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ABSTRACT

We presented the first particle based, Lagrangian code that can follow the

collisional/accretional/dynamical evolution of a large number of km-sized plan-

etesimals through the entire growth process to become planets. We refer to it as

the Lagrangian Integrator for Planetary Accretion and Dynamics or LIPAD. LI-

PAD is built on top of SyMBA, which is a symplectic N -body integrator (Duncan

et al. 1998). In order to handle the very large number of planetesimals required

by planet formation simulations, we introduce the concept of a tracer particle.

Each tracer is intended to represent a large number of disk particles on roughly

the same orbit and size as one another, and is characterized by three numbers:

the physical radius, the bulk density, and the total mass of the disk particles

represented by the tracer. We developed statistical algorithms that follow the

dynamical and collisional evolution of the tracers due to the presence of one an-

other. The tracers mainly dynamically interact with the larger objects (planetary

embryos) in the normal N -body way. LIPAD’s greatest strength is that it can ac-

curately model the wholesale redistribution of planetesimals due to gravitational

interaction with the embryos, which has recently been shown to significantly af-

fect the growth rate of planetary embryos (Levison et al. 2010). We verify the

code via a comprehensive set of tests which compare our results with those of

Eulerian and/or direct N -body codes.

Subject headings:
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1. Introduction

The construction of a comprehensive, end-to-end model of the accumulation of

the terrestrial planets and giant planet cores has been an elusive goal for planetary

scientists because of the huge dynamic range inherent in the problem. The region of the

proto-planetary disk from which the planets formed originally contained something like

10∼14 objects with radii perhaps as small as ∼100 m (Weidenschilling 2011) or as large as

1000 km (Johansen & Klahr 2011) depending on the planetesimals formation model. These

objects grew into the planets via a process that includes both complex collisional (both

accumulation and fragmentation) and dynamical evolution. In addition, at different stages

of this process, the action occurred on very different temporal and physical scales, making

the construction of comprehensive models very difficult.

Take, for an example, the formation of terrestrial planets. Studies have shown that

once the first macroscopic planetesimals have formed (which is a field of study in itself),

solid body growth can occur in three distinct stages. In the first stage, planetesimals grow

by so-called runaway accretion (Wetherill & Stewart 1989; Greenberg et al. 1978). During

this stage, the largest objects do not affect the dynamical state of the rest of the disk and

so an object’s mass accretion rate scales as M4/3. As a result, the largest bodies grow the

fastest — mainly by feeding off of much smaller objects. Ida & Makino (1993) showed that

runaway accretion ends when the growing planets are only roughly 100× their original

mass. Because this stage requires the study of hundreds of billions of objects, the codes

used to study it employ Eulerian statistical algorithms which divide the problem into a

multidimensional grid, usually 2-dimensional in heliocentric distance and size (Wetherill

& Stewart 1989; Spaute et al. 1991; Kenyon & Luu 1999; Kenyon & Bromley 2001;

Morbidelli et al. 2009; Bromley & Kenyon 2011) which evolves the total mass, and RMS

eccentricity and inclination in each bin. These codes usually accurately follow the detailed
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collisional/fragmentational evolution of system, while using relatively simple, semi-analytic

equations to evolve the dynamics. These dynamical equations are appropriate in this stage

because the dynamics are local and well behaved — there is little dynamical mixing and

the surface density of the system remains smooth.

In the middle stage, the largest bodies become big enough to gravitationally “stir their

own soup” of planetesimals (Ida & Makino 1993; Kokubo & Ida 1998, 2000; Thommes et

al. 2003; Chambers 2006), and thus the mass accretion rate of the largest bodies scales as

M2/3. In this phase, the largest few objects at any given time are of comparable mass.

As the system evolves, the mass of the system is concentrated into an ever-decreasing

number of bodies, known as planetary embryos, of increasing masses and separations. This

stage ends at a given location in the disk when the surface density of the local “oligarchs”

becomes similar to that of the planetesimals (Kenyon & Bromley 2006). This occurs when

the largest bodies reach roughly half their so-called isolation mass, which is the mass they

would have if they had consumed all planetesimals within their gravitational reach. In the

terrestrial planet region, typical disk models produce isolation masses of only about Mars

mass — thus a third, very violent, phase must take place in which these bodies’ orbits cross

and they collide to form Earth- and Venus-mass bodies. The middle- and late-stages have

mainly been studied with direct N -body simulations (Chambers & Wetherill 1998; Agnor

et al. 1999; Chambers 2001; O’Brien et al. 2006; Raymond et al. 2009, for example). The

N -body codes accurately follow the dynamical evolution of the system, which is necessary

because there is much mixing and chaotic behavior. Studies of these stages are required to

represent the large number of planetesimals remaining in the system by a smaller number

of more massive tracer particles in order to make the problem computationally tractable.

In addition, they assume that when two bodies collide, they merge with 100% efficiency;

there is no fragmentation.
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There have been a couple of attempts at constructing an end-to-end simulation of

planet formation that started with a population of small planetesimals and built a complete

planetary system (Spaute et al. 1991; Weidenschilling et al. 1997; Kenyon & Bromley

2006; Bromley & Kenyon 2011, for example). These have employed codes that graft an

N -body algorithm onto Eulerian statistical code. The dynamics of the growing planetary

embryos are handled correctly by the N -body algorithm, the accretion/fragmentation

of the planetesimals are handled by the Eulerian code, and the interaction between the

two populations are handled via analytical expressions (for example, applying dynamical

friction to the embryos by the planetesimals). The embryos can affect the eccentricities and

inclinations of the planetesimals, but not their surface density distribution.

The last point above is likely to be a serious limitation of these algorithms. In Levison

et al. (2010, hereafter LTD10) we showed that the growth rate of planetary embryos is

strongly effected by the wholesale redistribution of planetesimals due to gravitational

interaction with the embryos, themselves. In particular, we found that growth can stop

if a gap opens around a embryo. In addition, the embryos can migrate as a result of

gravitational scattering of the nearby planetesimals (see also Fernandez & Ip 1984; Hahn

& Malhotra 1999; Ida et al. 2000; Levison et al. 2007; Kirsh et al. 2009). This so-called

planetesimal driven migration can significantly enhance growth (LTD10; Minton & Levison

2012). Unfortunately, this result calls into question the bulk of the models of the early

stages of planet formation because they rely on algorithms that do not take this process

into account.

We realized that in order to adequately incorporate our results into full planet

formation simulations would require a totally new, Lagrangian approach to the problem.

Fortunately, we also realized that the code used in LTD10 supplied us with a basic structure

in which to develop this algorithm. Here we report on the first particle-based Lagrangian
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code that can follow the dynamical/collisional/accretional evolution of a large number of

km-sized planetesimals through the entire growth process to become planets. We call this

code LIPAD for Lagrangian Integrator for Planetary Accretion and Dynamics. In §2, we

describe the code in detail. In §3, we present a comprehensive set of tests and show that

LIPAD represents the behavior of a systems containing a large number of planetesimals

better than Eulerian codes. Finally, our conclusions are presented in §4.

2. LIPAD

LIPAD is built on top of our N -body code known as SyMBA (Duncan et al. 1998)

and it is an extension of the code used to study giant planet core formation in LTD10.

SyMBA is a symplectic algorithm that has the desirable properties of the sophisticated and

highly efficient numerical algorithm known as the Wisdom-Holman Map (WHM, Wisdom &

Holman 1991) and that, in addition, can handle close encounters (Duncan et al. 1998) This

technique is based on a variant of the standard WHM, but it handles close encounters by

employing a multiple time step technique introduced by Skeel & Biesiadecki (1994). When

bodies are well separated, the algorithm has the speed of the WHM method. However,

whenever two bodies suffer a mutual encounter, the time step for the relevant bodies is

recursively subdivided in a way that keeps the system symplectic.

Since we cannot possibly follow the evolution of 10∼14 bodies, we introduce four classes

of particles to LIPAD: two types of embryos, to represent individual large objects (these

will be described below), and two types of tracers, to represent the small-size end of the

population. Each tracer is intended to represent a large number of comparably-sized

planetesimals on roughly the same orbit. Each tracer will be characterized by three

numbers: the physical radius s and the bulk density ρ of its constituent planetesimals,

as well as the total mass of the particles it represents, mtr. As the system evolves, mtr
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and ρ remain fixed, while, as we describe in detail below, the tracer’s orbit and s change.

As a result, the number of planetesimals that the tracer represents, Ntr =mtr/
4
3
πρs3, also

changes. It is important to note that in order to strictly conserve mass during a simulation

Ntr is a real number and not an integer. Although this might seem odd, it is a reasonable

approach because the combined tracer population in intended to statistically represent a

distribution of the much larger number of planetesimals.

Perhaps the best way to illustrates how tracers operate is with a simple example.

In §3, we describe a test of LIPAD where we attempt to reproduce the terrestrial planet

accretion calculation of Kokubo & Ida (2000), who studied a disk that extended from 0.99

to 1.01 AU and contained 0.3M⊕ of material. One of their runs contained 4000 particles

with initial masses of between 1023 and 1024 gm; distributed so that N(s) ds is a power-law

with a slope of -2.6 (see Figure 1A). They followed the system with a full N-body code. We

performed the same simulation with LIPAD, using 425 tracers. While the results of this

calculation are discussed in the section describing the tests we performed on LIPAD (§3.6),

a look at the initial conditions give us an opportunity to clarify how tracers work.

Figure 1B shows the initial particle distribution of our calculation. In particular, we

plot s as a function of semi-major axis, a. The tracers each have the same total mass, and

so the color represents the total number of planetesimals that each tracer represents. In

this case as s decreases from 620 to 290 km, Ntr increases from 2 to 20, but Ntr can, in

principal, become much larger (see some examples in §3). Thus, it might be better to think

of each tracer as representing a clump of material of mass mtr than as an individual object

in an N -body simulation.

The tracers dynamically interact with the larger objects (the two classes of embryos,

see below) in the normal N -body way. The innovative aspect of this code is how the

tracers interact with each other. In particular, we employ Monte Carlo algorithms to
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Fig. 1.— An example of how a population of planetesimals is distributed among tracers. In particular,

425 tracers, each of mass 4.2 × 1024 g, are representing 4000 real objects with masses between 1023 and

1024 gm. The planetesimal differential mass distribution is a power law with N(s) ds ∝ s−2.6. A) The

cumulative number distribution. The gray curve shows the distribution of the 4000 objects used in an N -

body calculation described in §3.6. The black curve shows the tracers. B) Each dot represents an individual

tracer with radius s as a function of semi-major axis (a). The color indicates the number of planetesimals

that the tracer represents (Ntr).
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evolve the sizes and random velocities of a tracer’s constituent planetesimals based on the

location and behavior of the neighboring tracers. As described in more detail below, we

employ statistical algorithms to incorporate dynamical friction, viscous stirring, collisional

damping, and accretion/fragmentation. The code is designed so that as objects grow (i.e. s

increases and N decreases) a tracer can be promoted to an embryo if N becomes equal to 1.

When an object is promoted it becomes an embryo with mass mtr.

Embryos and tracers interact with one another through the SyMBA N -body routines.

This leads to a problem when a tracer is promoted. Before promotion, the object in general

sees itself embedded is a sea of much smaller objects through the Monte Carlo routines. If

we were to simply promote an object to an embryo, it would suddenly see itself in a swarm

of like-mass objects because the other tracers have a total mass of mtr, as well.

Embryos and tracers interact with one another through the SyMBA N -body routines.

This leads to a problem when a tracer is promoted. Before promotion, the object in general

sees itself embedded in a sea of much smaller planetesimals. This is due to the fact that,

although these small planetesimals are represented by much more massive tracers, their

effects are felt through the Monte Carlo routines. If we were to simply promote an object

to an embryo, we would have a problem because the embryos directly interact with the

tracers and immediately after promotion the embryo is only slightly more massive than

they are. In this case, the perturbations from tracers are much too noisy due to their coarse

mass resolution. To avoid these unphysically large gravitational scatterings, we introduce

the concept of a sub-embryo. Sub-embryos can respond to analytically computed dynamical

friction and planet migration effects of the planetesimals (see below), and can collide with

them, while interacting with the rest of the embryos through the SyMBA N -body routines.

A user is free to set the mass at which a sub-embryo becomes a full-embryo. Based on

the work on planetesimal-driven migration of Kirsh et al. (2009), we recommend that this
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boundary be at least 100 mtr.

Finally, LIPAD is designed to be able to handle a collisional cascade that can

potentially remove material from the system. This is accomplished by defining a class of

tracer that represents a population of very small objects that we call dust, for lack of a

better word. If the size of a tracer evolves so that s < smin, it is demoted to dust with a

size sdust. Both sdust and smin are free parameters of the code. The user has several options

concerning the behavior of the dust. One is for dust particles to behave like a tracers with

s = smin in every respect except that they can no longer fragment. The user also has the

option so that dust tracers do not interact with other tracers at all, but fully interact with

the embryos and sub-embryos via the N -body routines. In addition, users can, if they

wish, apply a fictitious force to these particles that represents the Poynting-Robertson drag

(Robertson 1937) of a particle with sdust. This allows the particles to slowly drift through

the system, eventually being removed by hitting the Sun (if they do not get accreted by an

embryo). Note that we disable the aerodynamic drag terms in the equation of motion of a

dust particle.

In summary, we employ four classes of particles:

1. Full-Embryos: These objects interact with all classes of particles through the normal

N -body routines, i.e. through the direct summation of individual forces. The N -body

routines also monitor whether physical collisions occur. The algorithm that LIPAD

uses to handle these collisions is described in §2.2.3.

2. Sub-Embryos: These objects interact with full-embryos and each other through the

N -body routines. However, the only dynamical effect that the tracers have on them is

through analytic dynamical friction and planet migration routines (§2.2). Collisions

are handled in the same way as those of the full-embryos.
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3. Tracers: These objects gravitationally interact with each other through Monte Carlo

routines that include viscous stirring, dynamical fraction, and collisional damping.

They gravitationally interact with the embryos via the N -body routines. During a

close encounter with a sub-embryo, however, the mass of the tracer is set to zero so

that the orbit of the sub-embryo is not perturbed.

4. Dust Tracers: These are tracers that can no longer fragment. The user can set the

code so that these objects do not interact with the other tracers. However, they

always interact with the embryos via the N -body routines. The user also has the

option to apply Poynting-Robertson drag.

Note that since embryos and tracers interact with one another through the N -body

routines, LIPAD accurately handles the redistribution of the planetesimals and planet

migration. We now describe each of these classes in detail. We start with the tracers

because they are the most complex.

2.1. Behavior of the Tracers

Both the dynamical and collisional evolution of the tracers due to the presence of

other tracers are handled through statistical algorithms that change the orbit of the tracer

and the value of its radius s. In order to perform these calculations, we first need to

determine the encounter rate between planetesimals in our disk. This is followed by a series

of calculations of the response of the tracer to these encounters.

2.1.1. Tracer-Tracer Encounter Rates
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The first step in our calculation is to determine the probability, p, that a particular

planetesimal will suffer an encounter with another planetesimal during a timestep, dt. In

what follows we refer to this object as the target and the potential encounter partner as the

interloper. We perform this calculation for two types of encounters: physical collisions, pcol,

and gravitational scattering events, pgrav. We employ the particle-in-a-box approximation.

In particular, p ∼ nσ w dt, where n is the local number density of the disk particles, σ

is the cross-section of the encounter, and w is the mean encounter velocity. In order for

these routines to seamlessly interface with the N -body algorithm, the code requires that

the statistical timestep be an integer multiple of the N -body timestep. This integer is an

input parameter to the code. It is also important to note that n is not the number density

of tracers, but the total number density of their constituent planetesimals.

Before we discuss how we calculate the p’s, it is instructive to clarify how they are used

within the code. As we said above, p is the probability that an individual planetesimal will

suffer an enounter (be it a scattering event or collision) in time dt. Another way of thinking

about p is that it is the fraction of planetesimals that suffer this enounter. Thus, if there

are n planetesimals, np of them will suffer the encounter. We can, of course, look at it in

terms of mass. If there is a total mass of m in these planetesimals, then mp of that suffer

the encounter. Now, if these planetesimals are presented by nt tracers of mass mt, then the

number of tracers that suffer the encounter is mp/mt = p ×m/mt = pnt. The number of

tracers undergoing the encounter is also pnt. Thus, we can apply p directly to the individual

tracers. This leads to a different interpretation for the tracers. Above we defined a tracer

as ‘a large number of disk particles on roughly the same orbit and size as one another’. For

our purpose here, it is just as valid is to think of a tracer as an individual planetesimal that

we are highlighting and following to illustrate the behavior of the system as a whole. That

is, they are planetesimals that trace the behavior of the system. In either case, we act on

the tracer based on the value of p alone.



– 13 –

We expect that n, σ, and w will not only be a function of time and location in

the disk, but of the size of the particles as well. After all, in the particle swarm, the

equilibrium eccentricity and inclination of a planetesimals will be a function of its size. As

a result, in order to accurately determine the p’s, we must integrate nσ w over the sizes

of the planetesimals at different locations in the disk. To accomplish this we divide the

planetesimals into a two-dimensional grid in heliocentric distance, a, and particle size. The

Solar System is first divided into a series of logarithmically spaced annular rings that, in

the simulations performed here, stretched from 0.5 AU to 60 AU. In all, we divided space

into Nring such rings. In addition, s is crudely divided into Ns−bin logarithmically spaced

bins. The range of these bins , Nring, and Ns−bin are free parameters of the code (although

unless otherwise stated Ns−bin = 10 and Nring =1000 in the tests presented in §3). We can

justify the crude spacing by noting that this grid representation of the state of the disk is

only used to determine the encounter rates and not what happens during the encounter.

As the simulation progresses, we keep track of the tracer particles moving through

each bin and from this calculate: 1) the total number of planetesimals in that ring,

Nt(ia, js), where ia and js are indexes for the heliocentric and size bins, respectively,

2) the total mass in the bin Mt(ia, js), 3) the average mass of the planetesimals in the

bin, mp(ia, js) ≡ 〈43πρs
3〉, and 4) the cylindrical radial and vertical velocity dispersion of

the disk particles, ua(ia, js) and uz(ia, js), respectively. These numbers are used in the

particle-in-the-box calculation of the encounter probabilities.

The encounters themselves use the positions, velocities, and sizes of real objects in the

simulation which are chosen at random at the time of the encounter. However, we were

concerned that there may not be enough particles in the simulation to find a neighbor

close enough to the target to accurately calculate the result of the encounter. In order to

increase the pool of potential interlopers, we keep a running list of a particle’s position and
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velocities as they pass through each individual ring. Entries are dropped from this list if

they are older than a parameter τupdate. So, at any time during the simulation, we have a

list of potential interlopers for each (ia, js) combination.

We allow each tracer to interact with each s bin separately because we expect that the

p’s and the results of the encounter to be a strong function of s. First, we determine the

heliocentric bin the object is in, ia. For each size bin, we calculate the local number density

of planetesimals, n(js), from the binned parameters of the disk. In particular, the midplane

number density is assumed to be

n0(ia, js) =
Nt(ia, js)√

2ha
, (1)

where h = uz(ia, js)Ω is the scale height of the disk, and Ω is the orbital frequency at the

particle’s position. Following Lissauer & Stewart (1993), we assume that

n(js) = n0(ia, js)e
− |z|

h . (2)

Unfortunately, we found through painful experimentation that n 〈σ w〉 is not equal to

n 〈σ〉 〈w〉 because w and σ are correlated with one another when gravitational focusing is

taken into account. We therefore need to calculate the combined average 〈σw〉. This is done

by choosing 10 objects at random from our running list of potential interlopers calculating

σ and w for each of these, and taking the average of the resulting product. In systems that

are dynamically cold, this procedure must take into account that fact that not only can

relative velocity bring two particles together, but Kepler shear as well. As a result, we take

w =
√

(∆v$)2 + (∆vz)2 + (∆vφ + vshr)2, (3)

where the ∆v’s are the components of the relative velocity in cylindrical coordinates, and

vshr is the shear velocity taken over a radius of
√
σ/π.

As we already mentioned, we need to calculate two σ’s: one for physical collisions

and one for gravitational scatterings. The collision cross-section is simply π(starg+sint)
2Fg,
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where Fg is the gravitational focusing factor, and starg and sint refer to the size of target

and interloper, respectively. We employ the formalism of Greenzweig & Lissauer (1990) to

calculate Fg.

The situation is a bit more complicated for the gravitational scattering case. Recall that

the cross-section represents an area in which encounters take place in a plane that contains

the target and is perpendicular to the encounter velocity vector (i.e. the so-called encounter

plane). For physical collisions without gravitational focusing, this area is simply the sum

of the objects’ physical radii. In LIPAD, we only include encounters where the interloper

gets within a mutual Hill sphere radius of the target, rH ≡ a [(mtarg+mint)/(3M�)]1/3.

However, care must be taken when the system is dynamically cold. If uz is large enough

that the scale height of the planetesimal disk exceeds the radius of the Hill’s sphere, the

disk behaves as if it is fully three dimensional and encounters are possible anywhere within

a circle with a radius rH. In this case, which is referred to as the dispersion-dominated

regime, σ = πr2
H. However, if the scale height of the disk, h, is smaller than rH, which is

known as the shear-dominated regime, then encounters can only occur in the union of πrH
2

and a slab of height 2h. In this case,

σgrav = 2r2
H sin−1

(
he
rH

)
+ 2h

√
r2

H − h2
e, (4)

where he is the height of the slab projected into the encounter plane. We set the slab height

to 2h to allow for the fact that the target can lie above the plane, while the interloper is

below, or vica-versa.

With the two σ’s in hand we calculate pcol and pgrav. These are then compared to two

random numbers chosen from a uniform distribution between 0 and 1. (For the remainder

of this paper, we refer to this uniform distribution as {U}.) If pcol is less than its random

number we say that a physical collision occurs, and if pgrav is less than its random number,

then a scattering event occurs. We now describe how the tracer responds to these events.
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2.1.2. Collisional Evolution of the Tracers

Physical collisions have two effects on the tracers: they damp their random motions

and they cause the sizes of their constituent planetesimals to change. In order to avoid

double counting, tracers are only allowed to collide with objects smaller than themselves

(this limitation is also applied when calculating pcol).

Once we determine that a tracer has suffered a collision with another disk particle

using procedures described in the last section, we need to determine the characteristics of

the impactor. As we stated above, as the tracers orbit during the simulation, we keep a

running list of particles that had passed through each of our a–s bins. The impactor is

assumed to have the same location as the target, but its size and velocity are chosen from

this running list. However, since the object chosen from the list was not exactly at the

target’s location, we scale the magnitude of its velocity vector by
√
aimp/atarg, where aimp

and atarg are the instantaneous heliocentric distance of the impactor and target respectively,

and rotate it to the same longitude assuming cylindrical symmetry. We also assume that

two particles bounce off of one another, but that the coefficient of restitution is very small.

The end result is that we change the velocity of our target tracer to be the mass weighted

mean of its original velocity and that of the impactor.

We have to spend a little time discussing how we decide which impactor to choose

from our running list because if this is done incorrectly it leads to a subtle error in the

results. As described in Levison & Morbidelli (2007), it is imperative that our code be able

to support eccentric rings. We found we can accomplish this if, rather than choosing an

object at random, we choose the object that has the true anomaly that is closest to that of

the target tracer. In this way, asymmetries can be supported by the code. See Levison &

Morbidelli (2007) for more detail on this issue.

The growth and fragmentation of the planetesimals are also included in LIPAD — i.e.
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we change s in response to collisions. When two objects collide in nature, they produce

a distribution of objects that follows a size distribution n(s) ds that is a function of the

physical properties of the objects involved and their relative velocity. Recall that LIPAD

assumes that all of the planetesimals that make up a tracer have the same size. Thus, in

order to determine the new, post-impact, value of s for the tracer involved in the collision,

we choose a random number ψ ∈ {U} and invert the equation

ψ =
1

mc

∞∫
s

m(s)n(s) ds (5)

for s, where mc ≡ 4
3
πρ
(
s3

targ+s3
int

)
is the total mass of planetesimals involved in the collision

and m(s) = 4
3
πρs3. In other words, in the absence of fragmentation, all the planetesimals in

a given target tracer would change to a new mass given by the sum of the old target mass

plus projectile mass, mc. With fragmentation, the new mass is chosen from a probability

distribution that gives the fractional mass of collision fragments at each size. So, if ψ = 0

the tracer will be assigned the largest mass in the distribution, if ψ = 1 the smallest, and

if ψ = 0.5, for example, then the new target mass is chosen so that half the total mass of

fragments lies above the new target mass, and half below.

It is important to note that by setting the tracer’s size to this new value of s we are

effectively changing all the constituent planetesimals of the tracer to the same size. We

believe that this is a reasonable approach in a system where a large number of collisions are

occurring. After all, if one were to imagine that we had a large number of collisions with

exactly the same characteristics, the procedures described above would reproduce n(s). We

show in §3 that this algorithm does function well as long as there are enough tracers in the

system to adequately represent its size distribution.

Our algorithm for determining n(s) is strongly based on that used in Eulerian statistical

code developed in Morbidelli et al. (2009, hereafter MBNL09). Following MBNL09, which

itself is based on arguments in Benz & Asphaug (1999, hereafter BA99), we define Q∗D as
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the specific impact energy (energy per unit total system mass) required to disperse 50%

of the total mass of the interloper and target. Note that here we are not using the tracer

mass, mtr, but the combined mass of the planetesimals mc. Defining seff to be the radius of

an object with this combined mass (i.e. seff = 3

√
s3

targ+s3
int), MBNL09 use

Q∗D = Q0

( seff

1cm

)α
+Bρ

( seff

1cm

)β
, (6)

where Q0, B, α, and β are parameters that depend on the material properties of the objects

involved. Users are free to set them to any values they wish in LIPAD.

Based on SPH experiments and analysis, BA99 found the n(s) is best represented by

one large remnant and a continuous distribution of fragments. MBNL09 argues that the

mass of the largest remnant is:

mLR =

{ [
−1

2

(
Q
Q∗D
− 1
)

+ 1
2

]
mc if Q < Q∗D[

−0.35
(

Q
Q∗D
− 1
)

+ 1
2

]
mc, if Q ≥ Q∗D

(7)

where Q is kinetic energy of the projectile per unit mass of the collision. Whenever mLR is

determined to be negative we assume that the target is fully destroyed and we demote the

tracer to a dust particle.

In all other cases, we need to determine the size-distribution of the fragments that were

formed in the collision. To accomplish this MBNL09 first turned to the SPH simulations

in Durda et al. (2007). Their results typically show that the fragments have a continuous

power-law size distribution truncated at large sizes at what MBNL09 call the largest

fragment, with mass mLF. MBNL09 found

mLF = 8× 10−3 mc

[
Q

Q∗D
exp

−
„

Q
4Q∗

D

«2]
(8)

for the mass of the largest fragment and

q = −10 + 7

(
Q

Q∗D

)0.4

exp
− Q

7Q∗
D (9)
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for the cumulative slope of the power-law size distribution of the fragments.

However, as MBNL09 pointed out, for all physically meaningful collisions, the

size-distribution resulting from Eqs. 8 and 9 contain infinite mass. To avoid this problem,

they assume that the fragment size distribution has a cumulative slope q = −2.5 (Dohnanyi

1969) for s < st. They then calculate st so that the integral over the resulting n(s)m(s)ds

is equal to mc. We follow the same procedures here.

So, in summary, we use the total mass involved in the collision and the impact velocity

to determine n(s) from Eqs. 6 – 9. From this, we use Monte Carlo techniques to determine

a new size for the tracer. Depending on the details of the collision, s can either increase

or decrease indicating accretion or erosion. However, the total mass of the tracer does not

change as a result of collisions. If s changes, then the number of planetesimals that the

tracer represents, N=mtr/
4
3
πρs3, must also change. If N =⇒ 1 then the tracer is promoted

to a sub-embryo.

The above algorithm is necessary but not sufficient for following the accumulation of

objects during planet formation. In order to see how it fails, we perform the following

thought experiment. Imagine we have a system consisting of i 100 km objects embedded in

a population of j 1 km objects such that j � i. The 100 km objects are represented by k

tracers, where i� k. We also assume that the dynamics are such that growth occurs only

by large objects accreting the small. In this situation, the 100 km objects should increase in

size while their number stays the same (i remains constant). In addition, as they grow they

eat the small bodies and so j decreases. Eventually the big objects will run out of fuel and

growth will stop.

If we were to employ the algorithm we described above alone, we would get a very

different behavior. As the large objects grow, the number of tracers remain fixed and thus i

must decrease with time. As a result, the total mass in the large objects will remain fixed
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even though the individual objects are growing. In addition, there is no transfer of mass

from the small objects to the large and so j remains constant. So, the large objects do not

run out of fuel and they, in principal, can grow forever. This is obviously not correct. To

solve this problem, we developed the following algorithm for transferring mass from one size

to another.

As the system evolves, for each tracer we keep track of two variables that monitor how

much mass it should have accreted over time. The first is fc ≡
∏
mf/mi, where the product

is taken over all collisions that lead to growth, and mi and mf are the initial and final mass

of the constituent planetesimals at each collision, respectively (i.e. they are 4
3
πρs3). The

second is an array, ∆m(is), that contains the total mass that should have been taken from

each of the size bins, Ns−bin. These variables are reset when a tracer suffers a significant

amount of mass loss.

The value of fc is initially set to 1 and slowly increases with time. As long as it stays

less than 2, the mass deficit of the tracer is less than the mass of a tracer and so nothing

should be done. As soon as it reaches a value of 2, however, we need to transfer mass to

this tracer (call it Tracer κ) from smaller objects. This is accomplished by giving one of the

smaller tracers an s that is similar to that of Tracer κ. The first step in this process is to

choose which of the Ns−bin size bins to draw the mass from. This is done by choosing a bin

at random — weighting the probability by ∆m(is). We then choose one of the tracers from

our running list of potential interlopers. This tracer is given new size, s = sκ(1 + 10−3Γ),

where sκ is the size of Tracer κ and Γ is randomly chosen from a normal distribution with a

mean of zero and a dispersion of one. In this way, we will now have two tracers of this size

thereby doubling the amount of mass, and removed mass from the population that Tracer κ

is growing from. Thus, we have solved the problem that our thought experiment illustrated.
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2.1.3. Velocity Evolution of the Tracers

LIPAD also needs to account for the velocity evolution of the tracers. Tracers are

dynamically excited by embryos through the N -body routines in SyMBA. Indeed, this is a

major advantage of LIPAD because it will accurately handle the global redistribution of

the planetesimals by the embryos. The tracers also affect each other’s velocity through a

combination of viscous stirring, dynamical friction, and collisional damping. We discussed

how LIPAD accounts for collisional damping in the last section. Here we describe its

algorithms for the two other effects.

Following standard conventions (see MBNL09, for example), we assume that the

gravitational interaction between a tracer of size s and planetesimals of smaller sizes takes

the form of a drag force added to the tracer’s equation of motion. This effect is well

approximated by the dynamical friction formalism, which, assuming a Maxwellian velocity

distribution, can be written as (Chandrasekhar 1943; Binney & Tremaine 1987):

d~wm
dt

=
(mtarg +mint)ρdisk

w3
m

[
erf(X)− 2X√

π
e−X

2

]
~wm, (10)

where X ≡wm/(
√

2u), ~wm is the velocity of the tracer with respect to the local average

velocity of the small planetesimals, u is the velocity dispersion of the small planetesimal,

‘erf’ is the error function, and ρdisk is the background volume mass density of the small

planetesimals. LIPAD calculates a separate acceleration for each of the size bins, js, which

contain smaller planetesimals. In particular, ρdisk = mint n(js), where n(js) is calculated

with Eq. 2, and u = uz(ia, js). In order to stop large planetesimals from getting too cold,

the dynamical friction accelerations are only applied to a tracer if its relative velocity is

larger than the velocity it would have if it were in energy equipartition with the population

of small planetesimals.

Objects embedded in a disk are usually dynamically excited by larger objects in a
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process known as viscous stirring. LIPAD uses a unique Monte Carlo algorithm to account

for this mechanism between tracers of different sizes. In §2.1.1, we described how we

calculate the encounter probability per timestep, pgrav, and constructed a running list of

potential interlopers in each of our a–s bins. If we determine with these methods that a

scattering event occurred, we first choose an interloper at random from the running list.

For each of the potential interlopers we calculate σw and weigh our choice of interloper with

these values. Recall that σ includes gravitational focusing, and we determine ~w by rotating

the potential interloper to the same location as the target assuming cylindrical symmetry.

With the interloper identified, our first step is to determine where in the encounter

plane the closest approach of the encounter occurs if we assume no gravitational focusing.

In most cases this is accomplished by choosing a random number, p ∈ {U}, calculating the

impact parameter,

b = rH
√
p (11)

and a random angle φ ∈ (0, 2π]. We calculate the location of the closest approach in the

encounter plane, (bx, bz), from simple trigonometry.

However, care must be taken if one of two situations occur. As explained above, if the

system is in the shear-dominated regime then encounters may not be able to occur at large

absolute values of bz. In particular, |bz| ≤ he (see the discussion associated with Eq. 4).

We also have to make allowances for what MBNL09 call isolated bodies, which are

populations of objects the are separated enough from one another and dynamically cold

enough that their orbits do not cross. This case imposes a lower limit on the value of b. We

determine whether objects are isolated from one another in the context of our a–s bins, so

that objects with s ≥ siso are isolated if

n∑
j=js iso

Nt(ia, j)rg(ia, j) < δa, (12)



– 23 –

where siso is in bin js iso, δa is the width of bin ia, rg(ia, j) ≡ cHrH + 2aua(i,j)/vc, rH is

the mutual Hill radius of two objects with mass mp(ia, js), vc is the circular velocity at a,

and cH is a parameter of the code that we set equal to 2
√

3, following Wetherill & Stewart

(1993). If the population is deemed to be isolated, then for each js we define

bmin(ia, js) =
δa∑n

j=js
Nt(ia, js)

− 2aua(ia, js)/vc. (13)

We then choose a (bx, bz) pair so that bmin ≤ b ≤ rH and |bz| ≤ he.

With (bx, bz) in hand, we can apply a kick to the velocity of the tracer that is in

response to the passage of the interloper. Our methods depend on the speed of the

encounter. If w is faster than the Hill velocity, vH ≡ vc [(mtarg+mint)/(3M�)]1/3, then we

apply a change in velocity calculated from the so-called impulse velocity approximation.

Following Spitzer (1987),

δv⊥ =
mint

mc

w sin (γ) (14)

and

δv‖ =
mint

mc

w [1− cos (γ)] , (15)

where

sin (γ) =

(
2bw2

mc

)
1 +

(
2bw2

mc

)2 . (16)

We apply δv‖ along the direction of ~w, and δv⊥ along the vector the connects (bx, bz) and

the center of the target.

If w < vH then we integrate the encounter numerically. In particular, we place the

interloper at (bx, bz) in a system containing the target and the sun. Its initial velocity is ~w

with respect to the target. We first move both the target and interloper backward along

their respective Kepler orbits for a time 10rH/w, and then integrate the system forward for

twice as long. Finally, we move the target back in time to the point of closest approach. Its
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change in velocity is calculated from its final position and velocity. This change is applied

to the tracer at its original position.

In addition to the viscous stirring, we must include, at least crudely, the self-gravity

in the tracers to prevent unphysical migration of the embryos (LTD10). We use the

algorithm developed in LTD10, which are based on a technique originally developed for the

study of disk galaxies, known as the particle-mesh (PM) method (Miller 1978). In what

follows, we use the formalism from Binney & Tremaine (1987). We first define a modified

polar coordinate system u≡ ln % and φ, where % and φ are the normal polar coordinates,

and define a reduced potential, V (u, φ) = eu/2Φ [%(u), φ] and a reduced surface density

S(u, φ) = eu/2σ [%(u), φ] such that:

V (u, φ) = − G√
2

∞∫
−∞

2π∫
0

S(u′, φ′)dφ′√
cosh (u− u′)− cos (φ− φ′)

du′ (17)

If we break the disk into cells this becomes:

Vlm ≈
∑
l′

∑
m′

G(l′ − l,m′ −m)Ml′m′ (18)

where Mlm =
∫ ∫

cell(l.m)
S du dφ and G is the Green’s function:

G(l′ − l,m′ −m) = − G√
2 (cosh (ul′ − ul)− cos (φm′ − φm))

, (19)

when l 6= l′ and m 6= m′, and

G(0, 0) = −2G

[
1

∆φ
sinh−1

(
∆φ

∆u

)
+

1

∆u
sinh−1

(
∆u

∆φ

)]
, (20)

where ∆u and ∆φ are the grid spacings.

For this algorithm we found that it is best to assume that the disk is axisymmetric, so

Equation 18 becomes

Vlm ≈
∑
l′

∑
m′

G(l′ − l,m′ −m)
∆φ

2π
Ml′ =

∑
l′

∆φ

2π
Ml′

∑
m′

G(l′ − l,m′ −m) (21)
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Vl ≈
∑
l′

∆φ

2π
Ml′G̃(l′ − l). (22)

Note that Equation 22 is one dimensional, and thus it only supplies us with a radial force.

The tangential and vertical forces are assumed to be zero. We made this assumption due to

the small number of tracers in our system. However, a simple radial force is adequate for

our purposes (LTD10).

Also, the form of Equation 22 allows us to use the a bins that we already constructed

for the collisional algorithm. All we need is that relationship between Ml′ and the total

amount of mass in ring, Ma ≡
∑

jMt(l, j). We find that

Ml′ =
2Ma

(a2
l2 − a2

l1)
a

3/2
l [ln(al2)− ln(al1)] , (23)

where al2, al1, and al are the outer edge, inner edge, and radial center of ring l.

So, Equation 22 gives us the reduced potential at the center of ring l and thus the true

potential can be found (Φ = e−u/2V ). To calculate the radial acceleration at any location,

we employ a cubic spline interpolation scheme. Finally, the acceleration of a particle is

calculated by numerically differentiating this interpolation.

A user also has the option of including the drag and tidal effects of a gas disk on the

particles. For the tracers this means adding a fictitious force that mimics aerodynamic drag.

Our basic algorithm is described in detail in LTD10. It includes cases where the Knudsen

number is larger than unity, which occurs when a molecule’s mean-free-path is larger than

the size of the particle, using the prescription of Adachi et al. (1976). This can occur for

small bodies in the outer region of the nebula.

In order to calculate the drag on particles, we need to adopt a model for the nebula.

Our model, which is based on that of Hayashi et al. (1985), has the form

ρg($, z) = ρ0,g

( $

1 AU

)−α
e−z

2/zs
2($), (24)
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where $ and z are the cylindrical radius and height, respectively, ρ0,g is the gas density

in the plane at 1 AU, and zs is the scale height of the disk at $. The scale height is

determined by the $-dependence of temperature T : following Hayashi et al. (1985) we

adopt T = T0 ($/1 AU)−1/2 so that

zs($) = z0,s

( $

1 AU

)5/4

, (25)

where z0,s is the scale height of the disk at 1 AU. Their “minimum mass ” model has

z0,s = 0.047, α = 2.75, and ρ0,g = 1.4× 10−9 gm/cm3. However, the user is free to set these

parameters to whatever value they wish. The user also has the option to have the gas disk

exponentially decay away with a timescale of τgas.

Finally, in order to determine the headwind that a planetesimal will experience, we

need to determine the local circular velocity of the gas, vg, in our model. As is conventional

we define

η ≡ 1

2

[
1−

(
vg
vc

)2
]
. (26)

For our assumed temperature profile,

η = 6.0× 10−4

(
α +

1

2

)( $

1 AU

)1/2

. (27)

The instantaneous acceleration on the tracer is determined from ρg, vg, and s. Following the

examples of its Eulerian code brethren, LIPAD currently does not include the acceleration

due to the gravitational potential of the gas disk.

In summary, the velocity of the tracers are affected by four processes: dynamical

friction, aerodynamic drag, self-gravity, and viscous stirring. The first two are included in

LIPAD with the use of analytic expressions. Self-gravity is included through the use of the

PM method. Viscous stirring is included via a Monte Carlo algorithm that applies velocity

kicks to the particles based on the local characteristics of other tracers.
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2.2. Behavior of the Embryos

2.2.1. Velocity Evolution of the Sub-Embryos

The full-embryos interact with all the objects in the simulation via the N -body

algorithms in SyMBA. Thus, no special routines need to be included in LIPAD to handle

their velocity evolution. This is not true for the sub-embryos. Recall that we created

this class of object so that when a tracer is promoted to an embryo, it does not suddenly

find itself embedded in a disk of similar-mass objects. Thus, although sub-embryos

interact with the full-embryos and other sub-embryos through the N -body algorithms, we

needed to construct special routines to calculate the gravitational interactions between the

sub-embryos and the tracers. We include two-types of interactions in LIPAD: dynamical

friction and planetesimal-driven migration. For the former we employ the analytic formalism

described in §2.1.3 near Eq. 10.

Before we can explain the methods we use to include sub-embryo planetesimal-driven

migration into LIPAD, we first need to discuss some aspects of how the process works. A

planet or planetary embryo placed into a disk of planetesimals will migrate as a result of an

asymmetry in the way it gravitationally scatters the planetesimals. This type of migration

occurs only when conditions are right (Kirsh et al. 2009; Minton & Levison 2012). From

the point of view of designing LIPAD, the most relevant condition is that an embryo will

only migrate if the planetesimals it is interacting with are at least 150 times less massive

than it is. Thus, a sub-embryo will not migrate if it directly interacts with the tracers and

we needed to develop a way of splitting the tracers into their component planetesimals.

In this algorithm we basically perform a series of three body integrations, similar to

those described above, that include the Sun, sub-embryo, and a single interloper. Each

interloper is chosen from the tracers that can get within ArH of the sub-embryo, where A is
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a free parameter that we set to 7 in the examples below. It has the same semi-major axis,

eccentricity, and inclination as one of the tracers, but its phases are chosen so that it is

initially in the encounter plane at (bx, bz). The value of (bx, bz) is chosen via the procedures

described near Eq. 11 above. We move both the target and interloper backward along their

respective Kepler orbits for a time 10 τsyn, where τsyn is that synotic period of the pair.

Then we integrate the system forward for twice as long. We record the change in energy of

the sub-embryo’s orbit.

We determine the total number of such encounters using the same procedures we used

to determine pgrav for the tracers. At the end of these integrations we have the total change

in energy that the sub-embryo should experience in the next timestep, and thus Ė. This

energy change is smoothly added to the orbit of the sub-embryo via a fictitious acceleration

applied to its equation of motion. Tests of this algorithm are presented in §3.5

2.2.2. Embryo-Disk Tidal Interactions

If a growing planetary embryo is in the presence of gas, it will migrate due to

planet-disk tidal interactions (Ward 1986; Korycansky & Pollack 1993; Ward 1997). As

in LDT10, we use the approach of Papaloizou & Larwood (2000). This approach has the

advantage that it can handle the case where a protoplanet’s eccentricity is greater than the

scale-height–to–semi-major axis ratio. They derive timescales for semi-major axis damping,

ta, and for eccentricity damping, te, for an embryo of mass M at semi-major axis a with

eccentricity e:

ta =
1

ca

√
a3

GM�

(zs
a

)2
(

Σgπa
2

M�

)−1 (
M

M�

)−1
[

1 + ( ea
1.3zs

)5

1− ( ea
1.1zs

)4

]
(28)
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te =
1

ce

√
a3

GM�

(zs
a

)4
(

Σgπa
2

M�

)−1 (
M

M�

)−1
[

1 +
1

4

(
ea

zs

)3
]

(29)

where Σg (= π1/2ρgzs) is the local gas surface density. Papaloizou & Larwood (2000) also

argue that if the inclination damping timescale (ti) is not significantly shorter than the

eccentricity damping timescale then it plays little role in the equilibrium state; we set

ti = te for simplicity.

From the formulas above we can find the acceleration on an object due to tidal damping

of semi-major axis and random velocity, namely

~atidal = − ~v
ta
− 2(~v ·~r)

r2 te
− 2(~v ·~k)~k

ti
(30)

where ~r, ~v, and ~a are Cartesian position, velocity, and acceleration vectors, respectively

(with r as the magnitude of the radial vector) and ~k is the unit vector in the vertical

direction. The user is free to set ca and ce to whatever values they wish.

2.2.3. Collisional Evolution of the Embryos

Basic SyMBA makes the simple assumption that when two objects hit one another

they perfectly merge (i.e. create one object with all the mass while conserving linear

momentum). This assumption is adopted by all N -body codes, as far as we are aware.

Given the effort we put into accurately following the evolution of the tracer size-distribution

(see §2.1.2), we feel that we need give the user the ability to relax this assumption in

LIPAD. Unfortunately, the structure of LIPAD puts several constraints on our ability to

accomplish this. In particular, we cannot increase the number of particles (tracers plus

embryos) in the system for fear that the N would run away and become too large to be

computationally tractable. In addition, the statistical algorithms for the tracers require

that all the tracer particles have the same mass. Thus, the algorithm that we developed to
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handle the collisional evolution of the embryos are necessarily cruder than those we use for

the tracers, but are based on the same principals.

When two embryos collide, we determine the value of mLR using Eq. 7. We define the

mej ≡ mc −mLR as the mass of the ejecta. We distribute the total mass involved in the

collision (i.e. mc) based on the value of these numbers:
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if mlr ≤ mtr then

We declare that both objects are pulverized. We replace both of them with new

tracers. One has s = 3
√

3mlf/(4πρ) and the other has s = 3
√

3mlr/(4πρ), where

mlr and mlf are defined in Eqs. 7 and 8, respectively. Note that this is the one

case where the mass of the system is not conserved. We believe that this is a

reasonable tack to take given that the pair is blown apart by the collision.

else if mej < mtr/2 then

In this case there is not enough material in the ejecta to create a new tracer.

Therefore, we perfectly merge the two objects.

else, if mlr ≤ mc/2 then

We are faced with the awkward situation that most of the mass is in fragments.

Given our constraint that we do not want to increase N , we simply set the mass

of both embryos to mc/2.

else, if mej > mtr then

The one embryo is given the mass of mlr and the other mej.

else

The one embryo is given the mass of mc −mtr and the other becomes a tracer

with s = 3
√

3mlf/(4πρ).

endif

Clearly, in the above algorithm we make a few serious simplifications in order to satisfy

LIPAD’s restrictions. However, our choices are reasonable and are clearly preferable to

the perfect accretion that other N -body codes employ. It is important to note that in

all but one of the cases above, mass is conserved by the algorithm. The first case is the

only exception, and it only occurs when the impact velocity is significantly larger than the
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escape velocity of the pair. Given that in most situations, the impact velocity is set by the

embryos themselves, we expect this case to occur rarely. Indeed, it never occurred in the

test cases given in §3.

2.2.4. Embryo Atmospheres and the Accretion of Planetesimals

In LTD10 we presented a review of the problems the community faces when trying to

build the cores of the giant planets before the gas nebula dissipates. In the last decade

or so, there has been a concerted effort by the planet formation community to overcome

these problems. This has led to the development of some additional mechanisms intended

to enhance the growth rates of planetary embryos. One particularly promising method was

developed by Inaba & Ikoma (2003). They show that the effective capture cross-section

of an embryo is significantly increased by the presence of an extended atmosphere that is

accreted from the surrounding nebula. In LIPAD, we supply the user with the option to

mimic this effect. In particular, we employ the formalism developed by Chambers (2006),

who showed that, assuming the relative velocity of the particles is small compared to

the escape velocity of the embryo and that the scale height of the atmosphere is set by

the energy input due to accreting planetesimals, the effective accretion radius (RC) of an

embryo is

R4
C = 0.0790

µ4 cR5 rH
κ s ṁR

(
M

M�

)2

, (31)

where R and s are the radius of the embryo and planetesimal, respectively, M is the

embryo’s mass, µ is the mean molecular weight of the atmospheric gas, κ is its opacity,

and c is the speed of light. The parameter ṁR is the accretion rate that the embryo would

have had if there was no atmosphere. We calculate this value for each embryo in real time

during our simulation by monitoring the number of tracer particles that pass through the

embryo’s Hills sphere, and extrapolating to its surface. During our simulations, we do not
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allow RC to exceed 0.5 rH . If an incoming tracer comes within a radius RC of the embryo,

it is assumed to have a collision.

One issue that we need to address concerning the embryo atmospheres is how they

evolve as the gas disk decays and embryos collide with one another. First note that Eq. 31

is independent of the surface density of the gas disk. This is due to the fact that the most

important regulator for the gas accretion rate onto an embryo is the heating and cooling of

the atmosphere, itself. The atmosphere is gravitationally bound to the planet and pressure

supported. It needs to cool and collapse before more gas can be added. Thus, given that

the atmosphere is already bound to the embryo, we expect the atmospheres to survive once

the gas disk dissipates — at least in the absence of giant impacts. In that regard, Genda

& Abe (2003) found that planets only lose ∼20 — ∼30% of their atmospheres during such

collisions.

The fact that only a couple of tens of percent of atmospheres are lost during a

collision and it is not clear how this loss affects RC (which is mainly determined by thermal

evolution), we decided to take the simplistic approach of allowing the atmospheres to

survive in our simulations for all time. We adopt Eq. 31 even after the gas disk dissipates

and after giant collisions. We feel that this assumption is reasonable given that the user

has the option in LIPAD of ignoring the atmospheres entirely. Thus, we believe it best for

models that include atmospheres to represent the end-member of possible simulations that

maximize the effects of those atmospheres. This is the approach we have taken.

This concludes our description of LIPAD. In the previous sections we described the

three major classes of objects. Each object in the code gravitationally and collisionally

interacts with its neighbors, which leads to changes in the dynamical state of the system as

well as the sizes of the objects involved. This is the first code of which we are aware that

can accurately follow the evolution of a system initially containing only small planetesimals,
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as objects grow and evolve, until they reach fully formed planets. In the next section we

present tests of LIPAD.

3. Tests of LIPAD

LIPAD has been carefully verified and tested. In this section we present some of these

tests. Tests were chosen that not only verify that the code is behaving properly, but also

illustrate how the code works.

3.1. Collisional Damping

The first test we present is one designed to test a combination of our particle-in-a-box

algorithms for determining the collision rates between tracers (§2.1.1) and the collisional

damping routines (§2.1.2). Following MBNL09 (see their Figure 12), we calculate the

evolution of a system of 10 km planetesimals spread from 4 to 6 AU. The system contains

32M⊕ of material. In LIPAD, we represented this population with 1660 tracer particles,

and so each tracer initially represents 9.6 million planetesimals. We only included collisional

damping in this calculation — particles did not fragment or accrete.

Figure 2 shows a comparison of our LIPAD results (solid curves) to those from

MBNL09’s Eulerian code (dotted curves). The eccentricity evolution is quite similar in

the two codes, especially at the beginning of the simulation when the two systems are in

the same dynamical state. However, the inclination damping is much slower in LIPAD. In

particular, eRMS/iRMS drops from 2 to roughly 1.2 in 1000 years. MBNL09’s code assumes

that this ratio is fixed at 2. The issue now becomes determining which of these codes are

correct.
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Fig. 2.— The time evolution of the RMS eccentricity and sine of the inclination of a system containing

1.6 × 1010 or 32M⊕ of 10 km objects. These objects were spread from 4 to 6 AU from the Sun. The solid

curve represent the results from a LIPAD simulation consisting of 1660 tracers. The dotted curve shows the

results from MBNL09’s statistical grid code.

Unfortunately, as far as we are aware, there is no work that studied the behavior of a

collisionally damped system where the coefficient of restitution is zero (which is the case

here). If it were non-zero then physical scattering events will redirect velocities from one

direction to another because the collisions are typically off-center. This effectively couples
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e and i and thus eRMS/iRMS = 2. In the case where the coefficient of restitution is zero,

however, e and i are decoupled and so it is not clear how they will behave.

In addition, as far as we are aware, there is no code that can perform this calculation

without making serious compromises. Fortunately, we have a code that can, at least,

mimic collisions with a coefficient of restitution of zero — the perfect merger routines

in SyMBA lead to the same velocity evolution. The issue here is that SyMBA cannot

possibly handle the roughly 1010 planetesimals implied by this calculation. We can simplify

the simulation by significantly decreasing the number of particles, while increasing their

physical cross-section in order to decrease the impact probability and thus the computation

time. In this way, although we do not recreate the timescales of the true system, we can

determine how eRMS/iRMS changes during the simulation.

In particular, we started with the 1660 particles in the original LIPAD run, set their

physical radius to 0.01 AU, and set their mass to zero so to suppress viscous stirring. In

Figure 3 we plot eRMS/iRMS as a function of eRMS for our new SyMBA run (gray ‘+’) and

our full LIPAD runs (black dots). By plotting eRMS on the abscissa we remove any issues

caused by different collision timescales. Since eccentricity monotonically decreases during

the simulation, time runs from upper right to lower left in the figure. Recall that eRMS/iRMS

remains equal to 2 in MBNL09’s code. As can be seen in the figure, the drop in eRMS/iRMS

seen in the LIPAD run is also seen in SyMBA. Thus, we conclude that this drop is real and

that LIPAD is correctly modeling collision damping. Indeed, it is more accurate than the

analytic equations used by the Eulerian codes.



– 37 –

Fig. 3.— A comparison between the evolution of eRMS/iRMS in the LIPAD run shown in Fig. 2 (black

circles) and a SyMBA simulation initially containing the same number of objects (gray +’s) during a test of

collisional damping. The size of the particles in the SyMBA runs are inflated in order to suppress viscous

stirring. Time runs from right to left in the figure. There is excellent agreement between the two simulations

suggesting that the LIPAD results shown in Fig. 2 are more accurate than those of MBNL09’s code, which

assume that eRMS/iRMS = 2.

3.2. Collisional Fragmentation and Accretion

As a first test of the collisional fragmentation/accretion evolution algorithms we

study a system that should quickly grind down. We start with a 1.3M⊕ disk of material

between 2.25 and 2.75 AU made up of 30 km objects. We set the initial eccentricities of this

population to 0.2, which is large enough that when two objects hit, they are pulverized in
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the sense that they go directly to dust. In Figure 4 we compare the results of LIPAD to

those from MBNL09’s code. We find excellent agreement.

Fig. 4.— The temporal evolution of the mass of a fragmenting system initially containing 1.3M⊕ or

∼24 million 30-km objects spread from 2.25 and 2.75 AU. The collisions are energetic enough that objects

involved in a collision are converted directly to dust. The LIPAD runs, which consists of 10,000 tracers, is

shown in black, while a runs using MBNL09’s Eulerian code is in gray.

We follow the above simple test with one that includes both accretion and fragmentation

of the tracers (§2.1.2). It was inspired by MBNL09’s main result that asteroids were born

big. We start with a population of s= 50 km objects spread from 2 to 3 AU with a total

mass of 1.6M⊕. We made a couple of modifications to the original MBNL09 calculations

that are designed to better exercise LIPAD. First, we did not include velocity evolution

since we are only interested in studying the size-distribution/collision-rate part of the code.

In addition, eRMS was set to the particles’ Hill eccentricity in the original calculation.

Here, we set the RMS eccentricities and inclinations to much larger values (0.01 and 0.005,
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respectively) so that we would produce a significant amount of collisional grinding — we

required a test that included both growth and fragmentation. We represented this system

with 20,000 tracers.

Fig. 5.— Four snapshots of the evolution of the cumulative mass distribution of a system initially consisting

of a population of 6.4 million s = 50 km objects spread from 2 to 3 AU. A 50 km object has a mass of

1.5 × 1021 g. The RMS eccentricities and inclinations were 0.01 and 0.005, respectively, and there was

no velocity evolution in the calculations. The black and red curves indicate the results from LIPAD and

MBNL09’s Eulerian code, respectively. The cyan line shows the number of particles that a single tracer

represents as a function of the mass of its constituent planetesimals.

Figure 5 shows four snapshots of the cumulative mass distribution according to LIPAD

(black) and MBNL09’s code (red). First, we note that at all four times the size distribution
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produced by the two codes for the objects that are growing (i.e. for masses greater than

1021 g) are in excellent agreement with one another. However, at early times, LIPAD does

not correctly reproduce the collisional tail of the distribution. This shows what, in our

view, is the most significant limitation of LIPAD — the relatively grainy resolution of the

size-distribution. Recall that as the system evolves, a tracer’s mass remains constant and

so, as the mass of the planetesimals that it represents (i.e. mp = 4
3
π ρ s3) changes, the

number of particles it represents also changes. Thus, at each value of planetesimal mass,

there is a minimum number of planetesimals that a tracer can represent, i.e. mtr/mp. This

is the cyan curve in the plot. Note that the black curve never falls below this curve.

At early times, as the collisional tail starts to develop, LIPAD cannot represent it

very well because of this resolution limitation (note that the tail of the size-distribution

from MBNL09’s code lies below the cyan line). As a result, LIPAD’s tail sits far from that

produced by MBNL09’s code. Note that, although the size-distribution has a different

shape, the total amount of mass in the collisional tail is the same for the two codes during

this time. LIPAD soon recovers, however, and once the mass in the tail becomes significant,

the size-distributions match well.

We want to emphasize that, despite this limitation, LIPAD correct reproduces the

growing embryos. At no time does the shape of the collisional tail affect the growth of the

planets. Thus, we conclude that, although we would not use LIPAD to study the details

of the evolution of the shape of a size-distribution during a collisional cascade, it is very

capable of following the accretion of any planets in the system, as well as any mass loss due

to collisional grinding.

In Figure 6 we show what is actually happening in the code. Each point represents an

individual tracer. Location on the dot shows the semi-major axis (a) and planetesimal size

(s). Its color shows the number of planetesimals that that tracer represents. Recall that



– 41 –

Fig. 6.— An animation showing the temporal evolution of the tracers in the simulation presented in Fig. 5.

In particular, we plot the size of a tracer’s constituent planetesimals, s, as a function of semi-major axis,

a. Color shows the number of planetesimals that each tracer represents. Click on the figure to start the

animation. It will only work with acrobat reader.

since mtr is fixed, as s decreases this number increases.

3.3. Runaway Growth

As we described in §1, the process of runaway growth has been shown to be important

in the formation of the planets (Wetherill & Stewart 1989; Greenberg et al. 1978). Thus,

it is essential to determine whether LIPAD can reproduce this process. Fortunately, there
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are analytic solutions to the coagulation equation that include it, which we can use of as a

test for LIPAD. In particular we will employ a solution by Wetherill (1990, hereafter W90)

that includes a severe form of runaway growth.

The coagulation equation follows the evolution of the size- or mass-distribution of a

population of objects under the assumption that when two objects hit they merge (i.e. there

is no fragmentation). W90 found an analytic solution to the discrete form of coagulation

equation where he assumes that there is a single runaway object. Under the assumption

that at any time the system can be represented by a population of objects that are members

of a continuous size-distribution (represented by a series of mass bins with mass mk that

contain nk objects) and a runaway with mass mR, then this equation has the form

dnk
dt

=
1

2

∑
i+j=k

Ai,jninj − nk
∞∑
i=1

Ai,kni − AR,knk, (32)

where Ai,j is the probability that an object in bin i will impact an object in bin j per unit

time and is, in general, a non-linear combinations of the physical parameters of the system

such as masses, velocities, volumes, and bulk densities. The first term in the equation

represents objects that are undergoing mergers thereby entering bin k. The second term

represents those objects initially in bin k that are undergoing collisions and thus leave the

bin. The third term are those objects initially in bin k that collide with the runaway.

W90 found a solution to the above equation for systems that initially consisted of

population of n0 objects of the same mass, m0, and where Aij ≡ γ mi

m0

mj

m0
(mi = im0 is the

mass in bin i and γ is a constant). It is important to note that this is not a physically

realistic situation because we expect that in the absence of gravitational focusing the A’s

should be proportional to the physical cross-section, which is, in turn, ∝ m2/3. Indeed, it

is an extreme version of runaway growth because the largest object will grow much faster

then its neighbors in this case than in a more physically realistic situation. As such, it

makes for an excellent test of LIPAD. Following Trubnikov (1971), W90 found that for the
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continuous distribution

nk(η) =
n0 (2k)k−1

k!k

(η
2

)k−1

e−kη, (33)

where η is a normalized time equal to γn0t, and the mass of the runaway is

mR(η) = mtot −
∞∑
k=1

nk(η)mk, . (34)

where mtot ≡ n0m0 is the total mass of the system. The value of mR is zero for η < 1, but

increases quickly when η > 1.

While these equations have a nice compact form, it turns out that they are very

difficult to evaluate numerically. Note that for the problem below, k needs to be as large

as 70, 000, 000 when η = 1 in order to calculate all values of nk that are larger then 1,

and significantly larger in order for the second term in Eq. 34 to converge. After much

effort we have been able to develop techniques to calculate Eq. 33 when nk > 1 for all

η’s. Unfortunately, we have failed to find solutions to Eq. 34 near η = 1 when mR � mtot

because of a combination of the convergence issue and that fact that the equation requires

that we take the difference of two nearly equal numbers. In LIPAD, we represent the

system with a significant number of tracers and thus the tracer representing the runaway

is promoted to an embryo when mR = mtr � mtot, which is where we cannot solve Eq. 34.

We must stop the LIPAD simulation at this point in order to preserve our non-physical A’s.

As a result, when comparing the results of LIPAD simulations to these W90 solutions, we

cannot test whether LIPAD’s runaway is growing at an appropriate rate. Fortunately, there

are other quantitative comparisons to be made.

W90 studied a system that initially contained a population of 1020 objects each with a

mass of 106 g (40 cm radius). We adopt this test. We present the results of the evolution of

this system in two ways. The red heavy weight curve in Figure 7 shows the evolution of the

mass of the largest planetesimal in the continuous distribution, ml, as a function of η. In

particular, we define the largest mass in the continuous distribution as the largest mk for
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Fig. 7.— The temporal evolution of our test case based on W90 for a system initially containing 1020

objects of 106 g. The black curve in (A) shows the mass of the largest object in our LIPAD simulation as

a function of normalized time, η. In (B) this curve was scaled by multiplying η by 0.92. The red curves

show the analytic solutions for this problem. In particular, the heavy weight shows the largest object in the

continuous distribution according to Eq 33. The vertical dotted line shows η = 1, which is the time when

runaway growth should start. Finally, the thin curve shows the largest object for which nkmk > mtr, which

is the largest object in the continuous population that LIPAD can resolve (see Figure 8). The red curves are

the same in (A) and (B).

which nk > 1 according to Eq 33. The dotted lines show where η = 1. The red curves in

Figure 8 show snapshots of the cumulative mass-distribution of the continuous population.

The system evolves in the following way according to W90. Initially all objects were

106 g. When η . 1, the objects remain part of the continuous size-distribution as they

grow. At η = 1, mR becomes non-zero and the runaway phase commences. This occurs

when the largest object in the continuous distribution is 6.9× 1013 g. This, presumably, is
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the initial mass of the runaway. The runaway grows approximately exponentially after this

because ṁr ∝ mr. Eventually, its growth slows because it starts running out of fuel. The

value of ml (thick curve in Figure 7) decreases during this time because ARj ∝ mj and thus

the runaway preferentially accretes the larger objects.

Fig. 8.— Snapshots of the evolution of the cumulative mass distribution of a system initially consisting of

1020 objects of 106 g. This system was based on the runaway growth test in W90. The back and red curves

show the results from LIPAD and an analytic solution. In particular, the red curve shows the evolution of

the continuous size-distribution (Eq 34). As we describe in the text, there is a 9% difference in the growth

rates between the LIPAD and analytic solutions. In order to compare the two size-distribution, we have

remove this difference in this figure. The full animation of this can be seen by clicking on the figure. It will

only work with acrobat reader. Note that time is highly expanded on the lower panels in the first frame and

at the end of the animation.

We represented this system with 1000 tracers in LIPAD, so mtr = 1023 g, and set
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Ns−bin = 30. The code itself was customized in three ways for this calculation. Firstly, we

disabled all the dynamical subroutines in the code. Then we modified pcol to allow for the

fact that Aij = γ mi

m0

mj

m0
. Finally, since we force the impact rate onto the largest object to

scale as its mass, which varies from 106 g to > 1023 g, we included a variable timestep in the

code. It is important to note that the global timestep for dynamical part of LIPAD cannot

be changed because it would break the symplectic character of the underlining SyMBA

routines. Thus, we cannot vary the timestep of the collision code as long as we include

collisional damping in the dynamics. We do not expect this timestep issue to arise in a

realistic situation because here the A’s are extreme in that they scale as mimj, and W90

starts with very small particles (40 cm), which significant increases the dynamic range of

the problem. LIPAD does print diagnostics that will allow the user to determine whether

the timestep is becoming an issue during the calculation.

The purpose of this test is to determine whether LIPAD can handle runaway growth.

The black curve in Figure 7 shows the mass of the largest object in the LIPAD calculation

as a function of η. As can be seen, this curve becomes almost vertical at η = 1.09. In

addition, Figure 7 shows that at the end of the LIPAD simulation (which occurs when

the largest tracer is promoted) we have a situation analogous to W90’s prediction — a

continuous population of objects with masses less than roughly 7 × 1013 g and a single,

detached object that is significantly larger (1023 g in this case). Therefore, we can conclude

that LIPAD does indeed allow runaway growth to occur.

Having said this, there is a caveat we should discuss — the timing of the runaway. In

our LIPAD calculation, the runaway occurs at η∼ 1.09 rather than at η = 1 as it should

(see Figure 7). Although this error is small enough (only 9%) that we do not think it

would significantly affect the results of any real calculations, it deserves an explanation —

particularly given that it provides insight into LIPAD. We believe that this offset it a result
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of the way in which LIPAD resolves the mass-distribution.

The black and red curves in Figure 8 show the temporal evolution of the mass-

distribution of the continuous population according to the analytic theory (Eq. 33) and

LIPAD, respectively. As described previously, because each tracer represents a fixed mass,

at each value of planetesimal mass, there is a minimum number of real objects that a tracer

can represent. This is the cyan line in the plot. Although the black curves follow the red

ones remarkably well, the former are truncated at the point where the red curves cross the

cyan line as a result of this resolution limitation. This effect can also be seen in Figure 7,

where the thick red curve represents the largest mass in the continuous distribution

according to Eq. 33, but the thin curve represents the mass where nkmk = mtr. Before the

runaway, the LIPAD results follow the thin curve in this figure.

As a result, at any time before runaway, the largest object in the LIPAD simulation is

smaller than the analytic theory would predict. As discussed above, while W90’s theory

predicts that runaway should occur at η = 1, it also states that the mass of the largest

planetesimal at that time is 7× 1013 g. In the LIPAD simulation, runaway starts at a later

time, but when the largest object has roughly the same mass (see the lower left panel of

Figure 8). Indeed, it makes sense that the onset of runaway should be determined by mass

and not time. So, it seems reasonable to conclude that the delay in runaway seen in LIPAD

is due to tracer resolution — it simply takes a little longer to build an object that can

runaway. We tested this idea further by performing a simulation with 5000 tracers and

found that runaway starts at η = 1.05 rather than 1.09 — a result that is consistent with

this idea. In both our simulations, runaway starts with the largest planetesimal is roughly

7× 1013 g. We consider the fact that this is consistent with the predictions of W90 a success

of our code and remind the reader that the delay is less than 10%.
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3.4. Viscous Stirring

We performed two tests of the viscous stirring routines in LIPAD (§2.1.3). The first

studies a system in the dispersion-dominated regime and is a repeat of the test performed by

MBNL09 (see their Figure 5). In particular, we study the behavior of 0.26M⊕ of material in

an annulus from 0.94 to 1.06 AU. This annulus was populated by objects with s = 540 km.

The RMS eccentricity and inclination of the disk was initially set to 3×10−5. We performed

3 simulations using: 1) LIPAD, 2) MBNL09’s code, and 3) SyMBA for a direct N -body

simulation. The direct N -body simulation required 800 objects, while we represented the

disk with 200 tracers in LIPAD. Fragmentation, accretion, and collisional damping are

turned off in this simulation; the only physical effect included is viscous stirring.

In the second simulation we test LIPAD’s tracer viscous stirring routines with a

system that is both in the shear-dominated regime and for which objects are isolated from

one another (i.e. objects are separated enough from one another and dynamically cold

enough that their orbits do not cross). As we explained above, MBNL09 argues that it is

important that these codes be able to handle such populations. Here we study a narrow

ring containing 0.001M⊕ spread from 0.944 to 1.056 AU. This disk was populated with

objects with s = 93 km. The initial RMS eccentricity and inclination of these objects was

7× 10−5. For this system, the right hand side of Eq. 12, which defines whether a system is

isolated, is 0.033 AU. Since this number is smaller than the width of the annulus, which is

0.11 AU, then this system satisfies MBNL09’s isolation criterion (Eq. 12). The SyMBA run

contains 610 particles, while we represented the same system with 152 particles in LIPAD.

We show the temporal evolution of the RMS eccentricity and the RMS inclination

in our dispersion dominated runs in Figure 9 and our shear-dominated, isolated runs in

Figure 10. In general, there is excellent agreement between LIPAD (shown in red) and

SyMBA (in cyan). LIPAD does tend to excite inclinations slightly faster than in a real
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Fig. 9.— The temporal evolution of the RMS eccentricity (top) and inclination (bottom) of a system in

the dispersion dominated regime. In particular, the system contains 800 objects with s = 540 km spread

from 0.94 to 1.06 AU, and initial RMS eccentricity and inclination set to 3× 10−5. The red, cyan, and green

curves show the results from LIPAD, SyMBA, and MBNL09’s code, respectively. In the LIPAD run, the 800

particles were represented by 200 tracers.

N -body simulation, but this difference is small. In addition, LIPAD performs significantly

better then the analytic viscous stirring expressions used by MBNL09 and the other
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Fig. 10.— The temporal evolution of the RMS eccentricity (top) and inclination (bottom) of a system

in the shear dominated regime. In particular, the system contains 610 objects with s = 93 km spread from

0.994 to 1.056 AU, and initial RMS eccentricity and inclination set to 7 × 10−5. This system also satisfies

MBNL09’s isolation criterion (Eq. 12). The red, cyan, and green curves show the results from LIPAD,

SyMBA, and MBNL09’s code, respectively. In the LIPAD run, the 610 particles were represented by 152

tracers.
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Eulerian statistical codes. Thus, we conclude that our new Monte Carlo viscous stirring

algorithm is the most accurate available for this type of problem.

3.5. Sub-Embryo Migration

In §2.2.1 we described our methods for handling planetesimal-driven migration for

sub-embryos. Kirsh et al. (2009) showed that an embryo must be at least 150 time more

massive than the surrounding disk particles in order for it to migrate. Unfortunately, when

a tracer is promoted to an embryo it finds itself embedded in a disk of similar-mass objects,

in spite of the fact that these objects might be representing much smaller planetesimals.

Thus, we were forced to develop a statistical way for the small embryos (which we define as

sub-embryos) to interact directly with the planetesimals. Our method to accomplish this

involves performing a series of three body integrations, which include the Sun, sub-embryo,

and a single planetesimal, in order to determine an average change in the energy of

the sub-embryo (see §2.2.1). This energy change is smoothly added to the orbit of the

sub-embryo via a fictitious acceleration applied to its equation of motion.

We tested our methods using an experiment where we embed a 6.8× 10−4M⊕ embryo

in a 0.6M⊕ disk consisting of 200,000 particles spread from 0.915 to 1.085 AU. The embryo

was 200 times more massive than the disk particles. The cyan curve in Figure 11 shows

the migration of this embryo in an N -body simulation using SyMBA. After a period of

1500 years, the embryo starts to migrate inward. We performed the same simulation with

LIPAD where the 200,000 particles were replaced by 1000 tracers. The ratio of the embryo

mass to the tracer mass in this simulations was 1.01. The parameters of LIPAD were set so

that the embryo was considered to be a sub-embryo by the code. Perhaps, not surprisingly,

the LIPAD run was more noisy than the SYMBA run. However, even under these extreme

conditions, the embryo’s behavior was very similar in the two simulations.
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Fig. 11.— The change in the semi-major axis of a 6.8× 10−4M⊕ sub-embryo embedded in a 0.6M⊕ disk

spread from 0.915 to 1.085 AU. The N -body simulation (cyan) contained 200,000 disk particles, which were

represented by 1000 tracers in LIPAD (red). This represents a migration of over 20 rH .

3.6. Accretion with Velocity Evolution

Here we use the classic study of terrestrial planet accretion by Kokubo & Ida (2000) as

a test of LIPAD. Kokubo & Ida (2000)’s goal was to perform the largest N -body simulation

of accretion to date, thereby giving them the ability to start with the smallest possible

planetesimals. Indeed, while the state-of-the-art simulations at the time started with a few

tens of objects, Kokubo & Ida initially started with several thousand bodies. In order to

start with even smaller initial objects, they restricted their simulation to a narrow annulus.

In particular, they constructed a distribution of objects initially in a ring that extended

from 0.99 to 1.01 AU and contained 0.3M⊕ of material. One of their runs contained

4000 particles with masses between 1023 and 1024 gm; distributed in a power-law mass

distribution with a differential slope of −2.6. They followed the system with a full N -body
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code. When particles collided they merged — there was no fragmentation.

Fig. 12.— Four snapshots of the evolution of the cumulative mass distribution of a system initially

consisting of 4000 particles with masses between 1023 and 1024 gm for a total of 0.3M⊕. This system was

based on those in Kokubo & Ida (2000). We represent this by 425 tracers in LIPAD. The back and red curves

show the results from LIPAD and a direct N -body simulation done with SyMBA. The cyan line shows at

what mass a tracer is promoted to a sub-embryo. The full animation of this can be seen by clicking on the

figure. It will only work with acrobat reader.

We performed the same simulation with LIPAD, using 425 tracers (approximately

an order of magnitude fewer than in the N -body calculation) and Ns−bin = 20. Full

velocity evolution was included, but fragmentation was disabled. Particles were promoted

to embryos when they reached a mass of 4×1024 gm. Figure 12 compares the temporal

evolution of the size-distribution from LIPAD (black) and SyMBA (red). The vertical cyan

line shows the mass where tracers are promoted to embryos. Through this simulation all

the embryos were considered sub-embryos by the code. Some explanation is required to

understand these results.
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There are two phases of growth in the LIPAD simulation. Before 500 years, all the

particles are tracers and thus the evolution of the system is entirely done through our

Monte Carlo routines. Note that there is excellent agreement during that time (see the top

right panel of Figure 12, for example). However, once an object becomes a sub-embryo, it

no longer interacts with the statistical part of the code. As a result, it can only accrete

tracers whole. In this simulation tracers have 4×1024 gm and thus the sub-embryos can

only grow by accreting objects of this mass. This limitation in the resolution of the growth

rate near mtr explains the pileup of objects at 4×1024 and 8×1024 gm. This does not affect

the overall growth rates of the system, however. Note that at the end of the simulation at

10, 000 years, the size-distributions from the two codes nearly fall on top of one another.

Thus, as with the collisional grinding, the resolution limitations of LIPAD do not seem to

affect the general behavior of the system.

3.7. MBNL09’s Final Test

As a final test of their Eulerian particle-in-a-box planet accretion code MBNL09

followed the evolution of 8.3×108 objects of 4.8×1018 gm spread from 0.915 to 1.085 AU.

These are embedded in a gas disk with a mid-plane density at 1 AU of 1.18×10−9 gm/cm3,

α = 2.25, and zs = 0.05 AU (see Eq. 24).

The above problem represents an excellent opportunity to compare the two types of

algorithms because it is performed on such a narrow annulus that planetesimals/planet

migration (which the Eulerian codes cannot handle) does not occur. In particular, we

represented the population of 8.3×108 planetesimals by 1000 tracers in LIPAD and set

Ns−bin = 20. The smallest object included in the collisional cascade is 10 m in size. We have

turned on all of the velocity evolution routines with the exception of the routine that allow

sub-embryos to migrate.
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Fig. 13.— An animation showing the temporal evolution of the tracers and embryos in our version of

MBNL09’s final test. We started with 8.3×108 objects of 4.8×1018 gm spread from 0.915 to 1.085 AU, which

we represented with 1000 tracers in LIPAD. Each dot represents a tracer (small dots) or an embryo (large

dots; in this simulation all embryos are sub-embryos). The top panel presents an object’s eccentricity (e) as

a function of semi-major axis (a). The color represents the radius of the object. The bottom panel shows

the objects radius (s) as a function of semi-major axis. In this case color shows Ntr. Note that the smallest

object included in the size-distribution is 10 m in radius. Click on the figure to start the animation. It will

only work with acrobat reader.
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Figure 13 shows an animation of the evolution of the system in LIPAD. The top panel

shows the eccentricity (e) of a particle as a function of semi-major axes (a). The color

of a dot shows its size. Tracer particles and embryos are represented by small and large

dots, respectively. Note that all particles are tracers at the beginning of the calculation.

The bottom panel shows the radius (s) as a function of semi-major axes. Here the color

indicates the number of planetesimals the tracer actually represents.

Recall that the main purpose of LIPAD was to be able to handle the global

redistribution of planetesimals due to the embryos. Although this particular test was

designed to minimize this effect, we can start to see the development of gaps around the

embryos. In addition, although it is difficult to see in the figures, several of the embryos

have captured Trojan populations.

Fig. 14.— An animation showing the evolution of the cumulative size distribution during MBNL09’s final

test. See Figure 12 for a detailed description of the figure. Click on the figure to start the animation. It will

only work with acrobat reader.
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The remaining issue is to determine how well LIPAD and MBNL09 agree with one

another. A comparison between the two simulations is shown in Figure 14 (see caption for

Figure 12 for a description). The match is reasonable. The largest discrepancies occur in

the first 5000 years. We attributed these differences to differences in the velocity evolution.

Recall that in our viscous stirring tests presented in §3.4, LIPAD did a better job at the

velocity evolution than MBNL09’s code did. Thus, we believe that LIPAD is probably

correct in this case.

4. Conclusions

We presented the details of the first particle based (i.e. Lagrangian) code that can

follow the collisional/accretional/dynamical evolution of a large number of km-sized

planetesimals through the entire growth process to become planets. We refer to it as the

Lagrangian Integrator for Planetary Accretion and Dynamics or LIPAD. LIPAD is built on

top of SyMBA, which is a symplectic N -body integrator (Duncan et al. 1998). In order to

handle the very large number of planetesimals required by planet formation simulations, we

introduce four types of particles in LIPAD:

1. Tracers: These objects are intended to represent a large number of planetesimals

on roughly the same orbit and size as one another. Each tracer is characterized

by three numbers: the physical radius s, the bulk density ρ, and the total mass of

the disk particles represented by the tracer, mtr. As a result, each tracer represents

Ntr =mtr/
4
3
πρs3 planetesimals. They gravitationally interact with each other through

Monte Carlo routines that include viscous stirring, dynamical fraction, and collisional

damping (§2.1). They are gravitationally stirred by the larger objects (i.e. full- and

sub-embryos, see immediately below) via the N -body routines.
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2. Full-Embryos: These are the most massive objects in LIPAD. They interact with all

classes of particles through the direct summation of individual forces already present

in the SyMBA code. SyMBA routines also monitor whether physical collisions occur.

The algorithm that LIPAD uses to handle these collisions is described in §2.2.3.

3. Sub-Embryos: These objects interact with full-embryos and each other through

SyMBA routines. However, the only dynamical effect that the tracers have on them

is through dynamical friction and planetesimal-driven migration routines (§2.2).

Collisions are handled in the same way as those of the full-embryos.

4. Dust Tracers: These are tracers that can no longer fragment. The user can set the

code so that these objects do not interact with the other tracers. However, they

always interact with the embryos via SyMBA’s N -body routines. The user also has

the option to apply Poynting-Robertson drag.

Perhaps LIPAD’s greatest strength is that it can accurately model the wholesale

redistribution of planetesimals due to gravitational interaction with the embryos, which has

recently been shown to significantly affect the growth rate of planetary embryos, themselves

(LTD10). This redistribution controls growth in two ways. First, it can open gaps around

the embryos thereby effectively stopping accretion. Additionally, the embryos can migrate

as a result of gravitational scattering of the near-by planetesimals, which can enhance

growth. On the minus side, LIPAD struggles with being able to accurately resolve the

side-distribution of collisional tails. However, we show that this does not affect embryo

growth rates.

We have carefully verified and tested LIPAD. In §3, we present experiments that

independently exercise all of LIPAD’s abilities. We find that it out performs Eulerian

statistical algorithms previously used to study this problem. Of particular note, LIPAD’s

viscous stirring routines are particularly accurate.
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Our Lagrangian approach has an advantage over most previous attempts to study planet

formation because, rather than using analytical expressions to estimate the global evolution

of the system, our code mimics the important micro-physics (i.e., local accelerations and

individual collisions) and lets the global system evolve naturally. Therefore, there are fewer

assumptions made, and the interactions between different mechanisms are handled more

realistically.

LIPAD has many free parameters. In addition, we have not discussed any issues

concerning the convergence of the code. Of course, each problem is different and so a user

is going to be required to investigate these issues on their own. Thus, we decided that the

best approach is to present an illustrative example of a production run we are currently

undertaking with LIPAD. In particular, we are doing a series of simulations of terrestrial

planet formation in the region between 0.7 and 1.5 AU. This region of the planetary system

is populated with 2.9M⊕ of planetesimals whose initial radii varied from 10 to 50 km

depending on the run. The surface density of the planetesimals initially scale as r−1.5. We

represent these planetesimals with 12, 000 tracers of 1.4× 1024 g (roughly 50% more massive

than Ceres). This implies that tracers transition to sub-embryos when they have a radius

of only ∼450 km. The transition from sub-embryo to embryo is set to 2.8× 1026 g, roughly

200 times a tracer mass. We use Ns−bin = 30 spanning sizes from 1 to 450 km, and have 166

annular bins stretching from 0.5 to 60 AU. We set sdust = 30µ and adopt BA99’s values for

high velocity rock in the calculations of Q∗D. We embed this material in a minimum mass

gas disk (Hayashi et al. 1985), which we assume has an opacity of 2% the ISM value when in

the atmospheres of the embryos. Type I eccentricity damping is included with ce = 1, but

we disable Type I migration by setting ca = 0. The gas disk decays with a lifetime of 2 My.

The timestep for the N -body code is set to 0.025 years, while the one for the statistical code

is 3 times longer. We will present an analysis of these calculations in an upcoming paper.
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