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ABSTRACT

Feature tracking and recognition are increasingly common tools for data analysis, but are typically implemented on
an ad hoc basis by individual research groups, limiting the usefulness of derived results when selection effects and al-
gorithmic differences are not controlled. Specific results that are affected include the solar magnetic turnover time, the
distributions of sizes, strengths, and lifetimes ofmagnetic features, and the physics of both small scale flux emergence
and the small-scale dynamo. In this paper, we present the results of a detailed comparison between four tracking codes
applied to a single set of data from SOHO/MDI, describe the interplay between desired tracking behavior and
parameterization tracking algorithms, andmake recommendations for feature selection and tracking practice in future
work.

Subject headinggs: Sun: magnetic fields

1. INTRODUCTION

The last decade has seen a sea change in the way that solar
physics is accomplished. Advances in detector technology have
permitted missions such as SOHO (e.g., Scherrer et al. 1995) and
TRACE (Handy et al. 1999), and ground-based observatories such
as GONG (Leibacher et al. 1995), to produce far more data than
can be analyzed directly by humans. The planned Solar Dynamics
Observatory (SDO) mission (Schwer et al. 2002) will produce
data a thousand times faster. Hence, automated data mining has
become a necessary tool of the analysis trade. Applied to image
data, data mining consists of algorithmic recognition of visual
features in the data. Applications such as feature and pattern re-
cognition fall within the field of ‘‘computer vision’’, which is the
subject of active research in the computer science community.

Magnetic feature identification and tracking have proven use-
ful for extracting statistical parameters of the solar dynamo (e.g.,
Hagenaar et al. 1999; Schrijver et al. 1997), allowing more so-
phisticated analyses than have been possible by hand (e.g., Harvey
1993). Current applications of feature tracking include character-
ization of bulk field behavior at the photosphere, probing of the
solar dynamo, identification of the magnetic roots of solar atmo-
spheric features, and constraint of MHD models. Each of these
applications is discussed below.

In the last few years, each of our research groups has indepen-
dently developed four separate tracking codes adapted to study-
ing slightly different aspects of the solar magnetic field. CURV
was the first code developed to studymagnetic features in theMDI
quiet Sun data (Hagenaar et al. 1999), MCAT has been used to
study interaction between network flux elements (Parnell 2002),
SWAMIS (Lamb & Deforest 2003) is intended to drive semi-

empirical MHDmodels of the quiet Sun, and YAFTA (Welsch &
Longcope 2003) was developed to study active region dynamics.
Our separate tracking codes are similar enough to be applied

to similar problems and to yield directly comparable results. How-
ever, feature tracking is not a simple endeavor, and many subtle
characteristics of each code can strongly affect derived results.
This, togetherwith the ad hocmanner inwhich each tracking code
was developed, made it difficult to compare or duplicate results
between groups.
In 2004 November we met at St. Andrews University to re-

concile results from all four sets of software. We applied each
code to a sample data set and compared results from the different
algorithms to reconcile the results across research groups. Further-
more, we identified how algorithmic choices affect magnetic fea-
ture tracking results, and developed a set of recommended practices
to guide future development of feature tracking and related soft-
ware for the solar community.
Developing a baseline of best recommended practices for fea-

ture tracking and computer vision is an important goal for the so-
lar imaging community, because feature tracking is a fundamental
component of many types of data analysis. Applied to the solar
magnetic field, it has been used to characterize the statistical pa-
rameters of the field by determining the distribution of feature
sizes and fluxes (Harvey 1993; Hagenaar et al. 1999; Hagenaar
2001; Parnell 2002) and the average lifetime of individual features
(Hagenaar et al. 2003). Automated extraction of parameters such
as clustering distributions (Lamb&Deforest 2003) and event dis-
tributions (DeForest & Lamb 2004) are being used to derivemore
detailed information about the solar dynamo. All of these applica-
tions are dominated by the relationship between small scale event
detections and the noise floor of the instrument used for detection,
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generally a line-of-sight/scalar magnetograph such as SOHO /MDI
(Scherrer et al. 1995) or GONG (Leibacher 1999).

Feature tracking is further useful for constraining the energy
input into flux systems in the solar corona. Much of the energy
deposited into the chromosphere and corona is thought to be trans-
ported by the Poynting vector, as photospheric motions do work
on the magnetic field by pushingmagnetic flux around the surface
(e.g., Parker 1988; Fossum & Carlsson 2004). Feature tracking
allows simple derivation of the motion field from a time series of
images. Welsch et al. (2004) used feature tracking to estimate the
quiet Sun helicity flux into the corona, and DeForest & Lamb
(2004) and Parnell & Jupp (2000; Parnell 2002) are using feature
tracking to identify the roots and nature of small scale heating
events such as bright points.

A third important application of feature tracking is to drive
boundary conditions of semi-empirical MHDmodels of the solar
atmosphere, such as are anticipated for space weather prediction.
Time-dependent MHD modeling requires knowledge not just of
the three-dimensional vector field at the surface of the Sun, but
also of the motion of individual lines of magnetic flux; feature
tracking derives the motion information from time-series mea-
surements of the magnetic field. Indeed, Peano’s existence and
completeness theorem (see, e.g., Simmons 1972) implies that
knowledge of the initial magnetic topology in the force-free up-
per layers of the atmosphere, together with the radial component
of the field at the lower boundary, is equivalent to knowledge of
the full vector field everywhere on the lower boundary. Provided
that the initial topology may be estimated, this equivalence makes
feature tracking a powerful tool for modeling energy input into the
solar atmosphere even in the absence of full vector field measure-
ments, as the distribution of radial magnetic flux on the � ¼ 1 sur-
face at the photosphere approximates the distribution at the � ¼ 1
surface in the upper chromosphere.

In this article, the first in a series on results from tracking of
photospheric magnetic features, we discuss the state of the art
and some current applications of magnetic tracking software. In
x 2 we outline the basic steps of a feature tracking algorithm, in
xx 3Y4we present and discuss the differences between the codes’
results as applied to a reference data set, and in x 5 we recommend
‘‘best practices’’ for future codes to follow for feature tracking ap-
plications. Finally, x 6 contains some general conclusions and in-
sights, and a glossary at the end contains recommended vocabulary
to describe specific aspects of magnetic tracking.

2. DISCUSSION OF TRACKING ALGORITHMS

Feature tracking can be divided into five separate operations:
(1) image preprocessing, (2) discrimination/detection, (3) feature
identification within a frame, (4) feature association across frames,
and (5) event detection. In addition, some noise filtering is accom-
plished by filtering the associated features to discard short-lived or
small features that have too high a likelihood of being noise. Here,
we discuss the important components of magnetic feature tracking
algorithms in general, and outline the differences between each of
the four principal codes that we compared.

2.1. Preprocessing

In general, magnetograms arrive from an instrument with some
level of background noise and with position-dependent foreshort-
ening due to the curvature of the Sun. Reducing the noise floor and
eliminating perspective effects requires preprocessing images be-
fore applying feature recognition. Temporal averaging, projection
angle scaling, and resampling to remove perspective and solar ro-
tation effects are commonly applied before most high-level anal-

ysis. In particular, 0.500Y200 scalemagnetograms benefit frombeing
averaged over 5Y12minutes to reduce background noise, and line-
of-sight (Stokes V ) magnetograms of the quiet Sun benefit from
being divided by a cosine factor to account for the difference be-
tween the magnetogram line of sight and local vertical at the sur-
face of the Sun, under the model that weak field is close to vertical
at the photosphere.

Space-borne magnetographs such as MDI and the anticipated
SDO are also susceptible to cosmic ray spikes, which must be re-
moved either by temporal filtering of tracked features or by pre-
processing the images.

Most magnetograms made with a filtergraph-type instrument
such as MDI or GONG contain at least three sources of random
noise at each pixel: (1) photon statistics, which produce a fami-
liar white noise spectrum; (2) P-mode contamination, which is due
to the five-minute Doppler oscillations leaking into the Zeeman
signal; and (3) granulation noise, which is due to solar evolution
between the different filtergraph exposures thatmake up eachmag-
netogram. The photon shot noise is a uniform random variable
with an independent sample at every pixel and a presumedGauss-
ian distribution. The P-mode contamination is a random variable
with far fewer independent spatial samples per image, because of
the low spatial frequencies of theP-modes, and an oscillating tem-
poral component. Granulation-based noise has a spatial scale of a
few arcseconds and a coherence time of 5 minutes. MDI is well
tuned so that the three sources of noise are about equal in indi-
vidual images; but in spatially binned, temporally averaged, or
smoothed images, the granulation andP-modes dominate the noise
spectrum. Although data preprocessing is not part of the process of
feature identification and tracking, preprocessing effects can affect
tracking results, and we recommend (in x 5) specific practices to
reduce artifacts.

2.2. Discrimination

Any feature-recognition algorithm requires discrimination,
i.e., the separation of foreground features from background noise.
Every magnetogram sequence appears to contain many faint fea-
tures at or slightly below the level of the noise floor, so discrimina-
tion is not trivial.

The simplest discrimination scheme, direct thresholding, works
well only for strongmagnetic features that are well separated from
the noise floor, such as flux concentrations in the magnetic net-
work or in active regions. Other types of magnetic feature, such as
weak intranetwork fields, suffer, because keeping the threshold
high enough to avoid false-positive detections creates a large
number of false-negative nondetections of the weak magnetic
features. The problem is the huge number of individual detec-
tion operations (one per pixel per time step), which makes false
positives a significant problem.With a Gaussian noise distribu-
tion, setting the threshold to three standard deviation (�) units
yields a false positive rate of about 10�4, so that a 300-frame
data set with dimension 300 ; 300 pixels would yield around
3000 false positive detections from noise alone, and perhaps
10Y30 times that number of inconsistently detected weak fea-
tures (false negatives).

Each of our codes used a different discrimination scheme, af-
fecting what types of feature could be detected. YAFTA, origi-
nally intended for use with active region magnetograms well
above the noise floor, uses a simple threshold test to discriminate.
The other three codes have adopted two different schemes to work
closer to the noise floor, both of which add additional tests to the
basic threshold test.

SWAMIS andMCATuse hysteresis, used by Lamb&Deforest
(2003) and by Parnell (2002) in which two thresholds are applied:
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a high threshold for isolated pixels, and a second, lower threshold
for pixels that are adjacent to already selected pixels. Adjacency
is allowed in space and/or time. The hysteresis misses some very
weak features, but captures every feature that at some location
and/or time exceeds the large threshold. The proximity require-
ment reduces the number of pixels that undergo the lower threshold
test, and therefore reduces the number of false-positive detec-
tions. Depending on application, the higher threshold is chosen
to be 3Y6 �, and the lower threshold 1Y3 �, where �2 is the var-
iance (and � is the rms variation) of the data.

MCAT and SWAMIS differ slightly in the nature of the hys-
teresis. Both codes use separate masks for positive and negative
flux concentrations, but MCAT applies the low threshold to any
pixels in the current frame that are adjacent to a detected feature
in the next or previous frame. MCAT makes one forward pass
through the data, comparing pixels in each frame to the higher
threshold at most locations and to the lower threshold in loca-
tions that were occupied in the previous frame; and then one
reverse pass that is identical except that the low threshold mask
comes from the next, rather than previous, frame.

SWAMIS uses a ‘‘contagion’’ algorithm that treats the time axis
as a third spatial dimension: a pixel is subjected to the low thresh-
old if it is adjacent, either in time or in space, to any detected pixel.
Considering pixels as cubes in (x, y, t) space, each pixel is sub-
jected to the lower threshold if it shares at least one edge with a
pixel that has beenmarked occupied and that has the same sign. The
contagion algorithm is executed in a single pass through the data
with in-frame recursion to dilate the detected regions andwith back-
tracking to retest newly ‘‘infected’’ pixels in previous frames.

CURVuses the curvature method used by Strous et al. (1996)
and by Hagenaar et al. (1999) in which both the data values and
their second derivative are tested. To be considered part of a local
maximum/minimum by the curvature algorithm, the magnitude
of a pixel must exceed a value threshold and all surrounding pix-
els must have a negative/positive second derivative in each of the
horizontal, vertical, and two diagonal directions. The second de-
rivative criterion adds four additional independent threshold tests
for each pixel, reducing the number of false detections at a given
threshold and allowing single threshold values comparable to the
low threshold values used in SWAMIS and MCAT.

All three of MCAT, SWAMIS, and CURV impose minimum-
size and lifetime requirements on features at a later step in the
processing, reducing the effect of false positives in the detection
step. YAFTA also imposes a minimum lifetime requirement to
reduce false positives from noise fluctuation.

2.3. Feature Identification

Feature identification is the operation of connecting masked
pixels into distinct identifiable (and identified) structures in each

frame. In practice, this means forming a detected feature map, an
image whose pixels have integer numeric values that correspond
to index numbers of particular features. Each of our codes uses a
variant of a clumping dilation algorithm that identifies connected
loci of pixels within a masked region.
MCAT clumps masked pixels directly into contiguous regions.

YAFTA and SWAMIS can switch between direct clumping and a
gradient based (‘‘downhill’’) method that dilates local maxima by
expansion down the gradient toward zero flux density. CURValso
uses direct clumping, but generates initial feature masks with a
data-value curvature method that restricts the features to isolated
regions, yielding features that are segmented more like those of
the downhill method in YAFTA and SWAMIS than like the other
clumping codes. All three techniques are illustrated in Figure 1.
The tradeoff between the clumping and downhill methods is

that the downhill method is better at picking out the structure of
individual clusters of magnetic flux, while the clumping method
is somewhat less noise susceptible. Fluctuations from either so-
lar convection or instrument noise can easily create small local
maxima that are identified as transient structures by the downhill
method; simple clumping eliminates these small transients, for
better or for worse. Which method is appropriate depends on the
specific scientific application, as discussed further in x 5.

2.4. Feature Association

Feature association is the fixing of a feature’s identity across
different frames of an image sequence. Most features in adjacent
frames of an image are related by similarity of position and shape:
when a feature in frame mþ1 is sufficiently similar to the feature
in framem, then it is likely that the two features represent the same
physical object at the two different times. All of our existing codes
use variations of a dual-maximum-overlap criterion to identify per-
sistent features across frames (Fig. 2); this technique associates two
features B and C in adjacent frames only if B \ C is larger (in a
flux-weighted sense) than any other intersection with either B or C.
All four of our codes follow variants of the largest intersection

criterion, either following maximum flux overlap or maximum
area overlap. YAFTA uses arbitrary label choice on its first pass

Fig. 1.—Effect of different feature-identification schemes on the identified struc-
ture of a large flux concentration. (A) Clumping identifies all connected above-
threshold pixels into a single feature. (B) Downhill methods identify one feature
per local maximum region. (C) Curvature methods identify the convex core around
each local maximum.

Fig. 2.—Pathological association case. Features A and B are in the previous
frame, C and D in the current frame. A maximum-overlap method associates B
and C. The recommended associative algorithm (dual-maximum overlap) asso-
ciates B ¼ C if and only if B \ C is the largest of C’s intersecting regions and also
the largest of B’s intersecting regions. A and B merge to form C, at the same time
that D calves via fragmentation from B.
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through the data, and then ‘‘label conflicts’’ in a subsequent pass
that uses maximum overlap.

2.5. Filtering Based on Size/Longevity

When working close to the noise floor, it is useful to reject
small features, because false positives are much more likely in
small clusters of pixels than in large ones. All of our codes reject
identified features that do not meet someminimum size criterion.
Criteria that are useful include: maximum size, average size, life-
time, or total number of pixels across the life of the feature. The
filtering can be accomplished only after feature identification (for
per frame size checks) or feature association (for maximum size
checks or longevity checks).

Additional problems exist due to fluctuations in background
noise that may cause features that appear for only a single frame,
or may cause weak but persistent features to disappear for a frame
(the swiss cheese problem). Similarly, associated features may split
and then remerge rapidly due to fluctuations in a single frame (the
oscillating twins problem). CURV sidesteps association problems
by requiring oversampling on the time axis of the input data cube;
this reduces the frame-to-frame fluctuations of individual features.

MCATavoids both problemswith a three-step process. (1) Com-
pletely surrounded holes in the center of a feature are filled in,
and the missing pixels are counted as part of the feature; (2) twin
features that merge for a single frame are forced to remain sep-
arate; (3) single features that split for a single frame are forced to
remain merged. SWAMIS overcomes both the oscillating twins
and Swiss cheese problems by reassociating short-lived features
with nearby larger features if there is sufficient overlap between
them.

2.6. Classification of Origin and Demise

Identifying and locating individual features as they evolve is
properly described as feature tracking, but identifying structures
and events that may include several features is more properly de-
scribed as a complete computer vision application. Not all of our
feature tracking codes include a provision to detect and identify
interactions of multiple flux concentrations, such as pairwise emer-
gence, but such detection is an important part of characterizing
magnetic evolution and hence is discussed here. In particular,
because magnetic features are not corks but rather cross sections
of curvilinear manifolds (field lines that pass through the photo-
sphere), they are connected pairwise by the magnetic field. Iden-
tifying the association between freshly emerged pairs thus gives
useful information about the overall field topology, and how it
changes via reconnection of the overlying field before the death
(e.g., by submergence) of the individual features.

The origin and demise of features is different than the origin
and demise of magnetic flux itself: in particular, features can frag-
ment or merge under the influence of the photospheric flow field
(e.g., Schrijver et al. 1997) without any flux emerging or sub-
merging through the photospheric surface. Fragmentation and
merging can result in apparent violation of the conservation of
flux as magnetic flux sinks below or rises above the detection
threshold of the instrument being used to detect it.

Software to identify origin events recognizes flux concentra-
tions near each newly detected concentration, and classifies the
origin according to these nearby concentrations and the time de-
rivative of their contained flux. To avoidmissing associated struc-
ture, an allowed margin of error is required in the spatial or
temporal offset between two associated features, and also in the
flux rate-of-change between the features.

Demise events are similar to origin events and may be recog-
nized with the same code, operating on tracked data in reverse

time order. As with birth events, demise events are not necessar-
ily related to emergence or submergence of magnetic flux.

3. TRACKING RESULTS: A COMPARISON
ACROSS CODES

3.1. Description of the Data Set

We analyzed a sequence of 600 one-minute-cadence MDI
high resolution quiet-Sun images from 2003 June 4, beginning at
05:43 UT. The images were resampled into heliographic longitude/
latitude coordinates ( plate caree projection) using an orthographic
model of the solar image, as shown in Figure 3. The reprojec-
tion used the ANA language resampling tools by R. Shine (1999,
personal communication). The tracked imageswere 300 ; 300 pix-
els and ran over the range�16.3� to�7.3� in longitude and�2.8�

to 6.2
�
in latitude. This scale slightly enlarged the images, to a

Fig. 3.—Tracked field of view, in context. Note that the edge of the gray circle
in the MDI full-disk image is not the limb of the Sun, it is a crop radius for the
instrument, just outside the limb.
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pixel size of 0.03 heliocentric degrees (about 0.48 observer
arcseconds at disk center). Images were derotated to the central
time in the data sequence using the Snodgrass (1983) synodic
differential rotation curve and rigid-body rotation at a latitude of
14�. These derotated plate caree images were averaged together in
blocks of 5 minutes each to reduce shot noise and P-mode inter-
ference. The noise level was determined by fitting a Gaussian pro-
file to the weak portion of the pixel strength distribution curve
(Fig. 4). The width (�) of the best-fit Gaussian profile was 18.3 G,
which should be taken as the sum of all incoherent noise compo-
nents (principally shot noise, granulation, and P-mode leakage).
Small frame-to-frame offsets of the zero point (presumably due to
variations in the instrument’s exposure time) were found by mea-
suring the offset from zero for the best-fit Gaussian, and removed
by subtraction from each frame.

3.2. Feature Size Distribution

The simplest comparison to make across codes is distribution
of fluxes of detected magnetic features. Figure 5 shows the re-
sults of applying all four of our codes (with two different iden-
tification techniques for SWAMIS) to the same data. The five
different techniques yield obviously different flux distributions
for the network; here we discuss the features in the plots and the

differences between them. The plots all have the same height scale
and the same bin size, so the histograms are directly comparable.
All the codes exhibit high and low threshold behaviors that are
discussed below; but it should be immediately apparent by inspec-
tion of Figure 5 that the codes diverge at the small end of the flux
spectrum, achieving a moderately good agreement in slope only
for flux concentrations larger than about 2 ; 1018 Mx. All four
methods produce a slope of about �0:35 � 0:05 decades per
1018 Mx, corresponding to an e-folding width of about 1:2 ;
1018 Mx in the distribution.

All of the codes display a weak-feature threshold effect (false
negatives) as small features that are close to the noise floor are
eliminated by the discriminators. YAFTA and MCAT show the
strongest threshold effects, because they rely on a combination
of minimum strength and minimum feature size in each frame to
eliminate false positives from the discrimination step. The YAFTA
threshold is particularly abrupt because the initial detection dis-
criminator uses no hysteresis, so that all detected features must
have a minimum number of pixels with a minimum amount of
flux per pixel. MCAT’s threshold is softer because the hysteresis
feature of the discriminator allows weaker pixels to be detected
around a strong core; the dearth of very weak features is due to
the combination lifetime-and-strength requirement,which removes
many weak features that are detected by the other codes. CURV
shows a still softer turnover and threshold because the CURV dis-
criminator does not rely on a high threshold value in any one pixel
to trigger detection. The turnover at about 1 ; 1018 Mx reflects the
geometrical factor of 3 that is applied to CURVmeasurements, to-
gether with the requirement for a nine-pixel concave-down region.
SWAMIS shows no obvious threshold at all, because its recursive
temporal hysteresis admitsmany features that have no strong pixels
in a particular frame: provided that a feature has a single strong
pixel at any point in its lifetime, all of its pixels are subjected to the
weaker threshold.
The disagreement between the different codes on the weak

feature distribution is telling: it is difficult to distinguish reliably
the flux distribution of magnetic features that are smaller than
about 1018 Mx in strength even with time-averaged and condi-
tionedMDI data. TheMDI Hi-Res 1 � detection threshold in our
time-averaged data is about 2:2 ; 1016 Mx, corresponding to a
single pixel with an 18 G signal (Fig. 4); features with less than
50 times this much flux are not reliably detected across methods.
The greater weak-feature counts of CURVand YAFTA com-

pared with SWAMIS and MCAT do not necessarily correspond
to greater sensitivity: our data set was not controlled for false pos-
itives. When characterizing a code for weak feature sensitivity,

Fig. 4.—Distribution function of weak-field pixels in the test data set, a se-
quence of 5 minute average high-resolutionmagnetograms from SOHO /MDI. A
Gaussian fit to the low-valued pixels (presumed to be noise) is shown. The mea-
sured standard deviation (�) of the images is 18.3 G.

Fig. 5.—Network feature flux distributions as derived by the five algorithms we compared in x 3. See text for full discussion.
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one should use noise injection null techniques to identify false
positive rates. Likewise, despite the lack of obvious threshold
the SWAMISweak-feature distribution curve should not be trusted
below about 1 ; 1018 Mx, because the hysteresis requirementmay
reject many transient weak features that never happen to achieve
the flux density required to trip the high threshold.

In the moderate-strength feature range of 2Y5 ; 1018 Mx, all
four of YAFTA,MCAT, SWAMIS/downhill, and SWAMIS/clump
are in reasonably good agreement, with the main difference being
between the downhill-like codes (CURV, YAFTA, and SWAMIS/
downhill) and the clumping codes (MCATand SWAMIS/clump).
The difference is due to the segmentation of large features into sev-
eral smaller ones, giving the downhill-like codes slightly more
small features and slightly fewer large ones.

The different codes disagree substantially on slope of the flux
distribution curve in two different regions. Below about 1 ;
1018 Mx, the codes diverge strongly in feature counts, and all
have distribution features that might serve to indicate a transi-
tion to noise-dominated numbers: the slopes change in all the
codes, and codes with thresholds of various sorts exhibit turn-
over behaviors due to those thresholds.

In the small-feature range 1Y1:5 ; 1018 Mx, each individual
curve has no clear indication that the data are becoming unre-
liable, but the different detection schemes give divergent results.
CURV and YAFTA find more small features than MCAT or
SWAMIS in this range, due to a combination of noise and higher
sensitivity.MCAT,which has themost stringent noise-elimination
steps in the detection code, detects significantly fewer features in
this size range, yielding a lower slope.

In the window of 1:5Y7 ; 1018 Mx, all three codes agree on the
slope of �0:28� 0:03 per decade, or an e-foldingwidth of 1:55 �
0:15 ; 1018 Mx. The downhill-like methods find the steeper limit,
and the clumpingmethods find the shallower limit. Features in this
size range are strong enough to be detected by all three discrimi-
nators, but not so large that the differences between the large-scale
behavior of the three codes is important.We conclude that features
in this size range are easily detectable with MDI, and results that
use this feature size range are robust against small changes in de-
tection technique.

The large-feature performance of the codes varies slightly across
algorithm, although all four algorithms are in rough agreement
below 1019Mx. At higher values the feature counts are too low to
provide good statistics, but general comments are possible. The
CURV discriminator tends to break up large features into mul-

tiple small features, and very large features tend to have wider
wings than theGaussian profile that is assumed byCURV, slightly
lowering the number of detections well above 1019 Mx. YAFTA
and SWAMIS/downhill also tend to break up very large concen-
trations of flux into multiple features, but that effect is not as
strongly apparent. SWAMIS/clump and YAFTA agree quite well
on the flux distribution from the YAFTA threshold to several
;1019 Mx. In this size range results appear reproducible, but care
is needed when inferring physical values from tracking results as
the results appear dependent on the method used to identify in-
dividual features.

3.3. Feature Lifetimes

Feature lifetime is strongly affected by the feature-association
step of the codes, and hence cross-code comparison is important
to identify how reproducible that step is. Feature lifetime is also
important to the solar physics: it is used as an important measure
of flux turnover rate (e.g., Hagenaar et al. 2003), although some
physical effects other than flux turnover can affect it. By com-
paring our codes we obtain a measure of the reliability of feature
lifetime measurements in the literature.

Several potential effects can introduce errors into flux turnover
rates measured with feature tracking codes. In particular, frag-
mentations and mergers of like-signed features cause end-of-life
events, while the associated magnetic flux survives. Similarly,
fluctuations in the total flux or the area of a small feature cause
many birth and death events. These effects tend to shorten the
measured lifespan of features, causing an apparent (but not real)
increase in the turnover rate of magnetic flux.

Similarly, all of our codes observe many features that are born
and/or die in a way that does not apparently conserve magnetic
flux; these events may be due to asymmetries in the field strength
of small bipoles, or due to statistical fluctuation in a collection of
very small, unresolved concentrations of magnetic flux. If the
latter is true, then the individual unresolved concentrations that
make up a feature must have much shorter lifespans than the
resolvable feature, causing an apparent (but not real) decrease in
the turnover rate of magnetic flux.

Figure 6 shows a histogram plot of feature lifetime from each
of our codes. The codes agree on the slope (but not the value) of
the lifetime histogram for a narrow range of lifetimes between
20Y50 minutes. Roughly 75% of features found by SWAMIS in
this range of lifetimes are in the 2Y6 ; 1018 Mx size range in
which the codes agree on feature counts, suggesting that this

Fig. 6.—Measured feature lifetime is strongly dependent on tracking technique, as seen by comparing lifetime histograms derived from each of the authors’ separate
tracking codes. See text for full discussion.
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region of slope agreement is similar to the region along the size
axis: features in this population are high enough above the noise
floor to be readily detectable, but not so large nor long lived that
geometrical effects fool the different tracking algorithms.

The differences between the curves are entirely due to differ-
ences in the algorithms of the codes, as we examined identical data.
MCAT requires longevity of more than two frames (10minutes) in
the identification step; the small number of one-frame features
are due to fragmentations (features that fragment from an exist-
ing feature, then disappear one frame later). SWAMIS and CURV
use much weaker longevity requirements, and therefore detect
similar numbers of short-lived features. YAFTA detects many
more short-lived features than the other codes, in part because of
a lower detection threshold (no detection hysteresis was used for
this data set) but does not include any features with less than a
four-frame (20 minute) lifetime.

CURV, alone of all the codes, shows a minimum in the life-
time histogram followed by a slight rise in the 150Y200 minute
range. The population in the rise consists of nearly 100 struc-
tures, enough to be statistically significant compared to just nine
features found by CURV in this data set with lifetimes between
100 and 150minutes. It is not clear whether this is an unusual sta-
tistical event or a quirk of the CURV association scheme.

The main conclusion to draw from this comparison is that fea-
ture lifetimes are extremely difficult tomeasurewith tracking codes;
in consequence, average magnetic lifetime results from magnetic
tracking of arcsecond-scale data should be considered weak. We
will address the nuances of lifetime measurement, and its rel-
evance to physical parameters such as magnetic turnover time
and heating rate, in a later article in this series.

4. DISCUSSION

Each of the techniques we considered has advantages for a
particular regime offragment size and strength relative to the noise
floor of the instrument. Here, we discuss the tradeoffs of the dif-
ferent detection schemes. Themain differences between our codes
lay in the discrimination and feature-identification steps, which
are discussed separately.

4.1. Discrimination

The main problem faced by tracking discriminators is the huge
number of statistically independent samples across an image se-
quence data set. The simplest discriminator is a threshold trigger;
while threshold triggers are inadequate for many tasks when used
alone, they form the basis of every discrimination algorithm. The
three main ways we improved upon simple threshold triggering
were curvature sensing (CURV), hysteresis (MCAT, SWAMIS),
and postdiscrimination filtering for feature size and longevity (all
codes). Simple trigger discrimination is useful mainly where the
signal-to-noise ratio is overwhelmingly large. One code in our
study (YAFTA) was optimized for strong field detections and
used simple trigger discrimination, although subsequent versions
of YAFTA include the ability to use hysteresis.

Curvature sensing as implemented in CURV has the advan-
tage that, when combined with a threshold trigger, it applies five
statistically independent threshold tests to each pixel, significantly
reducing the false-positive rate. CURVrejects featureswhose con-
vex cores are smaller than nine pixels. Including the effects of
smoothing in the preprocessing steps, which leave granulation as
the dominant source of noise, there are about 12 statistically in-
dependent tests (of 45 total conditions) required to detect a par-
ticular feature. By contrast, a direct trigger yields only about three
statistically independent tests with the same size threshold. Curva-
ture discrimination permits a detection threshold much closer to

the noise floor than would otherwise be possible, which in turn
should make curvature discrimination rather sensitive to weak
concentrations of magnetic flux.
The disadvantage of curvature discrimination is that it only

finds the convex core of a magnetic feature. This is addressed
by Hagenaar et al. (1999) via a simple scaling: they find that for
a large variety of near-Gaussian distributions the convex core is
about 1/3 of the total flux in the feature and scale accordingly.
This works well for small features near the resolution limit of the
observations, but not as well for larger features, which are ob-
served to have flatter profiles than a Gaussian. Large concen-
trations of flux typically have several local maxima, and the total
flux may be overestimated or underestimated by the assumption
of a simple Gaussian shape, depending on the actual morphology
of the feature.
Hysteresis is a simple way of reducing the false positive rate of

threshold-trigger discrimination. Pixels are compared against dif-
ferent trigger thresholds depending onwhether they are isolated or
adjacent to other detected pixels. BothMCATand SWAMIS use a
recursive-hysteresis scheme that starts with a simple threshold
scheme, and then dilates detected pixels using a lower thresh-
old. Such schemes eliminate many false positives due to the
background noise floor and detect the full extent and shape of
large features. The drawback is that weak features are only de-
tected if they have at least one ‘‘seed’’ pixel that is stronger than
the high threshold. SWAMIS further allows dilation along the
time axis, so that weak features are detected if at some point in
their lifetime they have a single strong pixel; but even so, many
transient weak features that are visible to the eye go undetected
for lack of a single strong pixel.

4.2. Feature Identification

Here, we contrast the two principal dilation strategies of the
codes: downhill and clumping dilation from local maxima. The
distinction between these strategies is academicwithin CURV, as
the curvature-based discriminator provides well-separated loci
around each local maximum: the final detected loci are the same
regardless of dilation method. MCAT, SWAMIS, and YAFTA
can dilate using clumping, and SWAMIS and YAFTA can dilate
using the downhill technique.
Both the downhill and clumping techniques, together with

hysteretic thresholding, do better than curvature at identifying
the size and shape of midsized magnetic features in the several
arcsecond-size range. In this size range the shape of individual
features varies considerably, although most features still have
but one local maximum in the MDI data that we tracked; under
these conditions, both dilation techniques do about as well as one
another and both measure the flux of individual features with
more precision than CURV (which uses a simple geometric fac-
tor to estimate the flux in the wings of the structure).
Large-scale structures that are more than about 1500 across

yield stronger differences between the downhill and clumping
techniques, as illustrated in Figure 7. The downhill technique
does a better job at tracking substructure of large, extended ob-
jects such as plage and active region fields, but at the expense of
more noise susceptibility. Because small amounts of noise can
produce transient local maxima in a large extended feature, the
downhill technique is susceptible to the swiss cheese problem, in
which a single large clump offlux with no strong local maximum
can oscillate between being detected as one or several separate fea-
tures. If lifetime filtering is being applied to the detected-feature
list, then large holes may appear in the detected feature, giving
it the appearance of an irregular block of Ementhaler cheese.
Furthermore, downhill detection alone tends to miss very large
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concentrations of flux, treating them as a collection of smaller
features: while this is desirable for tracking the motion of the
solar surface, it is not desirable when measuring the statistics of
strength or size of magnetic features. We discuss the tradeoff
between these detection techniques, neither of which is perfect,
in x 5 below.

4.3. Cross-Frame Feature Association

All of the codes we compared use essentially the same cross-
frame association strategy of finding the association map that
maximizes overlap between features in adjacent frames, as de-
scribed in x 2.4. In practice, most features in most frames overlap
with exactly one feature in the following and adjacent frames, so
variations in the type of overlap (e.g., number of pixels vs. amount
of flux) or of permissiveness of overlap (e.g., including pixels
nearby each feature as part of the feature itself, for purposes of
finding overlap) only affect the ‘‘edge cases’’ in which multiple
magnetic features are interacting, or in which a single feature is
moving rapidly.

Overlap-style algorithms such as described in x 2.4 are
quite robust for associating features with the two properties
8i; j : xi � xj

�� ��k ri and 8i : �xij jP ri/2, where i and j are in-
dices across features, xi is the centroid location of feature i, ri
is the typical radius of feature i, and �xi is the displacement
vector of feature i across frames. Fast moving features with
�xij jk ri/2 become subject to the mistaken identity problem,
where they are identified as a different feature in different frames.
The mistaken identity problem affects statistical feature lifetime
and feature history results even if only a very few features are
subject to it, because a single fast-moving feature may register
as a very large number of separate magnetic features. The only
reliable way to beat the mistaken identity problem is to use high
enough time resolution in the data. Marginal data in which the
fastest moving features have �xi � ri may be improved by
interpolating interstitial frames, but wider separations cannot be
helped by that method. In practice, we found by visual inspection
that 12 minute final effective cadence with direct boxcar aver-
aging was not sufficient to avoid the mistaken identity problem
for the fastest moving features at the MDI ‘‘full-disk’’ resolution
(1.4 Mm pixels at Sun center), accounting for �0.5% of features
in a given frame and perhaps 5% of total features identified by
SWAMIS, but that 12 minute final effective cadence with anti-
aliasing in the time direction (time-weighted averagingof 1minute
cadencemagnetograms,with a 12minute FWHMGaussianweight-
ing profile) eliminates virtually all cases of mistaken identity.

We considered, but did not implement, various methods to re-
duce the mistaken identity problem in cases where high enough
cadence data are not available. Promising directions to try in-
clude linear extrapolation of feature location from the last asso-

ciated location before the overlap calculation, with or without
backtracking on the time axis, dilation with size checking, and
simulated annealing of feature association. We suspect that all
such algorithms are likely to include more faulty associations
than does direct overlap.

5. RECOMMENDATIONS ON ACCEPTED PRACTICE

To enable meaningful comparison and reproducibility of track-
ing results across research groups, we recommend the following
techniques as appropriate for most applications of magnetic fea-
ture tracking.

5.1. Data Preprocessing

While preprocessing of data is not technically a part of feature
tracking, preprocessing can affect the statistics of image tracking
and therefore warrants mention here. We discuss despiking, time
averaging, and resampling into a desired coordinate system.

Despiking.—A brief note on space-based magnetograms is in
order: SOHO /MDI is, and presumably SDO/HMI will be, sus-
ceptible to cosmic-ray impacts. A typical MDI ‘‘full-disk’’ mag-
netogram has evidence of cosmic ray impacts in 102 pixels, so
5Y10minute averagesmay have asmany as 103 bad pixels caused
by cosmic rays. The cosmic rays are not saturated in the images
and may have either negative-going or positive-going direction.
These cosmic rays can skew the size, strength, and lifetime statis-
tics of small, short-lived features if not considered. We recom-
mend either despiking sequences of space-based magnetograms
with a second time derivative technique such as ZSPIKE (DeForest
2004b) or imposing a lifetime threshold on detected features to
limit the effects of cosmic rays.

Time and spatial averaging.—Time averaging of images is
useful as a preparatory step to reduce noise in the magnetograms
and to smooth features for better association across frames. There
are several sources of noise in currently available magnetograms,
with different statistics for each source; we discuss them briefly
here, as the noise characteristics of averaged data sets hold a com-
plex relationship to the noise characteristics of individual frames.

Most magnetographs are photon limited, so that there is an ap-
proximately Gaussian distribution noise source of photon noise
associated with photon counting statistics in each pixel of each
magnetogram. Each pixel contains an independent sample of this
noise source. Magnetographs such asMDI that assemble multiple
exposures are subject to shutter noise, which results from very
slightly different exposure times across each independent expo-
sure used to produce the magnetogram: shutter noise is an ap-
proximately Gaussian distribution noise source that is added to
the common mode of all pixels across each image. Finally, solar
evolution (and, for ground-based telescopes, seeing effects) across
the time of assembly of the magnetogram induces an additional
noise source, evolution noise that is dominated by the evolution
of granules. Granulation, and the associated evolution noise, has
about one independent sample every 5 minutes per square mega-
meter of solar surface area.

Individual MDI magnetograms have about equal amounts of
photon and evolution noise. Because the photon noise is inde-
pendently sampled in each image, averages of more than about
5 minutes of magnetic data tend to be dominated by evolution
noise, which is attenuated much more slowly by further averag-
ing. Anti-aliased time averaging, using overlapping Gaussian or
Hanningwindows in the time domain, is preferable to simple box-
car averaging, which has frequency sidelobes that allowmore noise
to enter the data.

Image resampling.—Image sequences are typically resampled
to remove the solar rotation and perspective a priori. For the present

Fig. 7.—Effect of feature identification technique: a pathological case. Clump-
ing (right) is less sensitive to noise in weak features than is downhill dilation (left ),
but can lead to counterintuitive results in active regions as large, irregular patches of
flux are identified as a single object.
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work, we derotated and prepared time averages of MDI magneto-
grams using a simple interpolation scheme into plate caree coor-
dinates. This scheme follows current common practice but is not
recommended: it fails to preserve small-scale feature statistics in
two important ways.

First, the plate caree (‘‘lon/lat’’)map projection is non-authalic:
a feature of unit area on the surface of the Sun may have different
areas in plate caree coordinates, depending on its latitude. To
avoid skewing the statistics offlux content, authors should use an
authalic (equal-area) projection to prepare the data before track-
ing. The area of a feature in the plate caree projection is scaled by
a factor of secant ( longitude). A simple way to compensate is to
scale the vertical or horizontal scale by cosine ( latitude) at each
point. Scaling the vertical axis by cosine (latitude) yields the com-
mon sin-lat cylindrical projection, so named because integrating
the scale factor y0map cos(lat)½ � yields ymap sin(lat)½ �. Scaling the
horizontal axis yields the sinusoidal projection. Other useful au-
thalic choices include the Hammer/Aitoff elliptical projection
used by the cosmology community and Lambert’s azimuthal
equal-area projection, which minimizes linear distortion near the
origin. Many useful projections have been cataloged by Snyder
(1987).

Secondly, linear interpolation leaves much to be desired as a
resampling method, skewing (among other things) the noise pro-
file of individual pixels and potentially introducing large amounts
of distortion into the statistics of small features. A statistically
sound, photometrically accurate resampling method, relying on
spatially variable sampling filters, has been described byDeForest
(2004a); that or similar techniques are recommended for prepar-
ing data for survey applications.

For virtually every application of tracking, it is important to
compensate by rigid rotation based on the differential rotation
speed at a particular point in the field of view and not by differ-
entially rotating every pixel in the image independently. The
former preserves the actual evolving spatial structures in ques-
tion; the latter only preserves the plasma reference frame at the
start of the observing run.

5.2. Feature Discrimination and Identification

We recommend combining the three methods of feature de-
tection. Standard codes should use a dual-discriminator scheme
for detection: an initial convex-core discrimination as in CURV,
followed by dilation to a low noise threshold. This combination
takes best advantage of the extra discrimination afforded by the
convex core technique, while eliminating some of the difficulties
of identifying oddly shaped and large features.

Feature identification should use the downhill method to avoid
pathologies of the clumping technique, particularly when used for
motion tracking and to identify interacting magnetic features; but
for applications where larger clusters of flux are important, we re-
commend keeping track of groups of touching or nearby features
according to a clumping algorithm. Groups of mutually touching
features are the same loci aswould be identified by a direct clump-
ing scheme, but tracking individual peaks within the group affords
better localization of the magnetic flux that makes up the fea-
ture(s). This can be accomplished either by maintaining a table
of mutually touching features or by using a dual-labeling scheme
at the feature-identification step.

5.3. Feature Association

For best general purpose utility, we recommend a flux-weighted
maximum overlap method of association between frames, as is
currently used by SWAMIS; for example, in cases of associative
conflict such as Figure 2, regions B and C would be associated

as identical, region Awould be classified as dying by merger into
B/C, and region Dwould be classified as originating by fragmen-
tation from B/C. For analyses that require feature identification,
it is important to ensure that the cadence is sufficient to allow
associated features in adjacent frames to overlap. While more
sophisticated motion-correlation algorithms are in principle fea-
sible, they add complexity and fallibility that is not necessary pro-
vided that the data have high enough cadence.
It is notable that no local overlap algorithm agrees with a hu-

man observer in all cases, as human observers use more informa-
tion than strict overlap, including something like a predictor/
corrector position algorithm.Maximum overlap works well in the
case where the motion of all features is small compared to their
width divided by the time step. If the time step is too long, small
features canmovemore than their diameter in a single frame, lead-
ing to the mistaken identity problem, where a single visually iden-
tifiable feature frequently changes its identity in the tracked data.
In such cases, one can (1) use faster frame rates, (2) generate di-
lated feature masks for association, (3) use linear location extrap-
olation to account for the large interframemotion, and/or (4) use a
minimum-distance criterion rather than maximum overlap.

5.4. Feature Tabulation

When tabulating feature histories, we recommend that the fol-
lowing minimum information be kept for each feature, and for
each frame for which a particular feature exists: area (A), total
flux (�), flux-weighted average location (x, y), and flux-weighted
quadrupolemoments ( �2dx2

� �
, �2dy2
� �

, �2dxdy
� �

), for a total
of seven numerical quantities per feature per frame. The quad-
rupole moments, in particular, summarize tersely and simply the
shape of the feature, and the features detected by the downhill di-
lation method tend to be simple shapes that are readily described
with the quadrupole moment set. Quantities may be kept in phys-
ical or image units (e.g., km or pixels). Quantities which we re-
commend avoiding are: pixel valuemaximum and variance, which
depend on resolution and phase of the underlying feature relative
to the pixel grid; and non-weighted average location, because it
is more dependent on noise-dominated pixels at the feature’s
edge than is the flux-weighted average location.

5.5. Event Identification

Several of the scientific applications of tracking require clas-
sifying the origin and demise of each feature based on visual
heuristics for the underlying physics. Useful event classifica-
tion requires characterizing the geometry and manner of change
of nearby features. Event classification is a rich topic that is not
fully discussed in this paper; however, we make some brief
recommendations.
We recommend classifying origin events into four categories:

(1) isolated appearance, in which a particular feature appears
in the absence of interaction with surrounding detected features;
(2) balanced emergence, in which a bipolar, approximately bal-
anced pair of features appear together in nearly the same location
at nearly the same time; (3) unbalanced emergence, in which a
new feature appears next to a pre-existing, opposite sign feature
in a nearly flux-conserving manner; and (4) fragmentation (or
splitting), in which a single pre-existing feature breaks up into
multiple smaller features in a nearly flux-conserving manner.
Demise events should be classified in the exact same way as
origin events, in a time reversed sense: (1) isolated disappear-
ance, (2) balanced cancellation, (3) unbalanced cancellation,
and (4) merging. For both origin and demise events, (1) is the
only recognized case that apparently violates conservation of flux,
(2) corresponds to isolated passage through the photosphere of a
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magnetic loop, and (4) represents reshuffling of existing flux. For
completeness, event identification software should alsomaintain a
complex class for events that cannot be classified easily into the
above four groups, including such events as isolated asymmetric
emergence that violate conservation of magnetic flux.

It is important to understand that this is a visual classification
scheme, to be more fully developed in future work. Interpretation
of these visual events in terms of physical mechanisms is neither
straightforward nor obvious. For example, appearance eventsmay
or may not correspond to new flux on the solar surface.

Physical modeling of feature behavior requires some care. In
particular, only some emergence events (bipolar emergence) ap-
pear to be due to flux tubes that emerge from below the surface of
the Sun (Harvey &Martin 1973; Harvey 1993; Chae et al. 2001).
Such events should give rise to two oppositely signed magnetic
features that grow together and separate in a divergent surface
flow (Hagenaar 2001; Hagenaar et al. 2003; Simon et al. 2001),
and the origin detection code in SWAMIS and in CURV was
originally intended to identify such events. However, proportion-
ally few magnetic features are observed to originate with this bal-
anced emergence mechanism. New small features can also form
by fragmentation of pre-existing large features into like-signed
fragments; this process is also called calving if the new feature is
small compared to the surviving feature. Furthermore, many fea-
tures simply appear, without any surrounding flux at all or inways
that appear to violate flux conservation. The nature of these appear-
ances, whether coalescence of existing weak flux or unbalanced
emergence with one large, weak-field pole and one small, strong-
field pole, will be considered in detail in Paper II of this series.

Results using our recommended classification scheme should
be presented together with a notation describing what criteria are
used to detect balanced changes in the flux of interacting features.
Event classification results can be quite different, for example, if
the changes in the flux of two interacting features are considered
‘‘approximately balanced’’ if theymerely have opposite sign, or if
they must agree within, say, 10%.

6. CONCLUSIONS

We have compared four magnetic feature tracking codes by ap-
plying them to the same preprocessed set of magnetic data. Fea-
ture tracking code output is sensitive to a variety of decisions that
are made during development, and this sensitivity is a reason why
it has historically been difficult to reproduce results obtained by
feature tracking: it is crucial to explain exactly what algorithm is
being used. In particular, codes that were designed for one regime
of study (e.g., very small intranetwork flux concentrations or very
large, strong features) should not be applied to different regimes of
detection without careful study, and all discrimination and asso-
ciation techniques need to be lain out exactly as performed.

The difficulty of reproducing apparently simple results in fea-
ture tracking appears to stem both from the complicated, noisy
nature of the magnetograph data and from the complexity of the
underlying structures. The solar magnetic field is not divided
into well separated, strongly magnetized features; rather, there
is a continuum of feature sizes due to the clustering behavior of
the field across scales, in keeping with the concept of magneto-
chemistry outlined by Schrijver et al. (1997). Bulk summary
characteristics such as the lifetime of individual features or the
size distribution of the features depend strongly both on the in-
strument being used to image themagnetic field and on threshold
and related decisions made during code development.

All of our codes agree reasonably well on important summary
characteristics in a particular circumscribed range of scales and
lifetimes, indicating that there is an underlying pattern to bemea-
sured; but the region of agreement (which we take to be the range
of valid measurement using the tracking codes) is much smaller
than might be surmised from cursory analysis of the output of
any one algorithm.We conclude that particular care must be used
when interpretingmagnetic tracking results, which are oftenmuch
weaker than might be surmised given the apparent clarity of solar
magnetic features in magnetogram sequences.

In particular, we find that the magnetic turnover time, perhaps
themost accessible summary result to come out ofmagnetic track-
ing studies, is also perhaps the weakest result to come out of mag-
netic tracking studies. Average feature lifetimes are only weakly
related tomagnetic turnover time in the best of circumstances, and
we have found that average lifetime measurements are strongly
dependent on the code being used to perform the measurement.

By comparing and contrasting the algorithms of our four sep-
arate codes, we have determined why they produce different
results for the flux distribution in quiet Sun, and evaluated under
what circumstances each technique performs best. Further, we
have made recommendations about how to improve feature de-
tection and reproducibility in feature tracking for future work. To
aid that work, all four of our codes are being made available to the
scientific community in source-code form via SolarSoft. Specific
physical problems such as flux emergence and cancellation, dif-
fusion of active region flux and plage formation, and feature life-
time, will be covered in more detail in future papers in this series.

Thanks to the SOHO/MDI team for kind use of their data, and
to the University of St. Andrews for hosting the workshop, which
made this comparison possible. This workwas funded byNASA’s
SOHO project, the SOHO /MDI effort, NASA’s SEC-GI program,
the Air Force Office of Scientific Research MURI program, and
the PPARC Advanced Fellowship program. SOHO is a project of
international collaboration between NASA and ESA.

APPENDIX

GLOSSARY

Feature tracking and magnetic observations are mature enough to have developed a collection of commonly used terms, which
unfortunately have drifted into slightly different usage in different locations. In an attempt to regularize terminology, we present a
glossary of commonly used terms, with their recommended definitions. Also, because some terms are strictly observational and others
imply a physical model, we have noted which are which.

A1. OBJECT DESCRIPTIONS

Bipole.—A pair of magnetic features of opposite sign and approximately equal flux content, that appear to be associated (as in bi-
polar emergence). When seen to emerge together, the poles of a bipole may be associated observationally.

Ephemeral region.—A resolved small bipole with particular properties as described by Hagenaar (2001).

SOLAR MAGNETIC TRACKING. I. 585No. 1, 2007



Feature.—A visually identifiable part of an image, such as a clump of magnetic flux or a blob in a magnetogram. The term
‘‘feature’’ is purely observational and is preferable to ‘‘flux concentration’’ or ‘‘ephemeral region’’ when describing individual visual
objects in an image. The specific definition of a feature is dependent on both the Sun itself and the characteristics of the observing
telescope.

Flux concentration.—A localized cluster of magnetic flux, with or without resolved substructure. A flux concentration may consist
of one or more magnetic features. While somewhat vague, the definition of a flux concentration is approximately independent of
observing telescope: a flux concentration may appear as a single feature when seen with one instrument, but as several features with
another.

Fragment.—A small piece of a larger magnetic structure, not a generic small bit of magnetic flux. Usage: ‘‘this magnetic flux con-
centration is composed of many fragments,’’ or ‘‘unresolved fragments make up this magnetic feature.’’ ‘‘Fragment’’ should not be
used interchangeably with ‘‘feature,’’ as it implies that the subject is part of a larger whole, while ‘‘feature’’ does not.

Monopole.—A lone magnetic pole (thought to be physically impossible).
Stenflo.—A tiny, strong concentration of order 1017 Mx of flux (after J. Stenflo). Usage: ‘‘The asymmetric formation of flux con-

centrations in the network may be due to convergence of stenflos, although Stenflo himself may object to this terminology’’.
Unipole.—Single magnetic feature with no obvious associated feature of the opposite sign. The photospheric boundary provides a

‘‘hiding place’’ for the opposing pole, so that unipoles are thought not to be monopoles. Contrast ‘‘bipole,’’ ‘‘monopole.’’

A2. EVENT DESCRIPTIONS

Appearance.—Used specifically to describe the origin of a single unipolar feature where there were none before. Appearances ap-
pear to violate conservation of magnetic flux, but probably result from flux hiding under the noise floor of an instrument, so the defi-
nition of ‘‘appearance’’ depends on the instrument being used.

Asymmetric emergence.—Emergence in which the two sides of the emerging magnetic loop of flux have quite different cross
sections, perhaps reducing the field strength of the larger leg of the loop below the detection threshold of an instrument. This can be a
physical description of one type of feature appearance, coalescence is another type. Note that ‘‘asymmetric emergence’’ and ‘‘un-
balanced emergence’’ are not synonyms.

Balanced emergence.—Emergence in which the two final opposing-sign features have approximately the same magnitude; this is
the type of emergence predicted by a simple model of magnetic flux tubes rising through the photosphere. Compare ‘‘emergence’’;
contrast ‘‘unbalanced emergence.’’

Balanced cancellation.—Cancellation in which the two initial opposing-sign features have approximately the same magnitude.
Compare ‘‘cancellation’’; contrast ‘‘unbalanced cancellation.’’ Balanced cancellation is the time reversal of balanced emergence.

Calving.—A form of fragmentation in which one of the daughter features contains much more flux than the other, by analogy to the
behavior of icebergs. Usage: ‘‘This movie shows small features calving off of the main flux concentration’’. Contrast ‘‘splitting’’;
compare ‘‘fragmentation’’.

Cancellation.—The demise of a magnetic feature that collides (and cancels) with an opposing-sign feature, in such a way that flux
is approximately conserved. Compare ‘‘balanced cancellation,’’ ‘‘unbalanced cancellation’’; contrast ‘‘disappearance.’’

Coalescence.—The collection of diffuse flux from below detection threshold to a small, denser feature that can be detected. This
may be an example of unresolved merging. This is a physical description of one type of feature appearance; asymmetric emergence is
another type. To avoid confusion, eschew ‘‘coalescence’’ when describing observational results; use ‘‘merging’’ or ‘‘appearance’’
instead.

Demise.—The end of a magnetic feature’s existence.
Disappearance.—The end of a single, unipolar magnetic feature that ‘‘fades away’’ to nothing in the absence of nearby features

(the time reversal of an ‘‘appearance’’).
Dispersal.—Deprecated. This has been used to describe the opposite of coalescence, the breakup of strong flux concentrations into

many fragments, and the diffusion of flux across the surface of the Sun. It is now too ambiguous to be used clearly in most cases.
Emergence.—The origination of two balanced, opposing magnetic features nearby one another in such a way that flux is ap-

proximately conserved. This observational definition follows the common physical definition of a loop of flux emerging from below
the surface. Compare ‘‘balanced emergence,’’ ‘‘unbalanced emergence;’’ contrast ‘‘appearance.’’ Emergence is the time reversal of
‘‘cancellation.’’

Fragmentation.—The breakup of a single magnetic feature into at least two like-sign features. Compare ‘‘splitting,’’ ‘‘calving.’’
Merging.—The joining of two magnetic features of similar sign into a single larger feature.
Splitting.—The breakup of a single magnetic feature into at least two like-sign features, with the implication of rough flux balance

between the two daughter features. Contrast ‘‘calving’’; compare ‘‘fragmentation.’’
Unbalanced emergence.—Emergence in which the two final opposing-sign features have different magnitudes due to interaction

with a nearby unipolar feature. Compare ‘‘emergence’’; contrast ‘‘fragmentation,’’ ‘‘balanced emergence.’’ Unbalanced emergence is
the time reversal of unbalanced cancellation.

Unbalanced cancellation.—Cancellation that is not complete because one of the canceling features contains more flux than the
other. Compare ‘‘cancellation’’; contrast ‘‘merging,’’ ‘‘balanced cancellation.’’
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