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Introduction

Why? Ice-penetrating radar will be a key instrument on 
any orbiter traveling to Europa. Previous studies 
established the need for additional dielectric 
measurements of ice to better constrain radar 
attenuation through Europa’s ice shell, and to 
interpret subsurface radar reflections. Many other 
planetary ice masses are also of interest.

We selected 46 ice-core samples from 7 
different sites in the National Ice Core Lab’s 
inventory, covering a range of soluble and insoluble 
impurity concentrations (e.g., volcanic layers), in 
situ conditions, and geography (coastal and inland 
Antarctica, inland Greenland). We typically 
measured their broadband (100 mHz–1 MHz) 
dielectric properties between 188–238 K using an 
impedance analyzer and parallel-plate electrodes.

How?

Our initial measurements emphasize the dielectric 
variability of natural ice. A sample accreted from  
Lake Vostok has the most Debye-like relaxation and 
lowest attenuation ever measured in natural ice, 
while a basal ice sample from the same core is 
saturated with lattice defects due to impurities and 
has the highest attenuation. A portion of a sample 
from South Pole is the purest natural ice ever 
measured. We also find unannealed meteoric ice 
(kept below –20oC) has both pure-ice and 
briny/dirty relaxations. Once annealed, they merge. 

Initial
results

Our 
goals

1. To better understand conduction 
mechanisms in low-temperature ice, so that we 
may better predict the dielectric behavior of 
extraterrestrial ices that we can’t sample directly. 
The dielectric properties of primary interest are the 
ice’s conductivity at the high-frequency limit, its 
temperature dependence and soluble 
impurity-concentration dependence.
 
2. To predict the dielectric properties of 
Europan ice using the best available natural 
analogs and thermomechanical models.
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Dielectric variety is the spice of ice

CaCl2 brine channels in East Antarctic meteoric ice
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HF attenuation 
rate by 7 dB km–1

All measured samples at –85oC: huge variability

large range of 
dielectric strengths

Broadband measure-
ments permit diagno-
sis of the conduction 
mechanisms at work.

In meteoric samples, 
there are essentially 
two populations of 
ice: dirty and pure.

Multiple relaxations often observed; 
ice relaxation frequency varies wildly

Measurement apparatus and ice-core sample
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Conduction mechanisms in natural ice

Observed in basal ice 
from Lake Vostok, 
but do they contrib-
ute to conduction?

Common in 
meteoric and 
marine ice
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Greenlandic 
meteoric ice, 
where there’s 
more NH4

+
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The crown jewels: Basal ice, and lake-accreted ice from Lake Vostok
It is challenging to make suitable lab-frozen ice. An alternative approach is to have nature make it for us.

Dielectric measurements of Vostok ice between –85 and –40oC 

The basal ice has the highest relaxation frequency 
yet observed, consistent with earlier predictions

The lake-accreted ice has the most Debye-
like relaxation yet observed in natural ice

increasing
temperature

Basal ice is our most attenuating 
sample, lake-accreted ice the least

DC conductivity 
present

Temperature dependence of observed 
relaxations
We fit our data using Cole–Cole models. Lattice defects intrinsic 
to pure ice dominate at higher temperatures than we initially 
measured here have a high activation energy (0.57 eV). Extrinsic 
defects due to impurities have a lower activation energy 
(0.20–0.24 eV), and their concentration is proportional to the 
relaxation frequency. The pure ice relaxation in a meteoric South 
Pole sample is just as pure as the deionized ice measured by 
Kawada [1978]. The basal ice from Vostok is saturated with lattice 
defects, as it compares well with lab-made saturated samples. No 
stable ice, natural or otherwise, has ever been found to have a 
relaxation frequency higher than this saturated curve.

Initial radar-attenuation modeling

Decreasing grain size (d), increasing convection

60 dB is a nominal dynamic range for an orbital radar around Europa
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Because we have not yet 
melted our measured 
samples to measure their 
impurity concentrations, 
we cannot yet improve 
constraints on the 
i m p u r i t y - r e l a t e d 
dielectric properties of 
ice. For these models, we 
therefore assume 
uniform impurity 
concentrations in the 
shell that are ~50% of 
the values that are 
typically observed in 
meteoric East Antarctic 
ice ([H+] = 0.5 uM, [Cl–] 
= 1 uM).

We modeled radar attenuation through the Europan ice shell using new thermomechanical models that simulate convection in the ice 
shell for variable shell thicknesses and grain sizes. Radar penetration depths are ~10–20 km in these scenarios. 
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What’s next?
Measurements at lower and higher temperatures. 
Temperatures lower than –90oC are challenging to maintain 
stably with our measurement apparatus, because they require 
LN2 cooling. We have already performed initial 
measurements at temperatures as low as 114 K 
(–159oC). More are forthcoming. We are also in negotiations to 
acquire and measure marine ice from East Antarctica.

Our intial measurements have also definitively shown that 
measurements at temperatures greater than ~ –20oC 

are a one-way street. Above –20oC, the ice begins to anneal 
away its lattice defects, permanently altering its dielectric 
character. After these higher temperature measurements, we will 
melt the ice and measure its soluble impurity concentrations.

We will incorporate our improved estimates of the key 
parameters in the radio-frequency dielectric model of 
ice into our Europan radar-attenuation models. Because 
of engineering requirements, the shell’s dielectric character must 
be reasonably constrained prior to launch.
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