Reprint

Title: The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System

Authors: Edward W. Thommes, Martin J. Duncan, & Harold F. Levison

Status: Nature, 402 , 635: December 9, 1999 Issue

Bold Paragraph: Planets are believed to have formed through the accumulation of a large number of small bodies. In the case of the gas-giant planets Jupiter and Saturn, they accreted a signicant amount of gas directly from the protosolar nebula after accumulating solid cores of about 5-15 Earth masses. Such models, however, have been unable to produce the smaller ice giants Uranus and Neptune at their present locations, because in that region of the Solar System the small planetary bodies will have been more widely spaced, and less tightly bound gravitationally to the Sun. When applied to the current Jupiter-Saturn zone, a recent theory predicts that, in addition to the solid cores of Jupiter and Saturn, two or three other solid bodies of comparable mass are likely to have formed. Here we report the results of model calculations that demonstrate that such cores will have been gravitationally scattered outwards as Jupiter, and perhaps Saturn, accreted nebular gas. The orbits of these cores then evolve into orbits that resemble those of Uranus and Neptune, as a result of gravitational interactions with the small bodies in the outer disk of the protosolar nebula.

Click here for pdf file this paper.

Click here for an encapsulated postscript file of the supplement section. This contains color figures. Click here for a gziped version of the postscript file. Click here for a PDF file of the suppliment.

Animations from Suppliment:

Return to the Hal Levison's preprint list

Return to the Hal Levison's Homepage