matrix equation Matrix elements 
Explicit 

€ 

Tl, j ,n+1 = α l, jTl , j−1,n +ηl , jTl, j ,n + βl , jTl, j+1,n  

€ 

α l, j =
τ

δ l , j
A δ l , j  

€ 

βl , j =
τ

δ l , j
B δ l, j  

€ 

ηl, j =1−α j,l − βl, j  Implicit (Crank-Nicholson) 

€ 

" " α l, jTl , j−1,n+1 + " " η l , jTl, j ,n+1 + " " β l , jTl, j+1,n+1 =

" α l, jTl , j−1,n + " η l , jTl, j ,n + " β l , jTl, j+1,n
 

!αl , j =
αl , j
2
; !!αl , j = −

αl , j
2  

!βl , j =
βl , j
2
; !!βl , j = −

βl , j
2  

€ 

" η l, j =1− " α j ,l − " β l , j; " η l , j =1− " α j,l − " β l, j  
Table 5. Matrix elements for j = J, all Areas 

Matrix equation Matrix elements 
Explicit 

€ 

Tl,J ,n+1 = α l,JTl ,J −1,n +ηl ,JTl,J ,n + γ l ,J  

€ 

α l,J =
τ

δ l ,J
A δ l ,J  

€ 

ηl,J =1−αJ ,l  

γ l,J =
Fl,J

B

Φl, j
H  

Implicit (Crank-Nicholson) 

€ 

" " α l,JTl ,J −1,n + " " η l ,JTl,J ,n =

" α l,JTl ,J −1,n + " η l ,JTl,J ,n + γ l ,J
 

!αl ,J ,n =
αl , j ,n
2
; !!αl ,J ,n = −

αl , j ,n
2  

!ηl ,J =1− !αl ,J ; !ηl ,J =1− !αl ,J  
 

€ 

Φi, j
H  is given by Eq. 3.3-5.  

To find the energy balance in layer 0, integrate the conduction equation (Eq. 3.1-2) over 
the top layer, from z = –Δ0 to z = 0. Add this to the energy balance equation (Eq. 3.1-3) to 
get:  

 ρl ,0cl ,0

∂T
∂t
dz

−Δ0

0

∫

Enthalpy, layer 0
! "## $##

= S l ,n '

Insolation
!

−εl ,n 'σTl ,0,n '
4

Emission
! "# $#

− k dT
dz z=−Δ0

Conduction
! "# $#

  (3.3-1) 

where the overbar indicates the time-averaged value over the time step tn to tn+1. The 
subscript for time in the insolation and emission terms is n' to indicate that it varies ove rthe 
time interval from n to n+1. The change in enthalpy over layer 0 can be approximated as a 
function of the temperature sampled at the top of the layer: 
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€ 

ρl,0cl ,0
∂T
∂t
dz

−Δ0

0

∫ ≈ Φl ,0
H Tl,0,n+1 −Tl,0,n( )  (3.3-2) 

where 

€ 

Φl, j
H  has units of erg cm-2 s-1 K-1, with the superscript H representing heat or enthalpy. 

Eq. 3.3-2 samples the temperature of layer 0 at the top of the layer, If the temperature 
integrated over layer 0 instead, then the slope of the temperature through layer 0 needs to be 
included; this depends on 

€ 

Tl,1,n , and is a second-order effect that I ignore here. 

Defining a unitless measure of the time step, τ, (radians per timestep): 

 

€ 

τ = tn+1 − tn( )ω  (3.3-3) 

and a unitless measure of the thickness of layer j expressed as a fraction of the skin depth 
(c.f., Spencer et al. 1989)  

 

€ 

δ l , j =
Δ j

Zl, j
 (3.3-4) 

gives 

 

€ 

Φl, j
H =

ρl , jcl, j
tn+1 − tn

Δ 0 =
δ l, jΦS (Γl , j )

τ
 (3.3-5) 

where 

€ 

ΦS  is defined in Eq. (3.2-9a) and only depends on the physical properties of the 
problem. In contrast, 

€ 

Φi, j
H  additionally includes non-dimensional factors that depend on the 

numerical choices of τ and 

€ 

δ l , j . In general, I represent the fluxes-per-temperature that depend 
only on the physical properties with a single subscript for the physical process (e.g., S or H), 
and the ones that are discretized and depend on τ and 

€ 

δ l , j  with the superscript for the process 
and a subscript for the indices of location and time. 

The average solar insolation between tn and tn+1, Sl,n ' , depends on the geometry 
(heliocentric distance, and subsolar latitude and longitude) and the albedo. If the insolation is 
evaluated at the start of the timestep ( Sl,n ' ≈ Sl,n ), then the results will be skewed in time by 
half a timestep, which is acceptable when timesteps are small (e.g., Spencer et al. 1989), but 
not at the larger timesteps allowed by the Crank-Nicholson method. A simple correction is to 
average the insolation at the start and end of the timestep  

 S l ,n ' ≈ (S l ,n + S l ,n+1) / 2  (3.3-6) 
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The average thermal emission at the midpoint of the time interval is found by evaluating 
the first-order Taylor expansion of 

€ 

T 4  at the average temperature for the time interval,

€ 

(Tl ,0,n+1 −Tl ,0,n ) /2, assuming that the emissivity is constant over the time interval.  

 εl ,n 'σTl ,0,n '
4 = εl ,nσ Tl ,0,n( )

4
+Φl ,n

E Tl ,0,n+1 −Tl ,0,n( )  (3.3-7) 

where 

€ 

Φl,n
E  has units cgs of erg cm-2 s-1 K-1, with the superscript E representing emission: 

 Φl,n
E = 2εl,nσ Tl,0,n( )3 =

ΦE Tl,0,n( )
2

 (3.3-8) 

where ΦE  is defined in Eq. (3.2-9b). As with the enthalpy term, 

€ 

ΦE  only depends on the 
physical properties of the problem, and 

€ 

Φi, j
E  is the value used in the descretized calculation. 

Unlike the enthalpy term, 

€ 

ΦE  and 
 
Φl ,n
E

 changes with each time step.  

The next term in Eq. (3.3-1) is the thermal conduction. For explicit equations, the 
derivative is evaluated at the start of the time interval: 

 

€ 

k dT
dz z=−Δ0

$ 

% 
& & 

' 

( 
) ) ≈ Φl,0

K ,B Tl ,0,n −Tl ,1,n( ) (3.3-9) 

where 

€ 

Φl, j
K ,B  has cgs units of erg cm-2 s-1 K-1. The superscript K represents thermal 

conduction, and the superscript B represents conduction from the layer below. The expression 
for 

€ 

Φl, j
K ,B  is

  

€ 

Φl, j
K ,B =

kl , j
Δ l , j
B =

ΦS (Γl, j )
δ l, j
B  (3.3-10) 

where 

€ 

Δ l, j
B  is essentially the distance to the middle of the layer below, modified to ensure 

continuity of fluxes at layer boundaries: 

 
  

€ 

Δ l, j
B =

Δ j

2
+
kl, j
kl, j+1

Δ j+1

2
, j =1…J −1 (3.3-11) 

and the unitless distances used for calculating thermal gradients from the layer below is 

 

€ 

δ l , j
B =

Δ l, j
B

Zl, j
 (3.3-12) 

Even if zj and Δj are constant from one location to the next, the dependence on k means that 

€ 

Δ l, j
A   and 

€ 

Δ l, j
B  may vary with location. Again, 

€ 

ΦS  only depends on the physical properties of 
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the problem, and 

€ 

Φi, j
K ,B  additionally includes non-dimensional factors that depend on the 

numerical implementation. 

The more accurate and more stable Crank-Nicholson scheme (Press et al. 1992) replaces 
the derivative in Eq (3.3-8) with the average of the derivatives calculated at the start and end 
of the time step (at time tn  and time tn+1): 

 k dT
dz z=−Δ0

#

$
%%

&

'
(( ≈
1
2
Φl,0

K ,B Tl,0,n −Tl,1,n( )+ 12
Φl,0

K ,B Tl,0,n+1 −Tl,1,n+1( )  (3.3-13) 

The explicit discretized equation for energy balance of layer 0 becomes 

 Φl ,0
H Tl ,0,n+1 −Tl ,0,n( )

Enthalpy, layer 0
! "### $###

= S l ,n '

Insolation
!

−εl ,nσ Tl ,0,n( )
4
−Φl ,n

E Tl ,0,n+1 −Tl ,0,n( )
Emission

! "###### $######
−Φl ,0

K ,B Tl ,0,n −Tl ,1,n( )
Conduction

! "### $###
 (3.3-14) 

while the implicit equation is 

 

Φl ,0
H Tl ,0,n+1 −Tl ,0,n( )

Enthalpy, layer 0
! "### $###

= S l ,n '

Insolation
!

−εl ,nσ Tl ,0,n( )
4
−Φl ,n

E Tl ,0,n+1 −Tl ,0,n( )
Emission

! "###### $######

−
1
2
Φl ,0
K ,B Tl ,0,n −Tl ,1,n( )− 1

2
Φl ,0
K ,B Tl ,0,n+1 −Tl ,1,n+1( )

Conduction
! "######### $#########

  (3.3-15) 

Collecting terms for the explicit equation (only 

€ 

Tl,0,n+1 on the left-hand side) results in: 

 Φl ,0
H +Φl ,n

E( )Tl ,0,n+1 = Φl ,0
H +Φl ,n

E −Φl ,0
K ,B( )Tl ,0,n + Φl ,0

K ,B( )Tl ,1,n + S l ,n ' −εl ,nσ Tl ,0,n( )
4
 (3.3-16a) 

and for the implicit equation (

€ 

Tl,0,n+1 and 

€ 

Tl,1,n+1  on the left-hand side) results in: 

 
Φl ,0
H +Φl ,n

E +
Φl ,0
K ,B

2

"

#
$
$

%

&
'
'Tl ,0,n+1 −

Φl ,0
K ,B

2

"

#
$
$

%

&
'
'Tl ,1,n+1 = Φl ,0

H +Φl ,n
E −

Φl ,0
K ,B

2

"

#
$
$

%

&
'
'Tl ,0,n +

Φl ,0
K ,B

2

"

#
$
$

%

&
'
'Tl ,1,n

+ S l ,n ' −εl ,nσ Tl ,0,n( )
4

 (3.3-16b) 

The goal is to now turn Eq. (3.3-16a) and (3.3-16b) into equations that express the matrix 
multiplication shown in Fig. 3-6 and Fig. 3-7, respectively. For the top layer, the matrix 
equations are  

 

€ 

Tl,0,n+1 =ηl,0Tl ,0,n + βl ,0Tl,1,n + γ l ,0,n   (3.3-17a) 

for explicit and  
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€ 

" " η l,0Tl ,0,n+1 + " " β l ,0Tl,1,n+1 = " η l,0Tl ,0,n + " β l,0Tl ,1,n + γ l ,0,n  (3.3-17b) 

for implicit time step schemes. Divide Eq. (3.3-15) by the total flux per temperature 

  

€ 

Φl,n
T =Φl ,0

H +Φl,n
E

,  (3.3-18) 

with units erg cm-2 s-1 K-1, where the superscript T represents total, to get the matrix elements 
for j = 0, Areas I and III (Table 3). The forcing is a function of time, and is subscripted n. 
Because the derivative of the thermal emission depends on time, the matrix elements β l,0,n 
and η l,0,n also depend on time. 

For interior layers, the integral form of the diffusion equations  (Eq. 3.1-2), averaged over 
time step n is 

 

  

€ 

ρc ∂T
∂t
dz

z j −Δ j / 2

z j +Δ j / 2

∫
Enthalpy of layer j
       

= k dT
dz z j +Δ j / 2

' 

( 
) ) 

* 

+ 
, , − k dT

dz z j −Δ j / 2

' 

( 
) ) 

* 

+ 
, , 

Conduction
             

, j =1.. J −1 (3.3-19) 

where the overbar indicates the time-averaged value over the time step tn to tn+1. 

In the lowest layer, as in the interior layers, the net change in enthalpy of the layer is 
balanced by the difference between the flux entering from below and leaving from above 
(Fig. 3-5). For layer J, unlike for layers j = 1... J-1, the flux from below is specified as a 
lower boundary condition. The energy balance equation for the lowest layer is: 

 

  

€ 

ρc ∂T
∂t
dz

z j −Δ j / 2

z j +Δ j / 2

∫
Enthalpy of layer J
       

= k dT
dz z j +Δ j / 2

' 

( 
) ) 

* 

+ 
, , 

Conduction
       

+ Fl
Lower flux
 , j = J

                         

 (3.3-20) 

where Fl  is the heat flux at the lower boundary for location l.  

The change in enthalpy over layer j (j = 1.. J)  can be approximated as a function of the 
temperature sampled at the middle of the layer: 

 ρl , j cl , j
dT
dz
dz

z j −Δ j /2

z j +Δ j /2

∫ ≈ Φl , j
H Tl , j ,n+1 −Tl , j ,n( )  (3.3-21) 

The expressions for conduction into the layer above for from the layer j are similar to 
those into layer 0 from layer 1 (Eq. 3.3-9 and 3.3-13). For the explicit scheme, it is: 
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€ 

k dT
dz z j −Δ j / 2

$ 

% 
& & 

' 

( 
) ) ≈ Φl , j

K ,B Tl, j ,n −Tl, j+1,n( ) (3.3-22a) 

 

€ 

k dT
dz z j +Δ j / 2

# 

$ 
% % 

& 

' 
( ( ≈ Φl , j

K ,A Tl, j−1,n −Tl, j ,n( ) (3.3-22b) 

and for the Crank-Nicholson implicit scheme it is:  

 

€ 

k dT
dz z j −Δ j / 2

$ 

% 
& & 

' 

( 
) ) ≈

Φl, j
K ,B

2
Tl, j ,n −Tl, j+1,n( ) +

Φl , j
K ,B

2
Tl , j,n+1 −Tl , j+1,n+1( )  (3.3-23a) 

 

€ 

k dT
dz z j +Δ j / 2

# 

$ 
% % 

& 

' 
( ( ≈

Φl, j
K ,A

2
Tl, j−1,n −Tl, j ,n( ) +

Φl , j
K ,A

2
Tl , j−1,n+1 −Tl , j,n+1( )  (3.3-23b) 

where 

€ 

Φl, j
K ,B  is specified by Eq. (3.3-0) and  

 

€ 

Φl, j
K ,A =

kl , j
Δ l , j
A =

ΦS (Γl, j )
δ l, j
A  (3.3-24) 

  Δl, j
A =

Δ j

2
+
kl, j
kl, j−1

Δ j−1, j =1   (3.3-25a) 

 Δl, j
A =

Δ j

2
+
kl, j
kl, j−1

Δ j−1

2
, j = 2…J   (3.3-25b) 

and 

 

€ 

δ l , j
A =

Δ l, j
A

Zl, j
 (3.3-26) 

Substituting Eq. (3.3-21) and (3.3-22) into (3.3-19), the explicit equation for j = 1 .. J–1 is 

 

  

€ 

Φl, j
H Tl , j,n+1 −Tl , j,n( )

Enthalpy of layer j
         

=Φl, j
K ,A Tl , j−1,n −Tl , j,n( ) −Φl, j

K ,B Tl , j,n −Tl , j+1,n( )
Conduction

                 
 (3.3-27) 

and substituting Eq. (3.3-21) and (3.3-22) into (3.3-20), the explicit equation for the lowest 
layer, j = J, is 

 
  

€ 

Φl,J
H Tl ,J ,n+1 −Tl ,J ,n( )

Enthalpy of layer J
         

=Φl,J
K ,A Tl ,J −1,n −Tl ,J ,n( )

Conduction
         

+ Fl,J
B

Lower flux
  (3.3-28) 
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Similarly, substituting Eq. (3.3-21) and (3.3-23) into (3.3-19), the implicit equation for j 
= 1 .. J–1 is 

 

  

€ 

Φl, j
H Tl , j,n+1 −Tl , j,n( )

Enthalpy of layer j
         

=
Φl, j

K ,A

2
Tl, j−1,n −Tl, j ,n( ) +

Φl , j
K ,A

2
Tl , j−1,n+1 −Tl , j,n+1( )

$ 

% 
& 

' 

( 
) −

1
2
Φl,0

K ,B Tl ,0,n −Tl ,1,n( ) +
1
2
Φl,0

K ,B Tl ,0,n+1 −Tl ,1,n+1( )$ 

% & 
' 

( ) 

Conduction
                   

 (3.3-29) 

and substituting Eq. (3.3-21) and (3.3-23) into (3.3-20), the implicit equation for the lowest 
layer, j = J, is 

 

  

€ 

Φl,J
H Tl ,J ,n+1 −Tl ,J ,n( )

Enthalpy of layer J
         

=
Φl, j

K ,A

2
Tl, j−1,n −Tl, j ,n( ) +

Φl , j
K ,A

2
Tl , j−1,n+1 −Tl , j,n+1( )

Conduction
                   

+ Fl,J
B

Lower flux
  (3.3-30) 

Collect terms and divide by 

€ 

Φl, j
H , to get the matrix elements (Tables 4 and 5). For the 

interior layers, the matrix elements α l,j, β l,j and η l,j are independent of time. 

Fig. 3-8 compares the sinusoidal, explicit, and implicit calculations (at large and small 
timesteps) for a bare spot at 30 AU with A = 0.5, ε=1, and Γ = 2000 erg cm-2 s-1/2 K-1, at 
latitude of 30°, a sub-solar latitude of -30°, P = 10 days, and an hour angle at zero phase of -6 
hours (-90°). Calculations were performed on a vertical grid with 

€ 

δ l , j = δ l, j
A = δ l, j

B =1/4 , 
except for the upper layer, where 

€ 

δ l ,0 =1/8. At small time steps, the explicit and implicit 
calculations agree. The implicit temperatures calculated at large time steps are similar to 
calculations with small time. As expected from stability analysis (Haltiner & Williams 1984), 
the explicit temperatures with large time steps show large, unstable fluctuations after only 
two time steps, and are not plotted.  

Insert fig 3-8 here. 
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Fig 3-8. Surface temperatures as a function of phase, showing the benefit of a 
good initial condition. Top: Initial condition with M = 1 (one sinusoidal term), 
without an adjustment of T0 to balance energy fluxes. Middle: Initial condition 
with M = 7 (7 sinusoidal terms), without an adjustment of 

€ 

ˆ T 0 . Bottom: Initial 
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condition with M = 7, with an adjustment of 

€ 

ˆ T 0 (see note after Eq. 3.2-10).  
All plots show the converged calculation (thick gray line), calculations at 240 
time steps per period (think line), and calculations at 24 time steps per period 
(open circles, dashed line). _tempstep_1loc_bare_iter_m7.pro 

_tempstep_1loc_bare_m7.pro  _tempstep_1loc_bare_m1.pro  

Fig. 3-8 also compares the effect of the choices of three of the initial conditions shown in 
Fig 3-4. For the simplest, the single frequency sine-wave (M = 1) with no adjustment to the 
mean temperature, the numerical answer agrees well with the converged answer within 60° 
rotational phase (Fig 3-8, top); the other initial conditions agree with the converged answer 
even more quickly (within one time step, for the M=7 case with adjusted mean temperature). 
The calculated temperatures for both M = 1 and M=7 are too warm at the end of one period if 
the mean temperature for the initial condition was not adjusted (Fig 3-8, top and middle), but 
reaches the proper temperature with adjustment (Fig 3-8, bottom). All three cases shown 
have a similar convergence rate. Most of the gain is in the first period, with subsequent 
periods improving the solution by 12-20%. 

3.4 Matrix operations for single or multiple bare locations (Areas I and III) 

In this section, I present notes on how to solve the matrix equations in Figs. 3-6 and 3-7 
in a way that takes advantage of the fact that for many problems substrate properties are often 
constant with time and location. I show how the implicit and explicit equations can be 
computed as a single matrix operation for those locations which share common substrate 
properties. This speeds calculation because it avoids “for-loop” constructions, with a speed 
savings that depends on the computer language involved. This section also shows how to 
precompute the matrices associated with the substrate: both the elements for explicit 
calculations (the light gray elements in Fig 3-6, and the light-gray single-primed elements on 
the right-hand side of Fig 3-7), and the LU decomposition of the matrix needed for implicit 
calculation (the light gray double-primed elements on the left-hand side of the equation in 
Fig 3-7.). Since LU decomposition is the first of the two steps needed in solving a tridiagonal 
matrix (Press et al. 1997), precomputing the LU decompositon of the substrate portion of the 
tridiagonal matrix cuts computation time roughly in half.   

The key to these efficiencies is to separate the calculations for the uppermost layer (j = 0) 
from the lower layers (j = 1 to J). In addition to helping with the bare calculations, some of 
the notions introduced here will be required for implicit calculations of the interacting 
surfaces. 
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We separate the temperatures at a given location into a scalar describing the temperature 
of layer 0, Tl,0,n , and a row vector of length J describing the temperatures of interior layers, 
Tl,1..J ,n : 

   

€ 

Tl,1..J ,n = Tl,1,n,,Tl ,J ,n[ ]T  (3.4-1)  

With this separation, the timestep for Areas I and III can be written for the explicit 
timestep (Fig 3-6) as 

 

€ 

Tl,0,n+1

Tl ,1..J ,n+1

" 

# 
$ 

% 

& 
' =

ηl,0,n bl ,n
a l Sl

" 

# 
$ 

% 

& 
' ×

Tl,0,n
Tl,1..J ,n

" 

# 
$ 

% 

& 
' +

γ l,0,n
gl

" 

# 
$ 

% 

& 
'  (3.4-2) 

which is displayed more graphically in Fig 3-9. Tl,0,n  and Tl,0,n+1  are the scalar initial and final 
temperatures in the top layer. 

€ 

Tl,1..J ,n  and 

€ 

Tl,1..J ,n+1  are J-element column vectors with the 
initial and final temperatures in layers 1 to J. This notation separates the time-varying matrix 
elements (

€ 

ηl,0,n , 

€ 

bl,n ,

€ 

γ l,0,n ) from the ones that are constant with time (

€ 

a l , 

€ 

Sl , 

€ 

gl, ). bl,n is a J-
element row vector with one non-zero element 

    

€ 

bl,n = βl ,0,n ,0,,0[ ]  (3.4-3) 

€ 

a l , 

€ 

Sl  and 

€ 

gl, are constant for each timestep, and so are not subscripted with n. 

€ 

a l  is a J-
element column vector with one non-zero element.  

  a l = αl ,1,0,!,0!" #$
T

 (3.4-4) 

Sl is a  tridiagonal matrix whose J-1 lower elements are   

€ 

α l ,2,α l ,J[ ]; J diagonal 
elements are   

€ 

ηl ,1,ηl,J[ ]; and J-1 upper elements are   

€ 

βl ,1,βl,J −1[ ] .  gl is a J-element column 
vector with one non-zero element: 

 g l = 0,!,0,γ l ,J!" #$
T

 (3.4-5) 

 

 

€ 

J × J
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Fig 3-9. Graphical schematic of an explicit time-step from time n	  to time n+1	  
for a single non-interacting location l, such as Area I (bare, isolated), Area II 
(volatile-covered, isolated) or III (bare, interacting); Eq. (3.4-2). Compare 
with Fig 3-6. To simplify the graphic, the time and location subscripts are 
dropped (e.g., η0 for ηl,0,n). The temperature array is divided into the 
uppermost layer, T0, the next lower layer, T1, and remaining layers for j = 2..J, 
Tj. The elements of the substrate matrix S consist of the three arrays α2..J, η1..J, 
and β1..J-1. Darker elements with white lettering correspond to the dark gray 
elements in Fig. 3-6, and change with each time step. Lighter elements with 
black lettering correspond to the light gray elements in Fig. 3-6, and are 
independent of time. White elements are zero.  

Computation of Eq. (3.4-2) is displayed graphically in Fig 3-10. The uppermost 
temperature, 

€ 

Tl,0,n , is calculated by simple scalar arithmetic. The interior temperatures are 
calculated by matrix multiplication using a matrix that is likely to be time-independent, with 
additional terms added for T1 and TJ. 

 

T0 η0 β0 T0 γ0

T1 α1 T1

Tj = S X Tj +

γJ

tn+1 tn
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Fig 3-10. Graphical schematic of the implementation of an explicit time-step 
from time n	   to time n+1	   for a single non-interacting location); Eq. (3.4-2). 
Elements are labeled as in Fig 3-9.   

In many applications, the substrate properties and internal heat flux are assumed to be 
constant over much of the body. In that case, in Eq. 3.4-2, the substrate arrays, 

€ 

a l  and 

€ 

gl, and 
the substrate matrices, 

€ 

Sl , are independent of location l. In this case, it is particularly efficient 
to calculate an array of new temperatures in terms of old ones. If   

€ 

L{ } = l,m,{ }  (where m is 
simply a second location index, not to be confused with the order of Fourier decomposition 
in Section 3.2) represents the set of locations which share a common a L{ } ,  

€ 

S L{ } , and 

€ 

g L{ }, then we can write the temperatures in layer 0 as a row array of length L 

 T L{ },0,n = Tl ,0,n ,Tm ,0,n ,!
!" #$  (3.4-6) 

and the temperatures in the interior layers 1 .. J as a J × L matrix with J rows and L columns 
formed by the concatenation of L temperature arrays of length J: 

   

€ 

T L{ },1..J ,n+1 = Tl,1..J ,n+1,Tm,1..J ,n+1,[ ]  (3.4-7) 

The surface temperatures are listed as a single 1-D array covering all the locations, rather 
than as a rectangular matrix of longitude and latitude. This is to simplify the matrix 
expressions of multiple locations. In addition, this allows for other divisions of the surface 
rather than simply a rectangular division, which tends to have needlessly small surface 
elements near the poles. Tiling schemes that maintain similar areas per tile need π/2 fewer 
tiles than equirectangular tiling schemes.  

 

T0 = η0 T0 + β0 T1 + γ0

T1 α1 T0 T1

Tj = + S X Tj +

γJ

tn+1 tn
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The new temperatures can be calculated in a way that takes advantage of array arithmetic: 

   

€ 

T L{ },0,n+1 = ηl ,0,n ,ηm,0,n ,[ ]⋅ T L{ },0,n + βl,0,n,βm,0,n,[ ]⋅ T L{ },1,n + γ l ,0,n ,γm,0,n ,[ ]  (3.4-8a)  

 T L{ },1..J ,n+1 = S L{ } ⋅T L{ },1..J ,n +

α L{ },1T L{ },0,n

0

0

γ L{ },J

"

#

$
$
$

%

$
$
$

&

'

$
$
$

(

$
$
$

 (3.4-8b) 

The computation represented by Eq. (3.4-8) is represented graphically in Fig 3-11, where Eq. 
(3.4-8a) is represented by the portion above the dotted line, and Eq. (3.4-8b) is represented 
by the portion below the dotted line. 

 

Fig 3-11. Graphical schematic of the implementation of an explicit time-step 
from time n	   to time n+1	   for multiple non-interacting locations (Eq. 3.4-8). 
Elements are labeled as in Fig 3-9.   

With the division of temperatures into layer 0 and layer 1 .. J in Eq. (3.4-1), the implicit 
timestep for a single location for Areas I and III (Fig 3-7) can be written as 

 

€ 

˜ T l,0,n

˜ T l ,1..J ,n

" 

# 
$ 

% 

& 
' =

( η l,0,n ( b l ,n
( a l ( S l
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# 
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& 
' 

Tl ,0,n

Tl ,1..J ,n

" 

# 
$ 

% 

& 
' +

γ l ,0,n

gl

" 

# 
$ 

% 

& 
'   (3.4-9a) 

 

€ 

" " η l ,0,n " " b l ,n
" " a l " " S l

$ 

% 
& 

' 

( 
) 

Tl,0,n +1

Tl ,1..J ,n +1

$ 

% 
& 

' 

( 
) =

˜ T l ,0,n

˜ T l,1..J ,n

$ 

% 
& 

' 

( 
)   (3.4-9b) 

T0 = η0 T0 + β0 T1 + γ0

T1 α1 T0 T1

Tj = + S X Tj +

γJ

tn+1 tn
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€ 

Tl,0,n , 

€ 

˜ T l,0,n  and 

€ 

Tl,0,n+1 are the (scalar) initial, intermediate, and final temperatures in the top 
layer. 

€ 

Tl,1..J ,n , 

€ 

˜ T l,1..J ,n , and 

€ 

Tl,1..J ,n+1  are the J-element column vector with the initial, 
intermediate, and final temperatures in layers 1 to J. As with the explicit equation, this 
notation separates the time-varying matrix elements (

€ 

" η l,0,n , 

€ 

" " η l,0,n , 

€ 

" b l,n ,

€ 

" " b l,n ,

€ 

γ l,0,n ) from the ones 
that are constant with time (

€ 

" a l , 

€ 

" " a l , 

€ 

" S l , 

€ 

" " S l , 

€ 

gl). Similarly to Eq. (3.4-3), 

€ 

" b l,n  and 

€ 

" " b l,n  are J-
element row vectors with one non-zero element 

   

€ 

" b l,n = [ " β l ,0,n ,0,0] (3.4-10a) 

   

€ 

" " b l,n = [ " " β l ,0,n ,0,0] (3.4-10b) 

€ 

" a l  and 

€ 

" " a l  are J-element column vectors with one non-zero element (compare Eq. 3.4-4). Since 
they are constant with time, they are not subscripted with n. 

   

€ 

" a l = [ " α l ,1,0,0]
T  (3.4-11a) 

   

€ 

" " a l = [ " " α l ,1,0,0]
T  (3.4-11b) 

€ 

" S l  and 

€ 

" " S l  are 

€ 

J × J  tridiagonal matrices, also constant with time, whose J-1 lower 
elements are   

€ 

" α l ,2, " α l ,J[ ]  and   

€ 

" " α l ,2, " " α l ,J[ ]; J diagonal elements are    

€ 

" η l ,1,, " η l ,J[ ]  and  

  

€ 

" " η l ,1,, " " η l ,J[ ] ; and J-1 upper elements are   

€ 

" β l,1,, " β l,J −1[ ]  and   

€ 

" " β l,1,, " " β l,J −1[ ]  respectively.  gl is a 
J-element column vector with one non-zero element, defined the same as Eq. (3.4-5). The 
first half of the implicit calculation, Eq. (3.4-9a), is computed in the same way as the explicit 
calculation, Eq. (3.4-2). The second half of the implicit calculation, Eq. (3.4-9b) is a 
tridiagonal linear problem, shown graphically in Fig 3-12, and can be solved in time (J+1).  

 

Fig 3-12. Graphical schematic of an implicit time-step from an intermediate 
temperature to the temperature at time n+1	   for a single non-interacting 

η"0 β"0 T0 T0
α"1 T1 T1

S" X Tj = Tj

tn+1 inter.
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location, with local energy balance, such as Area I (bare, isolated), Area II 
(volatile-covered, isolated) or III (bare, interacting); Eq. (3.4-9b). Compare 
with Fig 3-7. The temperature array is divided into the uppermost layer, T0, 
the next lower layer, T1, and remaining layers for j = 2..J, TJ. The elements of 
the substrate matrix S" consist of the three arrays α"2..J, η"1..J, and β"1..J-1. 
Darker elements with white lettering correspond to the dark gray elements in 
Fig. 3-7, and change with each time step. Lighter elements with black lettering 
correspond to the light gray elements in Fig. 3-7, and are independent of time. 
White elements are zero.  

We treat Eq. (3.4-9b) as a banded tridiagonal matrix to take advantage of the fact that the 
terms 

€ 

" " a l  and 

€ 

" " S l  are constant with time. This is a special case of inversion by partitioning, 
whose solution is presented in Press et al. (1990; section 2.7). A similar problem was 
addressed by Xing-Bo (2009). This allows us to precompute the lower-upper (LU) 
decomposition of 

€ 

" " S l . The solution to Eq. (3.4-3b) can be written by defining two column 
vectors 

€ 

y l and zl,n of length J, and two scalars cl,n and dl,n: 

 

€ 

y l = " " S l
−1 × " " a l   (3.4-12a)  

 

€ 

z l,n = " " S l
−1 × ˜ T l,1..J ,n   (3.4-12b)  

 

€ 

cl,n = " " b l ,n ⋅ y l = " " β l ,0,n yl ,0  (3.4-12c)  

 

€ 

dl ,n = " " b l,n ⋅ z l ,n = " " β l,0,nzl,0,n  (3.4-12d)  

with which the temperatures at the next time step for location l are 

 

€ 

Tl,0,n +1 =
˜ T l,0,n − dl ,n

# # η l ,0 − cl,n
 (3.4-13a)  

 

€ 

Tl,1..J ,n+1 = z l ,n −Tl,0,n+1y l  (3.4-13b)  

This solution can be confirmed by direct substitution of Eqs. (3.4-13a,b) into Eq. (3.4-9b). 
The solution is shown graphically in Fig 3-13. Note that the only the time-independent 
substrate matrix needs to be inverted, and this can be done at the start of the computation, 
rather than for each time step. Furthermore, the array y is also independent of time. 
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Fig 3-14. Graphical schematic of the solution to the banded tridiagonal matrix 
(cf. Fig 3-12).   

y0 α"1

yj = S"-1 X

z0 T1

zj = S"-1 X Tj

intermediate

T0 – β"0 z0
T0 =

tn+1 η"0 – β"0 y0

T1 z0 y0 T0

tn+1

Tj = zj – yj X

tn+1
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For those locations with the same substrate properties (so that 
  

€ 

" " S L{ } = " " S l = " " S m and 

  

€ 

" " a L{ } = " " a l = " " a m), the solution can be calculated for several locations simultaneously, as with 
the explicit scheme. Define the intermediate temperatures in layer 0 as a row vector of length 
L 

   

€ 

˜ T L{ },0,n = ˜ T l ,0,n , ˜ T m, j ,n,[ ]  (3.4-14) 

and the intermediate temperatures in the interior layers 1 .. J as a J × L matrix: 

   

€ 

˜ T L{ },1..J ,n = ˜ T l,1..J ,n , ˜ T m,1..J ,n ,[ ]  (3.4-15) 

Define J column vector y{L}  (the same for all locations in {L} and independent of time, 
so that y{L} = yl = ym), a J × L matrix Z{L},n and row vectors cn, dn, and !!h0,n of length L:  

 y
L{ }
= y

l
= y

m
!= !!S

L{ }
−1 × !!a

L{ }
  (3.4-16a)  

 Z{L},n = zl,n,zm,n,!!" #$= %%S{L}
−1 !T{L},1..J ,n  (3.4-16b)  

   

€ 

cn = cl ,n,cm,n,[ ]  (3.4-16c)  

   

€ 

dn = dl,n ,dm,n ,[ ]  (3.4-16d)  

   

€ 

" " h 0,n = " " η l,0,n, " " η m,0,n ,[ ]  (3.4-16e)  

The new temperatures are then 

 

€ 

T L{ },0,n+1 =
˜ T L{ },0,n −dn

# # h 0,n − cn
  (3.4-17a)  

 T
L{ },1..J ,n+1

= Z
L{ },n

− y
L{ }
×T

L{ },0,n+1
  (3.4-17b)  

where y
L{ }
×T

L{ },0,n+1
is an outer product of a J-length column vector and an L-length row 

vector, yielding a J × L matrix obtained by  

 y
L{ }
×T

L{ },0,n+1
= T

l ,0,n+1y{L},Tm ,0,n+1y{L},!
"
#

$
%  (3.4-18) 
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The graphical schematic is shown in Fig 3-14. 

 

Fig 3-14. Graphical schematic of the solution to the banded tridiagonal matrix 
for mutliple locations.  

y0 α"1

yj = S"-1 X

z0 T1

zj = S"-1 X Tj

intermediate

T0 – β"0 z0
T0 =

tn+1 η"0 – β"0 y0

T1 z0 y0 T0

tn+1

Tj = zj – yj X

tn+1
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4. VT3D for local volatile-covered locations (Area II) 

In this section, I consider locations that have volatiles on their surfaces, but for which the 
energy balance is essentially local. For worlds where the surface pressure is too low to 
effectively transport volatiles over the surface, the transport of energy, through latent heat of 
sublimation and deposition, does not effectively influence on the surface temperatures. This 
is the case on Io, and almost certainly the case on the large volatile-covered Kuiper-belt 
objects when far from perihelion. These are the isolated, volatile-covered areas (Area II) in 
Fig 2-2. 

Within the substrate, the physics of thermal conduction and the lower boundary condition 
for the volatile covered locations (Area II) is identical as for the bare locations (Areas I and 
III, Section 3), and will not be repeated here. At the surface, on the other hand, the energy 
equation contains two new terms, one related to the energy needed to heat the volatile slab, 
and another related to latent heat exchange between the surface and the local gas column via 
deposition and sublimation. The continuous form is discussed in Section 4.1 and analytic 
expression for an initial condition is discussed in Section 4.2. Because the energy equations 
are strictly local, the form of the numerical implementation is very similar to that in Section 
3. Only the form of the matrix elements 

€ 

η0 and 

€ 

β0  change, as discussed in Section 4.3.  

4.1 Analytic expressions for isolated volatile-covered locations (Area II) 

The energy equation at the surface balances net heating or crystalline phase changes with 
absorbed sunlight, thermal emission, thermal conduction, and latent heat of 
sublimation/condensation. The total energy equation is 

 

  

€ 

mV
∂HV

∂t
Enthalphy of volatile slab
     

= S
Insolation
 − εσT 4

Emission
 − k

∂T
∂z z=0

Conduction
     

+ LS
∂mV

∂t
Latent heat
   

 (4.1-1) 

where mV is the mass per area of the volatile slab, 

€ 

∂HV /∂t  is the time derivative of the 
enthalpy of the volatile slab in energy per mass (equal to 

€ 

cV∂T /∂t  if there is no phase change, 
see Eq. 4.1-2, where cV is the specific heat of the volatile slab. Note cV is subscripted V for 
volatile, not V for constant volume), and LS is the latent heat of sublimation. LS is subscripted 
with S to distinguish it from the latent heat of crystalline phase change (LC ) and or the 
number of discrete locations on the surface (L, Section 3.3).  

At the surface, a volatile slab is assumed to be isothermal within its vertical extent (See 
Fig 4.1), with a temperature equal to that at the top of the substrate. As described in Paper I, 
the isothermal slab was assumed in Hansen and Paige (1992) and Hansen and Paige (1996), 
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and can be justified by assuming that the slab is in contact with the local atmosphere. That is, 
if the volatile slab is porous, then the gas can isothermalize the solid. Layering within the 
volatile slab will be treated in a later paper. 

 

Fig. 4-1. Schematic of the layering scheme and energy fluxes for layers j = 0 , 
areas II (volatile slab, local). 

The insolation, emission, and conduction terms are identical to those in Eq. (3.1-3). The 
first term of Eq. (4.1-1) describes the change in the enthalpy per area of the volatile slab, 
which depends on the volatile-ice temperature and crystalline ice phase. Away from the 
temperature of the crystalline phase transition, the derivative of HV with respect to T at 
constant pressure equals cV, the specific heat of the volatile slab, Eq. (4.1-2a). Adding energy 
to the slab raises its temperature. At the temperature of the crystalline ice phase transition, 
the latent heat equals the difference in HV between two phases (LC); adding energy to the slab 
converts ice from the low-temperature to the high-temperature phase without changing the 
temperature. This gives: 

 

€ 

∂HV

∂t
= cV

∂T
∂t
, T ≠ TC  (4.1-2a) 

 

€ 

∂HV

∂t
= LC

∂X
∂t
, T = TC  (4.1-2b) 

where TC is the temperature of the crystalline phase transition, LC is the latent heat of 
crystalline phase change, and X is the mass fraction of the high-temperature phase. If cV is 
treated as a constant, then we can write 

€ 

HV = cVT +LCX , which is proportional to the "pseudo 
temperature" used by John Spencer (personal communication). 

€ 

Δ l,0
B

€ 

kl ,0
Tl,0,n −Tl,1,n

Δ l ,0
B

€ 

ε l,nσ Tl ,0,n( )4

€ 

Sl,n

z 

€ 

Δ 0

€ 

z0,Tl ,0,n

€ 

z1,Tl ,1,n

€ 

LS
dml,n

V

dt

T 

volatile slab 

layer 0 

layer 1 
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Area II satisfies local energy and mass balance. Assuming negligible horizontal transport 
of mass, any mass lost by the atmosphere either condenses or escapes. 

 

€ 

dmV

dt
+
dmA

dt
+ E = 0 (4.1-3) 

where mA is the mass per area of the atmosphere, and E is the escape rate in mass per area per 
time. Negative values of E can be used to account for injection into the atmosphere from 
non-sublimation sources such as geysers (see Paper I). If the atmosphere is in vapor-pressure 
equilibrium with the surface, then the mass of the atmosphere is a function only of the 
surface pressure and effective gravity: 

 

€ 

dmV

dt
= −

1
g
dpS (T)
dT

dT
dt

− E  (4.1-4) 

where 

€ 

pS (T) is the equilibrium vapor pressure at temperature T. The pressure derivative in 
Eq. (4.1-4) can be evaluated using the Classius-Clapeyron relation,    

 

€ 

dpS (T)
dT

=
LSmmolec pS
kBT

2  (4.1-5) 

where mmolec is the mass of one molecule and kB is Bolzmann's constant. Substituting Eqs. 
(4.1-2a), (4.1-2b), (4.1-3), and (4.1-4) into Eq. (4.1-1) and collecting like terms yields: 

 

mVcV
Enthalpy of volatile slab
! +

LS
g
dpS (T )
dT

Latent heat 
of sublimation

! "# $#

!

"

#
#
#
#
#

$

%

&
&
&
&
&

∂T
∂t

=

S
Insolation
! −εσT 4

Emission
! − k dT

dz z=0

Conduction
!"# $#

− LSE
Latent heat of escape
!

)

*

+
+
+
+

,

+
+
+
+

, T≠TC (4.1-6a)

 

 

  

€ 

mVLC
dX
dt

Enthalpy of volatile slab
     

= S
Insolation
 − εσT 4

Emission
 − k dT

dz z=0

Conduction
     

− LSE
Latent heat of escape
 , T=TC (4.1-6b) 

Eq (4.1-6a) is strikingly similar to the equivalent equation for the bare areas (3.1-3), differing 
only by the inclusion of the enthalpy and latent heat terms on the left-hand side, and the 
latent heat of the escaping atmosphere on the right side. The enthalpy and latent heat of 
sublimation introduce terms proportional to the frequency, ω, in the analytic equations 
(Section 4.2). They also introduce two additional terms to the total expression for the change 
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in energy flux per temperature for the upper-most layer (

€ 

Φl,n
T ) in the numeric solutions 

(Section 4.3), but the form of the matrix equations is unchanged. When there is a phase 
change, (4.1-6b), the analytic and numeric forms are both simpler, as the temperature does 
not change with time. 

4.2 Analytic approximation and initialization for isolated volatile-covered areas (Area II) 

As in Section 3.2, an analytic form of the continuous equations (Eq. 4.1-6a, b) can be 
found by decomposing the solar insolation and temperature into a sum of sinusoidal terms of 
frequency ω (Eqs. 3.2-1, 3.2-7). Additionally, we specify that the temperature of the volatile 
slab equals the substrate temperature at the substrate-slab interface 

 

€ 

TV (λ,φ,t) = T(λ,φ,z = 0,t)  (4.2-1) 

The escape rate is decomposed into a sum of sinusoidal terms in an analogous manner to the 
solar forcing 

 

€ 

E(λ,φ,t) = Re ˆ E m (λ,φ)eimωt

m =0

M

∑
& 

' 
( 

) 

* 
+  (4.2-2) 

where  is the frequency of the diurnal or seasonal forcing, and 

€ 

ˆ E m  is the complex 
sinusoidal coefficient (the complexity is indicated by the hat). 

As in Section 3.2, the average temperature is found by substituting the sinusoidal forms 
of S and T into Eqs. (4.1-6a, b) and taking the first-order, time-averaged component. 

 
  

€ 

0 = ˆ S 0 λ,φ( )
Insolationn
   −εσ

ˆ T 0 λ,φ( )( )
4

Emission
       

+ F λ,φ( )
Flux at lower boundary
   − LS E0 λ,φ( )

Latent heat of escaping gas
      (4.2-3) 

As in Section 3.2, the temperature coefficients, 

€ 

ˆ T m , are found by substituting the periodic 
functions into Eq. (4.1-6), and taking only those terms proportional to exp(imωt). For 
simplicity, if T ≠ TC, then we assume that the temperature does not cross the crystalline phase 
boundary in the expansion. In addition to the expressions for the temperature dependence of 
conducted and emitted energy flux, 

€ 

ΦS  and 

€ 

ΦE  (Eq. 3.2-9a, b), I define two new variables: 

 

€ 

ΦV (T) =ωmVcV  (4.2-4a) 

 

€ 

ΦA (T) =ω
LS
g
dpS
dTV

 (4.2-4b) 

€ 

ω = 2π /P
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ΦV is simply related the to specific heat per area of the volatile slab, being the energy per 
degree per area. ΦA is related to the energy needed for the atmosphere to vary its column 
mass (atmospheric “breathing”). If the surface temperature rises, the equilibrium pressure 
rises too. The column mass of the equilibrium atmosphere increases due to sublimation from 
the surface. This takes energy, through the latent heat of sublimation. The result is that the 
specific heat of the volatile slab and the atmospheric "breathing" delay and decrease the 
thermal response (Paper I). The resulting expansion of 4.1-6a is: 

 

  

€ 

imΦS (T0)
Conduction
     +ΦE (T0)

Emission
   + imΦV (T0)

Enthalpy of volatile slab
     + imΦA T0( )

Latent heat
     

# 

$ 

% 
% 

& 

' 

( 
( 

ˆ T m

= ˆ S m
Insolation
 − Ls

ˆ E m
Latent heat of escaping gas

   

, T ≠ TC (4.2-5) 

If the equilibrium temperature is at the crystalline phase boundary, then the 
corresponding equation for the change in the slab’s state is 

 

 
  

€ 

iωmmV LC
ˆ X m

Enthalpy of volatile slab
       = ˆ S m

Insolation
 − Ls

ˆ E m
Latent heat of escaping gas

   , T = TC  (4.2-6) 

As described in Paper I, we can define non-dimensional thermal parameters, analogous to 
the thermal parameter of Spencer et al. (1989), to quantify the importance of heating of the 
volatile slab or atmospheric breathing. The substrate thermal parameter, ΘS, is defined in Eq. 
3.2-11. Two new parameters are: 

 

€ 

ΘV (T0) =
ΦV (T0)
ΦE (T0) /4

 (4.2-7) 

 

€ 

ΘA (T0) =
ΦA (T0)
ΦE (T0) /4

 (4.2-8) 

Substituting into Eq. (4.2-5) shows how the amplitude and phase of the thermal response 
depends on the thermal inertia, the specific heat and depth of the volatile slab, and the extent 
of the atmospheric “breathing.” 

 

€ 

ˆ T m =
ˆ S m

ΦE (T0)
4

4 + imΘS + imΘV + imΘA
 (4.2-9) 

As for the bare areas (Areas I and III), the expansion can be written in terms of the emitted 
thermal flux in the case of large temperature variations, giving 
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 F̂m
E = Ŝm

4
4+ imΘS + imΘV + imΘA

 (4.2-10) 

4.3 Numerical solution for isolated volatile-covered areas (Area II)  

The discretization for the interior layers (j = 1..J–1) and the lowest layer (j = J) is the 
same for the isolated, volatile-covered locations (Area II) as it is for the bare locations (Areas 
I and III). The discretization for the volatile slab and the upper two layers are shown in Fig 4-
1. Although the physics is different in the presence of a volatile, the numerics are nearly 
identical for all calculations on a local level, whether volatiles are present or not.  

First consider usual case where the volatile slab is not at the crystalline phase transition 
temperature. As with Areas I and III, to find the energy balance in layer 0, integrate the 
conduction equation (Eq. 3.1-2) over the top layer, from z = –Δ0 to z = 0. Add this to the 
energy balance equation (Eq. 4.1-6a) to get Eq. (4.3-1), the volatile-covered equivalent to Eq. 
(3.3-1): 

 

ρ
l ,0cl ,0

∂T
∂t

dz
−Δ0

0

∫

Enthalpy, layer 0
! "## $##

+ m
l ,n
V c

l
V ∂T
∂t

Enthalpy, volatile slab
! "# $#

+
L

S

g
dp

s
(T )

dT
dT
dt

Latent heat, volatile slab
! "## $##

=

S
l ,n '

Insolation
!

− (ε
l ,0,nσT 4 )
Emission
! "# $#

− k dT
dz z=−Δ0

%

&

'
'

(

)

*
*

Conduction
! "# $#

− L
S
El ,n

Latent heat, escape
!"$

 (4.3-1) 

where the overbar indicates the time-averaged value over the time step tn to tn+1.  

The enthalpy of layer 0, insolation, emission, and conduction are the same as for Areas I 
and III (Section 3.3).  

The second term in Eq (4.3-1) reflects the change in the enthalpy of the volatile slab with 
temperature. The volatile slab mass, m

l ,n
V , can change over the time interval.  However, this 

change is going to be small unless the slab is about to completely sublime, in which case this 
term contributes little. Ignoring the change in volatile slab mass during the time interval, this 
term becomes:  

 m
l ,n
V c

l
V ∂T
∂t

≈ Φ
l ,n
V T

l ,0,n+1 −T
l ,0,n+1( )  (4.3-2) 

where c
l
V

 
is the specific heat of the volatile slab at location l, 

€ 

Φl,n
V  has units of erg cm-2 s-1  

K-1, and the superscript V stands for volatile slab  
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 Φ
l ,n
V =

Φ
V

m
V( )

τ
=

m
l ,n
V c

l
Vω

τ
 (4.3-3) 

The third term in Eq (4.3-1) is related to the amount of latent heat required sublime the 
atmospheric mass needed to maintain vapor-pressure equilibrium with a higher surface 
temperature. Linearizing the change in surface pressure with respect to time gives 

 

€ 

LS
g
dps(T)
dT

dT
dt

=Φl ,n
A Tl,0,n+1 −Tl,0,n+1( ) (4.3-4) 

where 

€ 

Φl,n
A

 has units of erg cm-2 s-1 K-1, and the superscript A stands for atmosphere.   

 

€ 

Φl,n
A =

ΦA Tl ,0,n( )
τ

=
LS
g

dps(T)
dT Tl ,0,n

$ 

% 
& & 

' 

( 
) ) 
ω
τ

 (4.3-5) 

The temperature dependence of pressure is highly non-linear. If this is a dominant source of 
error, then one either chooses a small τ, or iterates from an initial guess at a temperature 

€ 

Tl,0,n+1
approx  to an improved temperature 

€ 

Tl,0,n+1. In the latter case, by Taylor expansion of p around 

€ 

Tl,0,n+1
approx ,  

 
L

S

g
dp

s
(T )

dT
dT
dt

=
L

S

gΔt
p T

l ,0,n+1
approx( )+ T

l ,0,n+1 −T
l ,0,n+1
approx( ) dp

dT Tl ,0 ,n+1
approx

− p T
l ,0,n( )

#

$

%
%

&

'

(
(

 (4.3-6) 

This can be cast in a form parallel to that of Eq. (4.3-4) by  

 

€ 

LS
g
dps(T)
dT

dT
dt

=Φl ,n
A Tl,0,n+1 −Tl,0,n( ) + Fl ,n

A  (4.3-7) 

where the derivative in 

€ 

Φl,n
A

 is evaluated at the current guess at a temperature 

€ 

Tl,0,n+1
approx . The 

term 

€ 

Fl,n
A  has units of erg cm-2 s-1, and combines mathematically with the solar forcing.  

 

€ 

Fl,n
A =

LSω
gτ

p Tl,0,n+1
approx( ) − p Tl,0,n( )[ ] − Tl ,0,n+1

approx −Tl ,0,n( )Φl ,n
A  (4.3-8) 

By writing Eq. (4.4-7) in terms of the change in temperature relative to the previous time step 
(i.e., 

€ 

Tl,0,n+1 −Tl,0,n ), rather than in terms of the smaller change in temperature relative to the 
current guess (i.e., 

€ 

Tl,0,n+1 −Tl,0,n+1
approx), Eq. (4.4-7) can be simply combined with the other terms 

in the discretized energy equation. On the first iteration, 

€ 

Tl,0,n+1
approx = Tl ,0,n , and Eq. (4.3-7) 

reduces to Eq (4.3-4), so Eq. (4.3-7) can be used with very little added computational 
complexity. 
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The escape rate, E, if present, can be calculated at the start or mid time, similarly to the 
insolation.  

Substituting the expressions for the explicit equations gives an equation similar to Eq. 
3.3-14: 

 

Φ
l ,0
H T

l ,0,n+1 −T
l ,0,n( )

Enthalpy, layer 0
! "### $###

+Φ
l ,n
V T

l ,0,n+1 −T
l ,0,n( )

Enthalpy, volatile slab
! "### $###

+Φ
l ,n
A T

l ,0,n+1 −T
l ,0,n( )+F

l ,n
A

Latent heat, volatile slab
! "#### $####

=

S
l , #n

Insolation
!

−ε
l ,nσ T

l ,0,n( )
4
−Φ

l ,n
E T

l ,0,n+1 −T
l ,0,n( )

Emission
! "##### $#####

−Φ
l ,0
K ,B T

l ,0,n −T
l ,1,n( )

Conduction
! "## $##

− L
S
E

l , #n

Latent heat, escape
!"$

  (4.3-9) 

Collecting terms for the explicit equation gives 

  

Φ
l ,0
H +Φ

l ,n
E +Φ

l ,n
V +Φ

l ,n
A( )Tl ,0,n+1 =

Φ
l ,0
H +Φ

l ,n
E +Φ
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 (4.3-10) 

As in Section 3.3, divide by 

€ 

Φl,n
T , with units erg cm-2 s-1 K-1, where the superscript T 

represents total, and the total "flux-per-temperature" now includes terms for enthalpy of the 
slab and interaction with the atmosphere 

 

€ 

Φl,n
T =Φl ,0

H +Φl,n
E +Φl ,n

V +Φl,n
A  (4.3-11) 

The explicit equations for Area II can be written in a form that is identical to the explicit 
equation for the bare areas, Areas I and II (See Fig 3-6), with the resulting matrix elements 
given in the first row of Table 6. 
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Table 6. Matrix elements for j =  0, area II, T≠TC 

Matrix equation Matrix elements 
Explicit 
Tl,0,n+1 =ηl,0,nTl,0,n +βl,0,nTl,1,n +γ l,0,n  

€ 

βl ,0,n =
Φl ,0

K ,B

Φl ,n
T

 

€ 

ηl,0,n =1− βl,0,n  

γ
l ,0,n =

S
l , !n
−ε

l ,nσ T
l ,0,n( )

4
−F

l ,n
A − L

S
E

l , !n

Φ
l ,n
T  

Implicit (Crank-Nicholson) 

€ 

" " η l,0Tl ,0,n+1 + " " β l ,0Tl,1,n+1 = " η l,0Tl ,0,n + " β l,0Tl ,1,n + γ l ,0,n  

€ 

" β l ,0,n =
βl ,0,n
2
; " " β l,0 = −

βl ,0,n
2  

!η
l ,0 =1− !β

l ,0,n; !!η
l , j
=1− !!β

l ,0,n  

€ 

Φl,0
K ,B  is given by Eq. 3.3-9. 

€ 

Φl,n
T

 
is given by 4.3-11. 

The implicit form of the energy balance equation for Area II away from the crystalline 
transition temperature is found by substituting the Crank-Nicholson expression for the 
conduction term into Eq. 4.3-1. The energy balance for the implicit equation is 
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  (4.3-12) 

Collecting terms for the implicit equation gives the volatile-covered equivalent to 3.3-
16b: 
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Again, divide by 

€ 

Φl,n
T , with the resulting matrix elements given the second row in Table 5. 

The matrix elements for j = 1 to J are identical as for the bare areas, Areas I and III (Section 
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3.3; Tables 3 and 4). The methods for solving the matrix equations are identical as for the 
bare areas, Areas I and III (Section 3.4). 

If the volatile slab is at the crystalline transition temperature, then T
l ,0,n+1 = T

l ,0,n
, and the 

matrix elements are particularly simple for both the explicit and implicit form (Table 7). 

Table 7. Matrix elements for j =  0, area II, T=TC 

Matrix equation Matrix elements 

Explicit 

€ 

Tl,0,n+1 =ηl,JTl ,0,n + βl ,0Tl,1,n + γ l ,0,n  

€ 

βl ,0,n = 0  

€ 

ηl,0,n =1 

€ 

γ l,0,n = 0  

Implicit (Crank-Nicholson) 

€ 

" " η l,0Tl ,0,n+1 + " " β l ,0Tl,1,n+1 = " η l,0Tl ,0,n + " β l,0Tl ,1,n + γ l ,0,n  

€ 

" β l ,0,n = 0; " " β l,0 = 0  

€ 

" η l,0 =1; " " η l, j =1 

Once the new temperature is found, the change in the mass flux ( m
l ,n+1
V −m

l ,n
V ) is found by 

using local energy balance, Eq. (4.3-14). This is simply the discretized form of Eq (4.1-1). 
This applies whether the temperature is at the crystalline transition temperature or not, and 
whether the time step is calculated explicitly or implicitly. 
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! "# $#
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m
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V −m

l ,n
V
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! "## $##

 (4.3-14) 

 

4.4 Matrix operations for single or multiple isolated volatile-covered locations (Area II) 

As with Areas I and III, computation can be sped up considerably by taking advantage of 
matrix operations to calculate the temperature evolution on multiple locations with a single 
operation. The form of the matrices for isolated volatile-covered locations (Area II) is the 
same as for bare locations (Areas I and III). Therefore, once the matrix elements are found, 
the calculations can proceed identically to Section 3.4. 
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5. VT3D for interacting volatile-covered areas (Area IV) 

Currently, Pluto and Triton are expected to have similar surface pressures over the entire 
globe, independent of insolation (Trafton & Stern 1983, Trafton 1984, Spencer et al. 1987). 
N2 sublimes from areas of high insolation, with latent heat loss balancing the excess 
insolation. Sublimation winds carry this mass to areas of low insolation, where N2 is 
deposited, adding latent heat as well as solid N2 (Fig 2-2, middle). As long as the atmosphere 
is dense enough, transport of mass and latent heat will keep the volatile ice temperatures 
nearly constant over the globe. Through vapor-pressure equilibrium, the surface pressures 
will also be nearly constant. If the atmosphere is thin enough so that the sublimation winds 
are a significant fraction of the sound speed, then the surface pressures will vary over the 
globe. This case can be handled efficiently by treating the surface as a "splice" between the 
interaction regions or isobaric regions, which share the same surface pressure, and local 
regions, for which the surface pressure varies with location (Fig 2-2, right). 

In this section, I consider areas that have volatiles on their surfaces and which interact to 
share the same volatile ice temperature and surface pressure. This includes the entire globe 
for dense atmospheres, or the interacting portions of the splice for intermediate atmospheres 
(See Fig 2-2, center and right). I will discuss the continuous equations in Section 5.1, analytic 
equations in Section 5.2, the discrete equations in Section 5.3, and efficient solutions to the 
matrix equations in Section 5.4. 

5.1 Continuous expressions for interacting volatile-covered locations (Area IV) 

For interacting volatile-covered locations, area IV, energy is transported between 
locations through mass transport of volatiles through the atmosphere and the latent heat of 
sublimation. What ties the multiple locations together is (1) a common volatile-ice 
temperature, 

€ 

TV , and (2) conservation of mass over the interacting regions. This latter 
includes the atmosphere over all areas with a single surface pressure, whether bare (Area III) 
or volatile-covered (Area IV), because raising the surface pressure increases the atmospheric 
mass over all locations that share a common surface pressure. That is, if the surface pressure 
of the atmosphere increases in the region of effective transport, the mass of the atmosphere 
will increase above both the volatile-covered areas (Area IV) and the bare areas (Area III). 
The expression for mass balance in the area of effective transport is found by integrating Eq. 
4.1-4 over both Area III and Area IV: 

 

€ 

dmV

dt
dΩ

Ω III +Ω IV

∫ = −
1
g
dpS (T)
dT

dT
dt
dΩ

Ω III +Ω IV

∫ − EdΩ
Ω III +Ω IV

∫  (5.1-1) 
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where ΩIII and ΩIV represent the solid angle of areas III and IV. Both the surface pressure 
and the temperature of the volatile slab are constant over Areas III and IV; the terms 
involving gravity, pressure, and temperature can be factored out of the middle integral. 
Futhermore, the mass flux for Area III is zero, so that the first integral can be evaluated over 
just Area IV. With these changes, the mass balance equation becomes 

 

€ 

dmV

dt
dΩ

Ω IV

∫ = −
1
g
dpS (TV )
dTV

dTV
dt

ΩIII +ΩIV( ) − EdΩ
Ω III +Ω IV

∫  (5.1-2) 

The areal average of the mass flux over Area IV is: 

 dmV

dt
≡
1
ΩIV

dmV

dt
dΩ

ΩIV

∫  (5.1-3a) 

where brackets represent an areal average over Area IV. The atmosphere escapes from above 
both bare and volatile-covered areas, so the areal average of E is taken over Areas III and IV: 

 E ! ≡
1

ΩIII +ΩIV

E dΩ
ΩIII+ΩIV

∫  (5.1-3b) 

where primed brackets represent an areal average over Area III and Area IV.  

fV is the fraction of the interacting areas (III and IV) covered with volatiles. In Paper I, 
which only treated a global atmosphere, this was fraction of the surface covered by volatiles. 
Here, with the possibility of a spliced atmosphere, the expression is written more generally. 

 

€ 

fV ≡
ΩIV

ΩIII +ΩIV
 (5.1-4) 

With these definitions, the equation for mass balance over the areas of isobaric surface 
pressure becomes 

 

€ 

dmV

dt
= −

1
fV g

dpS (TV )
dTV

dTV
dt

−
1
fV

E #  (5.1-5) 

Eq. 5.1-5 illustrates the significance of the fraction of the surface covered by volatiles, fV. 
If the volatile ices are confined to a small patch, then that patch has to lose a lot of mass to 
supply an increase of the entire atmosphere in the isobaric area.  

The local energy balance is the same as for localized volatile-covered areas, Eq. (4.1-1). 
Integrating Eq. 4.1-1 over Area IV, and substituting the equation for conservation of mass 
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over isobaric areas, yields an equation for energy balance over all of Area IV, using the same 
notation for spatial averages as in Eq. 5.1-3a. 

   

€ 

mVcV
Enthalpy of volatile slab
   +
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, T≠TC (5.1-6a) 
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 − ε σT 4
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− k dT
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Conduction
     

−
LS E %
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Latent heat of escaping gas
   

, T=TC (5.1-6b) 

While the temperature of isolated volatile-covered areas depend only on local conditions (Eq 
4.1-6a,b), the volatile frost temperature in the interacting areas depends on the spatial 
average of energy sources and sinks.  

5.2 Analytic approximation and initialization for interacting volatile-covered locations (Area 
IV) 

The analytic form of the continuous equations (Eq. 5.1-6) is very similar to that for the 
isolated volatile-covered areas, Area II, described in Section 4. As in Section 4, the solar 
forcing, the atmospheric escape, and the thermal wave are (1) decomposed into sinusoidal 
terms (3.2-1 for absorbed insolation, 3.2-7 for temperature, and 4.2-2 for escape), (2) 
substituted into Eq 5.1-6, and (3) isolated term-by-term. The m=0 term gives the expression 
for the time-averaged temperature: 

 0 = S0

Insolationn


− ε σTV
4

Emission
 

+ F
Flux at lower boundary


− LS E0
" / fV

Latent heat of escaping gas
    (5.2-1) 

To find the variation in the temperature (the terms with terms m = 1 and higher), 
substitute the expressions for solar forcing, temperature, and escape into Eq. 5.1-6, expand 
the thermal emission term to first order in Tm, and take only those terms proportional to 
exp(imωt). This expression is simpler with the spatially averaged versions of the "flux-per-
temperature" expressions: 

 ΦS = ω Γ  (5.2-2a) 
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 ΦE (T ) = 4 ε σT 3   (5.2-2b) 

 ΦV =ω mVcV  (5.2-2c) 

 ΦA (T ) =ω
LS
fVg

dpS
dTV

 (5.2-2d) 

If the substrate under all of the volatile ices has the same thermophysical properties, then 
the first two terms reduce to their local equivalents: Eq. 3.2-9a, b. Likewise, if the specific 
heat of the volatile ices are the same over Area IV, then the third equation (Eq. 5.2-2c) differs 
from its local equivalent (4.2-4a) simply by replacing the local volatile slab mass with the 
areal average. If there is no bare ground in the isobaric area (that is, if no locations are Area 
III), then fV = 1, and the last expression (Eq. 5.2-2d) is identical to its local equivalent (4.2-
4b). However, if only part of the isobaric area is volatile-covered, then ΦA (T ) >ΦA (T ) . A 
change in volatile temperature increases the atmosphere above both bare and volatile-covered 
locations in the isobaric areas, so more mass is exchanged between the surface and 
atmosphere, and more latent heat of sublimation is required. This means that the latent heat 
term is more effective at suppressing the temperature variation when there is a smaller 
fraction of surface volatiles. For temperatures away from the crystalline phase, with these 
substitutions, the spatially averaged energy equation is: 

 

im ΦS (TV )
Conduction

  
+ ΦE (TV )

Emission
 

+ im ΦV (TV )
Enthalpy of volatile slab
  

+ im ΦA TV( )
Latent heat

  

"

#

$
$

%

&

'
'
T̂m

= Ŝm
Insolation


− Ls Êm / fV
Latent heat of escaping gas
  

, T ≠ TC (5.2-3) 

If the equilibrium temperature is at the crystalline phase transition, then the 
corresponding equation for the change in the slab’s state is 

 

 iωm mV LCX̂m

Enthalpy of volatile slab
  

= Ŝm
Insolation


−
Ls Êm

fV
Latent heat of escaping gas
 

, T = TC  (5.2-4) 
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5.3 Numerical solution for interacting volatile-covered locations (Area IV) 

Fig 5-1 shows the interaction between different locations in Area IV. There is no 
horizontal heat flow within the substrate. However, the volatile slabs exchange energy 
through latent heat of sublimation and condensation, and share a single temperature, TV. The 
temperature of the volatile ice slab therefore depends on the insolation over the entire frost-
covered interacting region, and the conduction from each of the substrate layers (layer 0) that 
immediately underlie the volatile ice slab. The temperatures of each of the top-most substrate 
layers depend, in turn, on the single volatile slab temperature, through thermal conduction.  

 

 

Fig. 5-1. Schematic of the layering scheme and energy fluxes for layers j = 0 , 
areas IV (interacting volatiles).  

Because there is no horizontal heat flow within the substrate, the discretization  for layers 
j = 2 .. J is the same as the other areas, so that much of the matrix form for the explicit 
equations is tridiagonal (Fig. 5-2). However, because volatile slabs of the areas interact (Fig 
5-2), the explicit discretized equation for the new TV has non-zero coefficients accounting for 
the conduction upward from each of the j = 1 layers (the upper row of the matrix). Similarly, 
the explicit discretized equation for the new T1 has non-zero coefficients accounting for the 
conduction downward from each of the j = 0 slabs, all assumed to be at TV. The resulting 
matrix, with non-zero elements on the left-most column and top-most row, is a banded 
tridiagonal matrix.  
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Fig 5-2. Schematic of an explicit time-step from time n to time n+1 for two 
locations, l and m, in Area IV (volatile-covered, interacting). Dark gray 
elements (the temperatures and the elements of the upper row) change with 
each time step. Light gray elements are independent of time. White elements 
are zero. wl and wm are the areal weights for locations l and m. 

The implicit (Crank-Nicholson) form of the matrix equations has a similar form, with a 
banded tridiagonal matrix on both the left and right hand sides of the equation. 
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Fig 5-3. Schematic of an implicit time-step from time n to time n+1 for two 
locations, l and m, in Area IV (volatile-covered, interacting), using the Crank-
Nicholson scheme. Dark gray elements (the temperatures and the elements of 
the upper row) change with each time step. Light gray elements are 
independent of time. White elements are zero. The variables in brackets refer 
to the vectors of length J or J–1 indicated by the double-arrowed lines.  

The elements of the substrate arrays are derived from the discretation of the conductivity 
equation, Eq. (3.1-2), as before. The matrix elements for the substrate—the light gray 
elements in Figs 5-2 and 5-3—are unchanged from the previous cases. This holds even for 
the first layer, j = 1. The dependence of the temperature of the first layer at location l, Tl,1, 
depends only on the temperature below (Tl,2) and above (Tl,0).  For Area IV, the assumption is 
that Tl,0 = TV (that is, the upper surface of the substrate equals the volatile slab temperature, 
Fig 5-1). While this changes the format of the matrices (the line of α's in the left-most 
column in Fig 5-2 and 5-3), it does not change the value for the α's themselves. To find the 
elements for the implicit arrays αl, j , ηl, j , βl, j  (j = 1 .. J) and the lower-boundary element γ l,J , 
or their explicit counterparts (primed for the right-hand side and double-primed for the left) 
consult Tables 3 and 4. 

The elements for the volatile slab—the dark gray elements on the top row of Figs 5-2 and 
5-3—are related to, but different than, the corresponding elements for Area II (volatile-
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covered, non-interacting). As before, I first solve for temperatures away from the solid phase 
transition (T ≠ TC). For Area IV, I integrate the conduction equation (Eq. 3.1-1) over the top 
layer, average that over Area IV, and add the result to Eq. 5.1-6a to replace the term with 
conduction at z = 0 (at the slab-substrate interface) with one at −Δ0  (at the bottom of the first 
substrate layer). Taking the time average from time n to n+1 (indicated by overbars) yields 
Eq. 5.3-1, the areal averaged equivalent to Eq. 4.3-1. Compared with Eq. 4.3-1, Eq. 5.3-1 has 
areal averages for the thermophysical parameters (density, specific heat, mass of a slab, 
thermal conduction, emissivity), areal averages for the solar gain and heat lost by escape, and 
the inclusion of fV, the fraction of the interacting area that is covered by volatiles, in the latent 
heat and escape terms.  
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 (5.3-1) 

where ρ0c0  is the areal average of the product of density and specific heat in layer 0, with 
cgs units of erg K-1 cm–3, and mVcV  is the areal average of the product of volatile slab mass 
and specific heat in the volatile slab, with cgs units of erg K-1 cm–2.  

The treatment of the first term is similar to that in the bare case; see the discussion near 
Eq. 3.3-2. As before, the temperature of layer 0 is sampled at the top of the layer. Because 
this is the slab-substrate interface, the temperature of layer 0 equals the volatile slab 
temperature within Area IV: Tl,0,n = TnV . With the assumption that we can sample the 
temperature at the top of layer 0, the enthalpy term depends only on the change in the volatile 
slab temperature: 

 ρ0c0
∂T (z)
∂t

dz
−Δ0

0

∫
Enthalpy, layer 0

  
= Φ0

H Tn+1
V −Tn

V( )  (5.3-2) 

where Φ0
H , like Φl, j

H  (Eq. 3.3-5), has units of erg cm-2 s-1 K-1, with the superscript H 
representing heat or enthalpy. The discrete form for the areal average (cf. Eq. 5.1-3a) is 
simply the weighted average of the local values, summed over the locations within Area IV,
LIV{ } : 
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 Φ0

H = wiΦl,0
H

l∈ LIV{ }
∑  (5.3-3) 

The weights (Eq. 5.3-4) are simply the ratio of to the solid angle of each location (Ωl ) to 
the total solid angle of Area IV:  

 wl =
1
ΩIV

Ωl
l∈ LIV{ }
∑  (5.3-4) 

Continuing to treat Eq. 5.3-1 term-by-term, the change enthalpy of the volatile slab also 
depends on the change in volatile slab temperature; see discussion near Eq. 4.3-2 and 4.3-3. 

 mVcV
∂T
∂t

Enthalpy, volatile slab
  

= Φn
V Tn+1

V −Tn
V( )  (5.3-5a) 

 Φ0
V = wlΦl,0

V

l∈ LIV{ }
∑  (5.3-5b) 

The latent heat term is the same over all locations, but differs from the local equivalents 
(Eq. 4.3-4 to 4.3-8) by the factor of fV: 

 LS
fVg

dps (T )
dT

dT
dt

Latent heat, volatile slab
  

= Φn
A Tn+1

V −Tn
V( )+ Fn

A  (5.3-6a) 

 Φn
A =Φn

A / fV  (5.3-6b) 

 Fn
A = Fn

A / fV  (5.3-6c) 

The insolation terms is simply the areal average of the insolation at each location in Area 
IV: 

 S
!n

Insolation
!

= w
l
S

l , !n
l∈ LIV{ }
∑  (5.3-7) 

The thermal emission depends on the areal average of the emissivity:  

 ( εn σTV
4 )

Emission
  

= εn σ Tn
V( )

4
+ Φn

E Tn+1
V −Tn

V( )  (5.3-8a) 
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 εn = wlεl,n

l∈ LIV{ }
∑  (5.3-8b) 

 Φn
E = 2 εn σ Tn

V( )
3
 (5.3-8c) 

For explicit equations, the expression for the areal average of thermal conduction is found 
by taking the areal average of Eq. 3.3-8, and making the substitution that Tl,0,n = TnV : 

 k dT
dz z=−Δ0

Conduction
  

≈ wlΦl,0
K ,B Tn

V −Tl,1,n( )
l∈ LIV{ }
∑  (5.3-9) 

where Φl,0
K ,B  is given by Eq. 3.3-9. Similarly, the expression for the implicit (Crank-

Nicholson) equations takes the areal average of Eq. 3.3-12: 

 k dT
dz z=−Δ0

Conduction
  

≈
1
2

wlΦl,0
K ,B Tn+1

V −Tl,1,n+1( )
l∈ LIV{ }
∑ +

1
2

wlΦl,0
K ,B Tn

V −Tl,1,n( )
l∈ LIV{ }
∑  (5.3-10) 

Finally, the escape rate is calculated by the average over all the interacting regions, Area 
III and Area IV:  

 
LS En

!

fV
Latent heat, escape
 

=
LS
fV

!wl El,n
l∈ LIII+LIV{ }
∑  (5.3-11a) 

 !wl =
1

ΩIII +ΩIV

Ωl
l∈ LIII+LIV{ }
∑  (5.3-11b) 

 

Substituting the expressions for the explicit equations gives 

 

Φ0
H T

n+1
V −T

n
V( )

Enthalpy, layer 0
! "## $##

+ Φ
n
V T

n+1
V −T

n
V( )

Enthalpy, volatile slab
! "## $##

+ Φ
n
A T

n+1
V −T

n
V( )+ F

n
A

Latent heat, volatile slab
! "#### $####

=

S
#n

Insolation
!

− ε
n
σ T

n
V( )

4
+ Φ

n
E T

n+1
V −T

n
V( )

$

%
&

'

(
)

Emission
! "##### $#####

− w
l
Φ

l ,0
K ,B T

n
V −T

l ,1,n( )
l∈ LIV{ }
∑

Conduction
! "#### $####

−
L

S
En

#

f
V

Latent heat, escape
!"# $#

  (5.3-12) 

Collecting terms for the explicit equation gives 
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Φ0
H + Φ

n
E + Φ

n
V + Φ

n
A( )Tn+1

V =

Φ0
H + Φ

n
E + Φ

n
V + Φ

n
A − Φ0

K ,B( )Tn
V + w

l
Φ

l ,0
K ,BT

l ,1,n
l∈ LIV{ }
∑

+ S
%n
− ε

n
σ T

n
V( )

4
− F

n
A −

L
S

En
%

f
V

&

'

(
(
(
(

)

*

+
+
+
+

 (5.3-13) 

As in Section 3.3 and 4.3, divide by Φn
T , with cgs units erg cm-2 s-1 K-1, where the 

superscript T represents total. The total "flux-per-temperature" includes terms for enthalpy of 
the slab and interaction with the atmosphere 

 Φn
T = Φ0

H + Φn
E + Φn

V + Φn
A  (5.3-14) 

The resulting of dividing Eq. 5.3-13 by 5.3-14, and the resulting matrix elemens, are given in 
Table 7. 

The implicit (Crank-Nicholson) equation (5.3-15) differs from equation (5.3-12) only 
with the substitution of the conduction term: 

 

Φ0
H T

n+1
V −T

n
V( )

Enthalpy, layer 0
! "## $##

+ Φ
n
V T

n+1
V −T

n
V( )

Enthalpy, volatile slab
! "## $##

+ Φ
n
A T

n+1
V −T

n
V( )+ F

n
A

Latent heat, volatile slab
! "#### $####

=

S
#n

Insolation
!

− ε
n
σ T

n
V( )

4
+ Φ

n
E T

n+1
V −T

n
V( )

$

%
&

'

(
)

Emission
! "##### $#####

−
1
2

w
l
Φ

l ,0
K ,B T

n+1
V −T

l ,1,n+1( )
l∈ LIV{ }
∑ +

1
2

w
l
Φ

l ,0
K ,B T

n
V −T

l ,1,n( )
l∈ LIV{ }
∑

$

%

&
&

'

(

)
)

Conduction
! "########## $##########

−
L

S
En

#

f
V

Latent heat, escape
!"# $#

  (5.3-15) 

Collecting terms for the implicit equation gives 
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Φ0
H + Φ

n
E + Φ

n
V + Φ

n
A +

1
2
Φ0

K ,B
"

#
$$

%

&
''Tn+1

V +
1
2

w
l
Φ

l ,0
K ,BT

l ,1,n+1
l∈ LIV{ }
∑ =

Φ0
H + Φ

n
E + Φ

n
V + Φ

n
A −

1
2
Φ0

K ,B
"

#
$$

%

&
''Tn

V +
1
2

w
l
Φ

l ,0
K ,BT

l ,1,n
l∈ LIV{ }
∑

+ S
+n
− ε

n
σ T

n
V( )

4
− F

n
A −

L
S

En
+

f
V

"

#

$
$
$
$

%

&

'
'
'
'

 (5.3-16) 

This equation is used to derive the elements for the matrix elements in Figs. 5-2 and 5-3, 
given in Table 8. 

Table 8. Matrix elements for j =  0, area IV, T≠TC 

Matrix equation Matrix elements 
Explicit 

€ 

Tn+1
V =ηn

VTn
V + wlβl,0,nTl,1,n

l∈ L IV{ }
∑ + γ n

V  βl,0,n =
Φl,0

K ,B

Φn
T

 

€ 

ηn
V =1− wlβl,0,n

l∈ L IV{ }
∑  

γ
n
V =

S
!n
− ε

n
σ T

n
V( )

4
− F

n
A − L

S
En

!
/ f

V

Φ
n
T  

Implicit (Crank-Nicholson) 

€ 

" " η n
VTn+1

V + wl " " β l,0,nTl,1,n
l∈ L IV{ }
∑ =

" η n
VTn

V + wl " β l,0,nTl,1,n
l∈ L IV{ }
∑ + γ n

V  

 

!βl,0,n =
βl,0,n
2
; !!βl,0,n = −

βl,0,n
2  

€ 

" η n
V =1− wl " β l,0,n

l∈ L IV{ }
∑ ; " " η n

V =1− wl " " β l,0,n
l∈ L IV{ }
∑  

€ 

Φl,0
K ,B  is given by Eq. 3.3-9. Φn

T

 
is given by 5.3-14. 

The discrete form of the equation for the change in temperature at the crystalline phase is 
trivial, since the volatile slab temperature does not change from time n to time n+1 in Eq. 
5.1-6b. 
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Table 9. Matrix elements for j =  0, area IV, T=TC 

Matrix equation Matrix elements 
Explicit 

€ 

Tn+1
V =ηn

VTn
V + wlβl,0,nTl,1,n

l∈ L IV{ }
∑ + γ n

V  
βl,0,n = 0

 

€ 

ηn
V =1 

€ 

γ n
V = 0

 Implicit (Crank-Nicholson) 
!!η0,nTn+1

V + wl !!βl,0Tl,1,n
l∈ LIV{ }
∑ = !η0,nTn

V + wl !βl,0Tl,1,n
l∈ LIV{ }
∑ +γ l,0,n  

 

!βl,0,n = 0; !!βl,0,n = 0
 !ηl,0 =1; !!ηl, j =1  

 

5.4 Matrix operations for interacting volatile-covered locations (AreasIV) 

In Section 3.4, I divided the temperature into the upper layer and the interior layers (Eq. 
3.4-1), as a means to speeding up calculations in Areas I, II and III. In Area IV, this division 
is required, as the temperature of each of the upper layers (

€ 

Tl,0,n ) is equal to a single value for 
the volatile slab temperature, (

€ 

Tn
V ). With this, the matrix equation in Fig 5-2 can be written: 

 

€ 

Tn+1
V

Tl ,1..J ,n+1

Tm,1..J ,n+1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

ηn
V bl ,n bm,n
a l Sl 0
am 0 Sm

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
×

Tn
V

Tl ,1..J ,n
Tm,1..J ,n

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

+

γ n
V

gl
gm

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

 (5.4-1) 

The matrix elements 

€ 

ηn
V  and 

€ 

γ n
V  are defined in Table 8 or 9. The b arrays are similar to Eq. 

(3.4-3), except that the weighting factor is included:   

€ 

bl,n = wlβl ,0,n ,0,,0[ ]. The a arrays are 
defined in Eq. (3.4-4), the S is defined in the text between Eq. 3.4-4 and 3.4-5, and the g 
array is defined in Eq. 3.4-5. Eq. 5.4-1 is represented graphically in Fig 5-4. 
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Fig 5-4. Graphical schematic of the implementation of an explicit time-step 
from time n	  to time n+1	  for multiple interacting locations in Area IV (Eq. 5.4-
1). Compare with Fig 5-2. The temperature array is divided into the 
temperature of the volatile slab, TV, (this is identical to the temperature in the 
uppermost layer, T0), the next lower layer, T1, and remaining layers for j = 
2..J, Tj. The elements of the substrate matrix S consist of the three arrays α2..J, 
η1..J, and β1..J-1. Darker elements with white lettering correspond to the dark 
gray elements in Fig. 5-2, and change with each time step. Lighter elements 
with black lettering correspond to the light gray elements in Fig. 5-2, and are 
independent of time. White elements are zero.  

The new temperature of the volatile slab depends on the substrate (Eq. 5.4-2a); this is 
similar to Eq. 3.4-8a, but slightly simpler. The multi-location matrix equation for the 
temperatures of the substrate (Eq. 5.4-2b) is also similar to the non-interacting equivalent 
(Eq. 3.4-8b), differing only in that the topmost substrate temperature equals the temperature 
of the volatile slab. 

 Tn+1
V =ηn

VTn
V + wlβl,0,n,wmβm,0,n,!" #$⋅T L{ },1,n +γn

V  (5.4-2a)  

TV ηV β0 β0 TV γV

T1 α1 T1

Tj S Tj

= X + γJ

T1 α1 T1

Tj S Tj

γJ

tn+1 tn
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   T L{ },1..J ,n+1 = S L{ } ⋅T L{ },1..J ,n +

α L{ },1Tn
V

0

0

γ L{ },J

"

#

$
$
$

%

$
$
$

&

'

$
$
$

(

$
$
$

 (5.4-2b) 

Graphically, this is represented by Fig 5-5. 

 

Fig 5-5. Graphical schematic of the implementation of an explicit time-step 
from time n	   to time n+1	   for multiple interacting locations (Eq. 5.4-2). 
Elements are labeled as in Fig 5-5.   

For the implicit case, it is most straight-forward to write the Crank-Nicholson scheme in 
terms on intermediate temperatures for the volatile slab TnV  and substrate, Tl,1..J ,n . 

 

Tn
V

Tl,1..J ,n
Tm,1..J ,n

!

"

#
#
#
#

$

%

&
&
&
&

=

'ηn
V 'bl,n 'bm,n
'al 'Sl 0
'am 0 'Sm

!

"

#
#
#
#

$

%

&
&
&
&

×

Tn
V

Tl,1..J ,n
Tm,1..J ,n

!

"

#
#
#
#

$

%

&
&
&
&

+

γn
V

gl
gm

!

"

#
#
#
#

$

%

&
&
&
&
 (5.4-3a) 

 
!!ηn
V !!bl,n !!bm,n
!!al !!Sl 0
!!am 0 !!Sm

"

#

$
$
$
$

%

&

'
'
'
'

×

Tn+1
V

Tl,1..J ,n+1
Tm,1..J ,n+1

"

#

$
$
$
$

%

&

'
'
'
'

=

Tn
V

Tl,1..J ,n
Tm,1..J ,n

"

#

$
$
$
$

%

&

'
'
'
'

 (5.4-3b) 

For the other areas, the banded tridiagonal matrix was a computational convenience. For 
Area IV, it is the most direct way of solving Eq. 5.4-3b. The solution to Eq. (5.4-3b) can be 

TV = ηV TV + wβ"0 T1 + γV

T1 α1 TV T1

Tj = + S X Tj +

γJ

tn+1 tn
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written by defining two column vectors yl  and zl of length J (defined as in 3.4-12a, 12b), 
and two scalars cn and dn: 

 cn = !!bl,n ⋅ yl∑ = wl !!βl,0,nyl,0∑  (5.4-4a)  

 dn = !!bl,n ⋅ zl,n∑ = wl !!βl,0,nzl,0,n∑  (5.4-4b)  

with which the temperatures at the next time step for location l are 

 Tn+1
V =

Tn
V − dn
""ηn
V − cn

 (5.4-5a)  

 Tl,1..J ,n+1 = zl,n −Tn+1
V yl  (5.4-5b)  

This solution can be confirmed by direct substitution into Eq. (5.4-3b). The solution is shown 
graphically in Fig 5-6. Note that the only the time-independent substrate matrix needs to be 
inverted, and this can be done at the start of the computation, rather than for each time step. 
Furthermore, the array y is also independent of time. 

 

Fig 5-6. Graphical schematic of the implementation of an implicit time-step 
from time n	   to time n+1	   for multiple non-interacting locations (Eq. 3.4-8). 
Elements are labeled as in Fig 3-9.  The arrays z and y are defined graphically 
in Fig 3-13. 

TV – wβ"0 • z0
TV =

tn+1 η"0 – wβ"0 • y0

T1 z0 y0 TV

Tj = zj – yj X

tn+1 tn+1
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6. Conclusions 

A variety of mathematical techniques for speeding up thermophysical models or volatile 
transport models have been presented. They include an improved initial condition, an implicit 
time-step step scheme, and a matrix formulation that allows for the calculation of several 
locations at once. These can be used separately or in combination. 

This formulation described here has been previously applied to Pluto's diurnal cycle with 
volatile distributions and albedos that vary with both latitude and longitude (Young 2012). 
The speed gains allowed me to perform a wide parameter-space search of Pluto's seasonal 
cycle in anticipation of New Horizons (2013). This work has also been used to study KBO 
seasons (Young and McKinnon 2012) and the first Pluto volatile transport models to include 
an N2 reservoir (Young et al. 2015). 

I hope you will find some of the techniques useful.  

Acknowledgement 

This work was supported, in part, by funding from NASA Planetary Atmospheres grant 
NNG06GF32G and the Spitzer project (JPL research support agreement 1368573). John 
Spencer and Candy Hansen were extremely generous with information about their 
thermophysical and volatile transport models. Andy Ingersoll, Melissa Brucker, Carly 
Howett, Angela Zelucha, Cathy Olkin, and Will Grundy all helped me birth this monster of a 
paper. 



L. Young –71– Volatile Transport II (VT3D) 
 

References 

Brown, M. E., A. J. Burgasser, and W. C. Fraser 2011. The Surface Composition of Large 
Kuiper Belt Object 2007 OR10. The Astrophysical Journal 738, L26. 

Elliot, J. L. and L. A. Young 1992. Analysis of stellar occultation data for planetary 
atmospheres. I - Model fitting, with application to Pluto. The Astronomical Journal 103, 
991-1015. 

Elliot, J. L., and 13 colleagues 1998. Global warming on Triton. Nature 393, 765-767.    

Elliot, J. L., and 28 colleagues 2003. The recent expansion of Pluto's atmosphere. Nature 
424, 165-168.  

Elliot, J. L., and 19 colleagues 2007. Changes in Pluto's Atmosphere: 1988-2006. The 
Astronomical Journal 134, 1-13. 

Fivez, J. and J. Thoen 1996. Thermal waves in materials with inhomogeneous thermal 
conductivity: An analytical approach. Journal of Applied Physics 79, 2225-2228.  

French, R. G., A. D. Toigo, P. J. Gierasch, C. J. Hansen, L. A. Young, B. Sicardy, A. Dias-
Oliveira, and S. D. Guzewich 2015. Seasonal variations in Pluto's atmospheric tides. 
Icarus 246, 247-267. 

Grossel, P. and F. Depasse 1998. Alternating heat diffusion in thermophysical depth profiles: 
multilayer and continuous descriptions. Journal of Physics D Applied Physics 31, 216-
223.  

Gurrola, E. M. 1995. Interpretation of Radar Data from the Icy Galilean Satellites and Triton. 
Ph.D. Thesis, Stanford University. 

Grundy, W. M. 2011. Surface Composition Overview. New Horizons Workshop on Icy 
Surface Processes, Lowell Observatory, Aug 30-31 2011. 

Grundy, W.M. and U. Fink 1996. Synoptic CCD spectrophotometry of Pluto over the past 15 
years. Icarus 124, 329–343.  

Grundy, W. M. and J. A. Stansberry 2000. Solar Gardening and the Seasonal Evolution of 
Nitrogen Ice on Triton and Pluto. Icarus 148, 340-346.    



L. Young –72– Volatile Transport II (VT3D) 
 
Grundy, W. M., L. A. Young, C. B. Olkin, M. W. Buie, and J. A. Stansberry 2009. Observed 

Spatial Distribution and Secular Evolution of Ices on Pluto and Triton. AAS/Division for 
Planetary Sciences Meeting Abstracts 41, #06.01   

Grundy, W. M. and M. W. Buie 2001. Distribution and Evolution of CH4, N2, and CO Ices 
on Pluto's Surface: 1995 to 1998. Icarus 153, 248-263.    

Haltiner, G. J., Williams, R. T., 1984: Numerical Prediction and Dynamic Meteorology. 
Wiley.  

Hansen, C. J. and D. A. Paige 1992. A thermal model for the seasonal nitrogen cycle on 
Triton. Icarus 99, 273-288.  

Hansen, C. J. and D. A. Paige 1996. Seasonal Nitrogen Cycles on Pluto. Icarus 120, 247-265. 

Hansen, C. J., D. A. Paige, and L. A. Young 2015. Pluto's climate modeled with new 
observational constraints. Icarus 246, 183-191.    

Hapke, B. 1993. Theory of reflectance and emittance spectroscopy. Topics in Remote 
Sensing, Cambridge, UK: Cambridge University Press. 

Harris, A. W. 1998. A Thermal Model for Near-Earth Asteroids. Icarus 131, 291-301. 

Howett, C. J. A., J. R. Spencer, P. Schenk, R. E. Johnson, C. Paranicas, T. A. Hurford, A. 
Verbiscer, and M. Segura 2011. A high-amplitude thermal inertia anomaly of probable 
magnetospheric origin on Saturn's moon Mimas. Icarus 216, 221-226. 

Karam, M.A. 2000. A thermal wave approach for heat transfer in a nonuniform soil. Soil Sci 
Soc Am J 64:1219-1225.  

Kieffer, H. H. 2013. Thermal model for analysis of Mars infrared mapping. Journal of 
Geophysical Research (Planets) 118, 451-470. 

Krasnopolsky, V. A., B. R. Sandel, F. Herbert, and R. J. Vervack 1993. Temperature, N2, 
and N density profiles of Triton's atmosphere - Observations and model. Journal of 
Geophysical Research 98, 3065-3078.  

Lellouch, E., B. Sicardy, C. de Bergh, H.-U. Käufl, S. Kassi, and A. Campargue 2009. Pluto's 
lower atmosphere structure and methane abundance from high-resolution spectroscopy 
and stellar occultations. Astronomy and Astrophysics 495, L17-L21.  



L. Young –73– Volatile Transport II (VT3D) 
 
Lellouch, E., C. de Bergh, B. Sicardy, H. U. Käufl, and A. Smette 2011a. High resolution 

spectroscopy of Pluto's atmosphere: detection of the 2.3 µm CH4 bands and evidence for 
carbon monoxide. Astronomy and Astrophysics 530, L4. 

Lellouch, E., J. Stansberry, J. Emery, W. Grundy, and D. P. Cruikshank 2011b. Thermal 
properties of Pluto's and Charon's surfaces from Spitzer observations. Icarus 214, 701-
716.    

Leighton, R. B. and B. C. Murray 1966. Behavior of Carbon Dioxide and other volatiles on 
Mars. Science 153, 136-144. 

Levine, J. S., D. R. Kraemer and W. R. Kuhn 1976. Solar Radiation Incident on Mars and the 
Outer Planets: Latitudinal, Seasonal, and Atmospheric Effects. Icarus 31, 136-145. 

Moore, J. M. and J. R. Spencer 1990. Koyaanismuuyaw - The hypothesis of a perennially 
dichotomous Triton. Geophysical Research Letters 17, 1757-1760.    

Olkin, C. B., L. A. Young, R. G. French, E. F. Young, M. W. Buie, R. R. Howell, J. 
Regester, C. R. Ruhland, T. Natusch, D. J. Ramm, Pluto’s atmospheric structure from the 
July 2007 stellar occultation. submitted. 

Olkin, C. B., and 19 colleagues 1997. The Thermal Structure of Triton's Atmosphere: Results 
from the 1993 and 1995 Occultations. Icarus 129, 178-201.    

Olkin, C. B., and 23 colleagues 2015. Evidence that Pluto's atmosphere does not collapse 
from occultations including the 2013 May 04 event. Icarus 246, 220-225. 

Owen, T. C., T. L. Roush, D. P. Cruikshank, J. L. Elliot, L. A. Young, C. de Bergh, B. 
Schmitt, T. R. Geballe, R. H. Brown, and M. J. Bartholomew 1993. Surface ices and the 
atmospheric composition of Pluto. Science 261, 745-748.    

Person, M. J., and 20 colleagues 2010. Pluto's Atmosphere from the July 2010 Stellar 
Occultation. Bulletin of the American Astronomical Society 42, 983. 

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery 1992. Numerical recipes 
in C. The art of scientific computing, 2nd ed. Cambridge: University Press. 



L. Young –74– Volatile Transport II (VT3D) 
 
Rozitis, B. and S. F. Green 2011. Directional characteristics of thermal-infrared beaming 

from atmosphereless planetary surfaces - a new thermophysical model. Monthly Notices 
of the Royal Astronomical Society 415, 2042-2062.  

Sicardy, B., and 40 colleagues 2003. Large changes in Pluto's atmosphere as revealed by 
recent stellar occultations. Nature 424, 168-170. 

Sicardy, B., and 61 colleagues 2011. A Pluto-like radius and a high albedo for the dwarf 
planet Eris from an occultation. Nature 478, 493-496.  

Spencer, J. R. 1990. A rough-surface thermophysical model for airless planets. Icarus 83, 27-
38.   

Spencer, J. R. and J. M. Moore 1992. The influence of thermal inertia on temperatures and 
frost stability on Triton. Icarus 99, 261-272. 

Spencer, J. R., L. A. Lebofsky, and M. V. Sykes 1989. Systematic biases in radiometric 
diameter determinations. Icarus 78, 337-354.  

Spencer, J. R., J. A. Stansberry, L. M. Trafton, E. F. Young, R. P. Binzel, and S. K. Croft 
1997. Volatile Transport, Seasonal Cycles, and Atmospheric Dynamics on Pluto. In  
Stern, S. A., Tholen, D. J. (Eds.), Pluto and Charon, Univ. of Arizona Press, Tucson, pp. 
435–473. 

Stansberry, J. A. and R. V. Yelle 1999. Emissivity and the Fate of Pluto's  Atmosphere. 
Icarus 141, 299-306. 

Stern, S. A. and L. Trafton 1984. Constraints on bulk composition, seasonal variation, and 
global dynamics of Pluto's atmosphere. Icarus 57, 231-240.  

Stern, S. A., and 150 colleagues 2015. The Pluto system: Initial results from its exploration 
by New Horizons. Science 350, aad1815. 

Thomas, N., S. Eggers, W.-H. Ip, G. Lichtenberg, A. Fitzsimmons, L. Jorda, H. U. Keller, I. 
P. Williams, G. Hahn, and H. Rauer 2000. Observations of the Trans-Neptunian Objects 
1993 SC and 1996 TL<SUB>66</SUB> with the Infrared Space Observatory. The 
Astrophysical Journal 534, 446-455.  



L. Young –75– Volatile Transport II (VT3D) 
 
Trafton, L. 1990. A two-component volatile atmosphere for Pluto. I - The bulk 

hydrodynamic escape regime. The Astrophysical Journal 359, 512-523.    

Trafton, L. and S. A. Stern 1983. On the global distribution of Pluto's atmosphere. The 
Astrophysical Journal 267, 872-881.   

Wang Xing-Bo 2009, A new algorithm with its scilab implementation for solution of 
bordered tridiagonal linear equations, 2009 IEEE International Workshop on Open-
source Software for Scientific Computation (OSSC). Guiyang, China, Sept 18-20 2009. 

Yelle, R. V., J. I. Lunine, J. B. Pollack, and R. H. Brown 1995. Lower atmospheric structure 
and surface-atmosphere interactions on Triton.. Neptune and Triton 1031-1105.    

Young, L. A. 2012. Volatile transport on inhomogeneous surfaces: I - Analytic expressions, 
with application to Pluto's day. Icarus 221, 80-88.   

Young, L. A. 2013. Pluto's Seasons: New Predictions for New Horizons. The Astrophysical 
Journal 766, L22  

Young, E. F. and R. P. Binzel 1993. Comparative mapping of Pluto's sub-Charon hemisphere 
- Three least squares models based on mutual event  lightcurves. Icarus 102, 134-149.  

Young, L. and W. B. McKinnon 2013. Atmospheres on Volatile-Bearing Kuiper Belt 
Objects. AAS/Division for Planetary Sciences Meeting Abstracts 45, #507.02 

Young, L. A., and 27 colleagues 2008b. New Horizons: Anticipated scientific investigations 
at the Pluto system. Space Science Reviews 140, 93-127.    

Young, L., and 14 colleagues 2010. Results from the 2010 Feb 14 and July 4 Pluto 
Occultations. Bulletin of the American Astronomical Society 42, 982  

Young, L., and 10 colleagues 2009. Results from the 2009 April 21 Pluto Occultation. 
AAS/Division for Planetary Sciences Meeting Abstracts #41 41, #06.05  

Young, E. F., and 13 colleagues 2008. Vertical Structure in Pluto's  Atmosphere from the 
2006 June 12 Stellar Occultation. The Astronomical  Journal 136, 1757-1769.   

Young, L., and 14 colleagues 2010. Results from the 2010 Feb 14 and July 4 Pluto 
Occultations. Bulletin of the American Astronomical Society 42, 982. 



L. Young –76– Volatile Transport II (VT3D) 
 
Young, L., and 15 colleagues 2015. Volatile Transport Implications from the New Horizons 

Flyby of Pluto. AAS/Division for Planetary Sciences Meeting. Abstracts 47, #101.04 



L. Young –77– Volatile Transport II (VT3D) 
 
Appendix A 

Table A1. Variable Names 

Variable Name Units (cgs) Comments 

αl,j Matrix element at location l, layer j unitless Section 3.3, Fig 3-6, Table 4 & 5 

βl,j Matrix element at location l, layer j, j > 0 unitless Section 3.3, Fig 3-6, Table 4 & 5 

βl,0,n Matrix element at location l, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3 

β'l,0,n Matrix element at location l, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3 

β"l,0,n Matrix element at location l, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3 

Γ Thermal inertia 

erg cm-2  
K-1 s-1/2 
(MKS of 
tiu) 

Eq. 3.2-5 

γλ,0,ν Matrix element at location l, layer 0, time n unitless Section 3.3, Fig 3-6, , Table 3 

Δ j Thickness of layer j cm Fig 3-5, Section 3.3. 

Δl , j
B  Distance to layer below cm Eq. 3.3-11 

Δl , j
B  Distance to layer above cm Eq. 3.3-25a,b 

Δt Time step s Section 3.3. 

δ l,j Unitless thickness of layer j unitless Eq. 3.3-4 

δl , j
A  Unitless distance to layer above unitless Eq. 3.3-26 

δl , j
B  Unitless distance to layer below unitless Eq. 3.3-12 

ε Emissivity unitless Fig 2-1, Section 3.1 

ε l,n 
Emissivity at location l and time n, for discrete 
equations unitless Section 3.3 

ε
n

 Emissivity, for discrete equations, averaged over 
Area IV unitless Eq. 5.3-8b 

ηl,0,n Matrix element at location l, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3 

η'l,0,n Matrix element at location l, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3 

η"l,0,n Matrix element at location l, layer 0, time n unitless Section 3.3, Fig 3-6, Table 3 

η
n
V  Matrix element for interacting volatiles unitless Section 5-2, Fig 5-2, Table 8 & 9 

!η
n
V  Matrix element for interacting volatiles unitless Section 5-2, Fig 5-3, Table 8 & 9 

!!η
n

V  Matrix element for interacting volatiles unitless Section 5-2, Fig 5-3, Table 8 & 9 

ηl,j Matrix element at location l, layer j, j > 0 unitless Section 3.3, Fig 3-6, Table 4 & 5 

η'l,j Matrix element at location l, layer j, j > 0 unitless Section 3.3, Fig 3-6, Table 4 & 5 

η"l,j Matrix element at location l, layer j, j > 0 unitless Section 3.3, Fig 3-6, Table 4 & 5 
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Table A1. Variable Names, cont 

Variable Name Units (cgs) Comments 

ΘA Thermal parameter, atmosphere unitless Eq. 4.2-8 

ΘS Thermal parameter, substrate unitless 3.2-11 

ΘV Thermal parameter, volatile slab unitless Eq. 4.2-7 

λ Latitude radian Section 3.1 

λ0 Sub-solar latitude radian Section 3.1 

µ0 Cosine of solar incidence angle unitless Eq. 3.1-5 

ζ Unitless depth unitless After Eq. 3.2-7. 

ρ Density g cm-3 Section 3.1 

ρl,j Density at location l, layer j g cm-3 Section 3.3 

σ Stefan-Boltzmann constant erg cm-2  
K-4 s-1 

Fig 2-1, Section 3.1 

τ Unitless time step unitless Eq. 3.3-3 

φ Longitude radian Section 3.1 

φ0 Sub-solar longitude radian Section 3.1 

ΦA "Flux-per-temperature," atmosphere erg cm-2 s-1 
K-1 Eq. 4.2-4a 

Φ
l ,n
A  "Flux-per-temperature," atmosphere, for discrete 

equations 
erg cm-2 s-1 
K-1 Eq. 4.3-3 

Φ
n
A  "Flux-per-temperature," atmosphere, for discrete 

equations, averaged over Area IV 
erg cm-2 s-1 
K-1 Eq. 4.3-3 

ΦE "Flux-per-temperature," emission erg cm-2 s-1 
K-1 Eq. 3.2-9b 

Φ
l , j
E  "Flux-per-temperature," emission, for discrete 

equations 
erg cm-2 s-1 
K-1 Eq. 3.5-8 

Φ
n
E  "Flux-per-temperature," emission, for discrete 

equations, averaged over Area IV 
erg cm-2 s-1 
K-1 Eq. 5.3-5b 

Φl , j
H  "Flux-per-temperature," enthalpy of the substrate, 

for discrete equations 
erg cm-2 s-1 
K-1 Eq. 3.3-5 

Φ0
H

 
"Flux-per-temperature," enthalpy of the top layer 
of the substrate, for discrete equations, averaged 
over Area IV 

erg cm-2 s-1 
K-1 Eq. 5.3-3 

Φl , j
K ,A  "Flux-per-temperature," conduction from above, 

for discrete equations 
erg cm-2 s-1 
K-1 Eq. 3.3-24 

Φl , j
K ,B  "Flux-per-temperature," conduction from below, 

for discrete equations 
erg cm-2 s-1 
K-1 Eq. 3.3-10 

ΦS "Flux-per-temperature," substrate erg cm-2 s-1 
K-1 Eq. 3.2-9a 

Φ
l ,n
T  "Flux-per-temperature," total, for discrete 

equations 
erg cm-2 s-1 
K-1 Eq. 3.3-18, 4.3-11. 

ΦV "Flux-per-temperature," volatile slab erg cm-2 s-1 
K-1 Eq. 4.2-4b 
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Table A1. Variable Names, cont 

Variable Name Units (cgs) Comments 

Φ0
V  "Flux-per-temperature," volatile slab, for discrete 

equations, averaged over Area IV 
erg cm-2 s-1 
K-1 Eq. 5.3-5b 

ω Frequency of solar forcing s-1 Section 3.2 

ΩIII Solid angle of Area III ster Section 5.1 

ΩIV Solid angle of Area IV ster Section 5.1 

Ah Hemispheric albedo unitless Eq 3.1-4. 
AS Spherical albedo (aka Bond albedo) unitless Discussion following Eq. 3.1-5 

al 
J-element column vector with one non-zero 
element for location l unitless Eq. 3.4-4 

€ 

" a l  
J-element column vector with one non-zero 
element for location l unitless Eq. 3.4-11a 

€ 

" " a l  
J-element column vector with one non-zero 
element for location l unitless Eq. 3.4-11b 

a{L} 
J-element column vector with one non-zero 
element for location in set {L} unitless Section 3-4 

bl ,n  J-element row vector with one non-zero element. unitless Eq. 3.4-3 

bl ,n  J-element row vector with one non-zero element. unitless Eq. 3.4-3 

€ 

" b l,n  J-element row vector with one non-zero element. unitless Eq. 3.4-10a 

€ 

" " b l,n  J-element row vector with one non-zero element. unitless Eq. 3.4-10b 

cV Specific heat of volatile erg K-1 g-1 Fig 2-1, Section 3.1. V for 
Volatile. 

c
l
V  Specific heat of volatile, , for discrete equations erg K-1 g-1 Eq. 4.3-2. V for Volatile. 

c Specific heat of the substrate erg K-1 g-1 Section 3.1. 
cl,j Specific heat at location l, layer j erg K-1 g-1 Section 3.3. 
cl,n Scalar for solving banded tri-diagonal matrix unitless Eq. 3.4-12c 
cn Row vector for solving banded tri-diagonal matrix unitless Eq. 3.4-16c 
dl,n Scalar for solving banded tri-diagonal matrix unitless Eq. 3.4-12d 
dn Row vector for solving banded tri-diagonal matrix unitless Eq. 3.4-16d 
E Escape rate g cm-2 s-1 Section 4.1 

€ 

ˆ E m  Sinusoidal coefficient of E g cm-2 s-1 Eq. 4.2-2, Section 4.2. Complex 

FE Emitted thermal flux erg cm-2 s-1 Eq. 3.2-13 

F̂m
E  Complex coefficients for FE erg cm-2 s-1 Eq 3.2-13 

F Heat flow at lower boundary erg cm-2 s-1 Fig 2-1, Section 3.1 

€ 

Fl,n
A

 Correction term for flux due to latent heat erg cm-2 s-1 Eq. 4.3-8 

F
n
A  Correction term for flux due to latent heat, 

averaged over Area IV erg cm-2 s-1 Eq. 5.3-6c 

Fl Heat flow at lower boundary for discrete equations erg cm-2 s-1 Eq. 3.3-20 
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Table A1. Variable Names, cont 

Variable Name Units (cgs) Comments 

fV Fraction of the interacting area that is volatile-
covered unitless Eq. 5.1-4 

gl 
J-element column vector with one non-zero 
element for location l unitless Eq. 3.4-5 

g{L} 
J-element column vector with one non-zero 
element for locations in set {L} unitless Section 3.4 

HV Enthalpy of the volatile erg g-1 Fig 2-1, Section 3.1 
h Hour angle radian Section 3.1 
h0 Hour angle at time t = 0 radian Section 3.2 

hmax Maximum hour angle of sunlight radian Eq. 3.2-3 

!!h0,n
 Row vector for solving banded tri-diagonal matrix unitless Eq. 3.4-16d 

    
j Index for layers integer Fig 3-5, Section 3.3. j = 0 .. J. 
J Index of lowest layer integer Fig 3-5, Section 3.3.  

k Thermal conductivity erg K-1 cm-

1 s-1 Fig 2-1, Section 3.1 

kB Bolzmann's constant erg K-1  Section 4.1 

kl,j Thermal conductivity at location l, layer j erg K-1 cm-

1 s-1 Section 3.3 

LC Latent heat of crystalline phase change erg g-1 Section 4.1 
LS Latent heat of sublimation erg g-1 Fig 2-1, Section 3.1 
l Index for location integer Section 3.3 
L Number of locations integer Section 3.3 

{L} 
Set of locations with shared substrate properties & 
internal heat flux Set Section 3.4 

{LIV} Set of locations in Area IV Set Section Section 5.3 
M Number of orders of sinusoidal expansion integer Section 3.2 
m Order of sinusoidal expansion integer Section 3.2 
m Another index for location integer Section 3.4 
mA Mass per area of the atmosphere g cm-2 Section 4.1 

mmolec Mass per molecule g molecule-

1 Section 4.1 

mV Mass per area of the volatile slab g cm-2 Fig 2-1, Section 3.1 

m
l ,n
V  Mass per area of the volatile slab for discrete 

equations g cm-2 Eq. (4.3-2) 

n Index for time integer Section 3.3 
P Period of solar forcing s Section 3.2 
pS Vapor pressure µbar Section 4.1 
r Heliocentric distance AU Eq 3.1-4. 
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Table A1. Variable Names, cont 

Variable Name Units (cgs) Comments 
S Absorbed insolation erg cm-2 s-1 Fig 2-1, Section 3.1; Eq 3.1-4. 
S0 Constant term for S in analytic expansion erg cm-2 s-1 Eq 3.2-1 

Ŝm  Complex coefficients for S in analytic expansion erg cm-2 s-1 Eq 3.2-1 

S1 AU Solar flux at 1 AU erg cm-2 s-1 Section 3.1 
Sl  tridiagonal matrix for location l unitless Section 3.4 

  tridiagonal matrix for location l unitless Section 3.4 

  tridiagonal matrix for location l unitless Section 3.4 

S{L}  tridiagonal matrix for locations in set {L} unitless Section 3.4 
T Temperature K Fig 2-1, Section 3.1 
T0 Constant term for T in analytic expansion K Eq. 3.2-7 

T̂m  Complex coefficients for T in analytic expansion K Eq. 3.2-7 

Tl,0,n Discrete surface temperature at location l, time n K Section 3.4 
Tl,1..J ,n  Row vector of discrete substrate temperatures K Eq. 3.4-1 

Tl,j,n Temperature of location l, layer j, time n K Fig 3-5, Section 3.3 

T{L},0,n 
Row array of length L with temperatures of 
locations in set {L}, layer 0, time n K Section 3.4 

T{L},1..J,n 
J × L matrix with temperatures of locations in set 
{L}, layers 1..J, time n K Section 3.4 

 
Intermediate temperature of location l, layer 0, 
time n for Crank-Nicholson timesteps K Eq. 3.4-9a 

 

J-element column vector of intermediate 
temperature of location l, layers 1..J, time n for 
Crank-Nicholson timesteps 

K Eq. 3.4-9a 

TV Temperature of the volatile K Fig 2-1, Section 3.1. Constant over 
Area IV. 

T
n
V  Temperature of the volatile for discrete equations K Fig 2-1, Section 3.1. Constant over 

Area IV. 
t Time s Fig 2-1, Section 3.1 

wl Areal weight of location l with respect to Area III unitless Eq. 5.3-4 

!w
l  

Areal weight of location l with respect to Area III 
and IV unitless Eq. 5.3-11b 

yl
 J column vector, for solving banded tri-diagonal 

matrix unitless Eq. 3.4-12a 

y{L}
 J column vector, for solving banded tri-diagonal 

matrix unitless Eq. 3.4-16a 

z Depth cm Fig 2-1, Section 3.1. Zero at top of 
substrate, negative at depth. 

zj Depth of layer j cm 
Fig 3-5, Section 3.3. Middle of 
layer j for j > 0; z0 = 0 (top of 
layer). 

€ 

J × J

€ 

" S l

€ 

J × J

€ 

" " S l

€ 

J × J

€ 

J × J

€ 

˜ T l,0,n

€ 

˜ T l,1..J ,n
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Table A1. Variable Names, cont 

Variable Name Units (cgs) Comments 

zl,n 
J column vector, for solving banded tri-diagonal 
matrix unitless Eq. 3.4-12b 

Z{L},n 
J x L matrix, for solving banded tri-diagonal 
matrix unitless Eq. 3.4-16b 

Z Skin depth cm Eq. 3.2-6 

 

 


