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Lake Vostok has the most Debye-like relaxation and
lowest attenuation ever measured in natural ice,
while a basal ice sample from the same core is
saturated with lattice defects due to impurities and
has the highest attenuation. A portion of a sample

The dielectric properties of primary interest are the
ice’s conductivity at the high-frequency limit, its
temperature dependence and soluble
impurity-concentration dependence.
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