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RECONNECTIONLESS CME ERUPTION: PUTTING THE ALY–STURROCK CONJECTURE TO REST
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ABSTRACT

We demonstrate that magnetic reconnection is not necessary to initiate fast Coronal mass ejections (CMEs). The
Aly–Sturrock conjecture states that the magnetic energy of a given force-free boundary field is maximized when
the field is open. This is problematic for CME initiation because it leaves little or no magnetic energy to drive the
eruption, unless reconnection is present to allow some of the flux to escape without opening. Thus, it has been
thought that reconnection must be present to initiate CMEs. This theory has not been subject to rigorous numerical
testing because conventional magnetohydrodynamics (MHD) numerical models contain numerical diffusion, which
introduces uncontrolled numerical reconnection. We use a quasi-Lagrangian simulation technique to run the
first controlled experiments of CME initiation in the complete lack of reconnection. We find that a flux rope
confined by an arcade, when twisted beyond a critical amount, can escape to an open state, allowing some of
the surrounding arcade to shrink, and releasing magnetic energy from the global field. This mechanism includes
a true ideal MHD instability. We conclude that reconnection is not a necessary trigger for fast CME eruptions.
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1. INTRODUCTION

Coronal mass ejections (CMEs), are large expulsions of
magnetic field and plasma from the solar corona. The kinetic and
gravitational potential energies contained in a CME are around
1031–1032 erg, making these events some of the most energetic
in our solar system (Forbes 2000; Hundhausen et al. 1994; Low
1990, 2001). It is thought that CMEs derive their energy from
the magnetic field of the solar corona because this field is the
only possible source for such a large reserve of energy (e.g.,
Forbes 2000; Klimchuk 2001; Low 1996).

The flux rope model is one possible pre-eruptive CME
configuration. A flux rope is a length of magnetic field that has
been twisted along its axis and is often held in place in the corona
by an overlying arcade or ambient field. It is thought that cool
photospheric plasma can become trapped in the center of a flux
rope, creating a solar filament or prominence (van Ballegooijen
& Martens 1989; Ridgway et al. 1991; Priest et al. 1989).
The flux rope configuration easily explains the clear three-
part structure seen in many CMEs, specifically those associated
with prominence eruptions (Low 1994; Gibson & Low 1998).
Because these structures are present in the low corona where
magnetic field is strong and plasma density is low, they are
magnetic-field-dominated. Recently, movies from Hinode have
shown interesting dynamics that are not described by the flux
rope model, which imply that at least some prominences are
not low-β (Berger et al. 2008), but the flux rope model remains
useful. The lower coronal environment is frequently modeled
as being force free because flow speeds are low, and J × B
is the dominant force in the equation of motion. Gravity is
also frequently ignored because it is a factor of ∼5 weaker
than the magnetic forces. Low-β flux ropes are stable when
the outward magnetic pressure force is balanced by an inward-
directed tension force. In models, an exterior arcade field is
often added to increase the tension force and keep the flux rope
from simply expanding in length and width as twist is added.

The approximate energy per unit length along the axis, U, stored
in a Gold–Hoyle flux rope (Gold & Hoyle 1960) that is finite in
width is given by

U = 1

8π2

Φ2b2

ln
(
1 + b2R2

) , (1)

where Φ is the magnetic flux, R is the radius of the tube, and
b is the twist parameter such that Bφ

Bz
= br (Sturrock et al.

2001). Although this equation is for a straight flux rope, we
use it to approximate the energy per unit length of a curved
flux rope whose ends are anchored on a flat photosphere. As
twist accumulates, b increases, Φ is constant and R remains
approximately constant (as long as the flux rope is confined by
external field or pressure) so the total energy increases. When a
flux rope that is not magnetically confined accumulates twist, its
equilibrium state is expanded in length relative to the untwisted
state so the twist per unit length does not necessarily increase
with the total twist. Thus, flux ropes that are confined by an
overlying arcade accumulate more energy because their length
changes very little as b increases.

The energy stored in magnetic fields is given by the volume
integral of B2/8π , up to conversion factors. The minimum
energy of a magnetic system with a given photospheric boundary
occurs in the potential, or vacuum field, configuration. As the
field is stressed away from this configuration due to photospheric
movements, the energy is increased above the evolving potential
state by an amount commonly referred to as the magnetic “free
energy.” If the field reverts to the potential configuration, this
free energy is released and in the case of solar active regions, is
available to drive a CME. If the reconnection is localized and
helicity is conserved, the lowest accessible energy state may
not be potential, so the free energy is an upper boundary on the
amount of energy that can be released. There is a global cap
on the amount of energy that the magnetic field can provide.
The magnetic virial theorem asserts that the total pressure force
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(a) (b)

Figure 1. Behavior of flux rope expansion in 2.5D (a) and 3D (b).

(A color version of this figure is available in the online journal.)

cannot exceed the tension force in a stable plasma environment
(Priest 1982). The related Aly–Sturrock conjecture states that
the global magnetic energy of a force-free field is at a maximum
when the field is completely “open.” This refers to magnetic
flux that is anchored at the solar surface and extends radially
outward a significant distance so that near the Sun, the field
appears open (Aly 1984, 1991; Sturrock 1991). Many CME
observations show prominences lifting off of the surface of the
Sun, expanding to several solar radii, and leaving behind long
radial field lines. If this conjecture is correct, then the implication
is that CMEs which open large amounts of field must derive the
bulk of their kinetic energy from sources other than the magnetic
field because the field energy is actually greater in the post-CME
configuration. Order of magnitude analysis has shown, however,
that the magnetic field is the only source of energy that can
potentially drive a 1032 erg CME (Forbes 2000). This poses a
significant problem to ideal CME models. In an azimuthally
symmetric 2.5D case, all of the field lines originally above
a prominence-like feature would have to open to release the
filament (Figure 1(a)). Thus, in the 2.5D case, to have an eruption
that results in a net decrease of magnetic energy, reconnection
must be present. There have been studies in which a closed
2.5D field is shown to have magnetic energy exceeding the open
field energy when mass loading is present, but it has not been
demonstrated that these fields can erupt without reconnection
(Low 1996; Fong et al. 2002; Zhang & Low 2004). In three
dimensions, the flux rope is anchored in the photosphere, and
the surrounding field can move away in the direction parallel to
the flux rope axis (Figure 1(b)). Reconnection is not necessary
in the fully three-dimensional (3D) case, as not all of the field
must be open to have an eruption, only the flux rope opens, and
thus the eruption is not necessarily relevant to the hypothesis
of Aly and Sturrock because some of the field remains closed
(Low 1986).

A related but more relevant question which has been asked
is whether a configuration with some open force-free field can
contain less energy than a configuration with the same boundary
conditions that is fully closed (Low 1990). This question has
been addressed semianalytically by Wolfson & Low (1992) and
Wolfson (1993), who showed that a fully closed field can contain
magnetic free energy above the partially open field threshold, but
they did not demonstrate a release mechanism for this energy.
Likewise Choe & Cheng (2002) found a fully closed 3D field
that contains more energy than the open field limit, but that
configuration is not accessible from an initial potential state
with footpoint motions that conserve the boundary-normal field
distribution. A demonstration of the ideal evolution of a field
whereby free energy is first stored and then released, resulting
in a partially open state, would once and for all eliminate the

problem posed by the magnetic virial theorem and the Aly–
Sturrock conjecture in a fully 3D case.

Sturrock et al. (2001) described the possibility of driving
CMEs with metastable magnetic fields. They analytically char-
acterized one system in particular as a known metastable state:
the previously mentioned twisted flux rope under an overlying
arcade. This system is metastable because it is stable (due to the
confining arcade) against small perturbations, but the energy of
the erupted flux rope is lower than the contained flux rope. If
the rope is tightly wound, it can open by pushing up locally on
the arcade, decreasing the confining tension force, and escape
by herniating through the weakened field, leaving the deflated
arcade near the footpoints. The amount of twist needed is not
unreasonable for the solar surface. Analytically, for a flux rope
that is 10 times longer than its radius, the rope need only ex-
ceed 1.5 total turns about its axis to be in this metastable state
(Sturrock 1991).

Numerous simulations exist which model flux rope CME
initiation of the metastable configuration described above (e.g.,
Aulanier et al. 2005; Fan & Gibson 2004; Titov & Démoulin
1999; Török et al. 2004; Roussev et al. 2003). Most of these
simulations have found that it is possible to herniate or reconnect
to break through the arcade, but they do not exactly agree on how
much twist is needed, or how unstable the resulting configuration
is after the onset of writhe (helical geometry in the central field
line) in the flux rope. Typically, these codes agree that the critical
twist needed to erupt is around 1.5 turns, and that it is possible
to get an eruptive event by twisting the footpoints of a flux rope.

CME initiation with these flux ropes has been modeled both
with and without reconnection as the intended primary desta-
bilizing factor. Theories that do not involve reconnection are
referred to as ideal “loss of equilibrium” models (e.g., Roussev
et al. 2003). The initial structure generally undergoes an ideal
instability, such as the MHD kink instability, caused by a large
amount of twist. Another possibility, if mass loading is critical in
keeping the structure contained, is that mass displacement could
upset the force balance and start the CME (Klimchuk 2001;
Fong et al. 2002; Zhang & Low 2004). Other theories, such as
tether cutting (Moore & Roumeliotis 1992) or “breakout” (An-
tiochos et al. 1999), explicitly include reconnection to decrease
the strength of the overlying arcade. In models such as tether
cutting and breakout, there are generally two stages of reconnec-
tion. Slow—Sweet–Parker style (Parker 1963)—reconnection
occurs early in the evolution and destabilizes the system, allow-
ing it to expand. This is often followed by fast—Petschek style
(Petschek 1964)—reconnection that releases large amounts of
energy in a short time and is believed to be the primary driver
for fast, impulsive CMEs.

Essentially all existing numerical simulations of CME onset
use Eulerian methods, in which a 3D grid of values is used. With
magnetic fields (and indeed all vector fields and flows), sharp
gradients are not conserved because derivatives are represented
as finite differences. For magnetic fields, this means that the field
will reconnect if gradients approach the size of the grid whether
the modeler wishes it or not. Techniques such as adaptive mesh
refinement can reduce the rate of numerical reconnection, but
cannot remove it altogether. Hence it is not possible to separate
the effects of ideal MHD evolution and magnetic reconnection
with an Eulerian grid code. This can be problematic insofar as
reconnection destabilizes a metastable system. By switching to a
Lagrangian (field-aligned) formulation, we eliminate all recon-
nection, allowing study of ideal MHD instabilities (DeForest &
Kankelborg 2007).
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Figure 2. Geometry and nomenclature of the FLUX code. Finite-magnetic-flux
field lines are called fluxons, which are broken into linear fluxel segments joined
by vertices.

With our model, we are able to analyze simplified systems
where topology is locked in and reconnection is not present.
Note that we do not hypothesize that reconnection is not present
in the Sun, only that to have a controlled numerical experiment,
the effect of reconnection must be isolated, and we do this by
eliminating it. Our method is unique in this way, and may offer
insights that grid simulations cannot. In particular, we are able
to demonstrate the existence of a true MHD instability that
can release free energy into a CME, even with no triggering
reconnection.

2. NUMERICAL MODEL

2.1. Computational Model

The code used in this work is called FLUX (FieldLine
Universal relaXer; DeForest & Kankelborg 2007). This quasi-
Lagrangian code represents a 3D field as a collection of fluxons,
or field lines with finite magnetic flux. Each fluxon is broken
into piecewise linear segments called fluxels, which are joined
at vertex points (Figure 2). To reconnect, a fluxon must be
explicitly broken and connected to another fluxon. With no
reconnection, the code preserves magnetic topology; this is the
case used in the current work. FLUX is coordinate free, so
in order to compare the simulations with the Sun, we assume
that our system is originally the size of an active region, which
is a few tens of Mm across (1 spatial unit = 25 Mm). FLUX
is under development and the version we used for this work is
not a full MHD code. It does not include the effects of mass
or plasma; thus it does not model dynamics. We are neglecting
short-timescale changes of the system in favor of concentrating
on the large-scale evolution.

FLUX computes nonlinear force-free equilibrium solutions
from a prescribed initial topology and connectivity by balancing
the components of the Lorentz force, which are resolved as a
magnetic pressure and a magnetic tension force:

0 = −∇
(

B2

8π

)
+

(B · ∇) B

4π
(2)

The tension force is computed from the geometry of the other
fluxels on the same fluxon (e.g., the angle between successive
fluxels), and the pressure is computed based on the geometry
of the nearest surrounding neighboring fluxels. Each vertex is
moved in the direction of net calculated force until the ratio of
the net force to the sum of the magnitudes of the forces on each
vertex is below a threshold level. Once all vertices are below this
threshold, e.g., 0.1%, the field is deemed to be in equilibrium.

(A more detailed mathematical description is available in
DeForest & Kankelborg (2007)).

Initial conditions in the code consist of a planar line-tied
photosphere-like boundary with a set connectivity. The foot-
point of each fluxon can be moved independently to simulate
photospheric motions. After each footpoint movement, the field
is allowed to relax to equilibrium before the next movement oc-
curs. In this way, it is possible to create a quasi-static evolution
of equilibrium states.

Current conservation is enforced by the geometry of the
model; alpha (which varies between fluxons) is a quantity that
can be computed from the model but is not explicitly tracked.
The simulation does not consider the self-helicity of the flux tube
represented by each fluxon and only mutual linking/helicity
with adjacent fluxons is modeled; with sufficient fluxon density,
self-helicity becomes negligible. Current is thus represented as
geometrical twist between pairs of fluxons.

The simulation is bounded at the top by an open hemisphere.
Fluxons that intersect this surface are free to move around on
it. Closed loops that approach the surface are truncated and
become two separate fluxons that then move independently.
Open fluxons move to equalize magnetic pressure (there is
no curvature on the final fluxel), which has the effect that the
magnetic field at the upper boundary is normal to the surface.

2.2. Simulation Set Up

The simulated systems consist of a flux rope, an overlying
arcade, and an outer ring of open field lines. Figure 3(a) shows
this setup. The fluxons are tied to a planar lower boundary and
evolve with a prescribed surface motion. The central flux rope
is twisted incrementally in a solid-body-rotation pattern by four
degrees each step and allowed to relax to equilibrium. The flux-
rope footpoints are set at two spatial units apart, or 50 Mm.

One difficulty in examining these results has been with the
energy calculation. Our code calculates the energy of every
fluxel based on the cross-sectional area it occupies and its
length. In regions where the fluxons are close to each other,
this method works extremely well, but it has more trouble for
the outermost fluxels in a system. We call this the “last-fluxon”
problem and it is discussed by DeForest & Kankelborg (2007).
The volume that a last fluxel occupies is infinite, so it cannot be
treated as small, violating the approximation used by the code.
Once the system has herniated and expanded fully, the number
of last fluxels is much greater, exaggerating the difficulty in
determining the post-eruption energy. The open hemispherical
surface at 35 R� and an outer ring of fluxons were added to
alleviate this problem. As a consequence of the surface, the
field opens once it encounters the hemisphere and expands to
fill the volume.

The footpoints of the outer ring remain stationary throughout
the simulation. This outer ring is present to minimize the last
fluxon problem because with the ring, none of the arcade or flux
rope fluxels will be a last fluxel. The ring is positioned far from
the rope and the arcade, about 2 R� away, so it does not effect
the evolution. The outer boundary at a radius of 35 R� is much
farther than the physical regime of applicability of FLUX. The
transition to solar wind occurs at ∼4 R� (Parker 1960; Kohl
et al. 1997), so at most, our results have physical meaning up to
this height.

We performed several simulations with varying numbers of
fluxons in the flux rope and the arcade, each with the same basic
setup. The flux rope consists of 9, 16, 25, 36, or 49 fluxons
arranged in a square on the photosphere. The footprint of the
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Figure 3. (a)–(c) Initial simulation setup and evolution of a system with 75 fluxons where the arcade is 25 fluxons shown in red and the flux rope is 25 fluxons in shown
in a gradient from blue to green to show directionality. The central fluxon is in black to highlight the flux rope axis. The outer ring of 25 fluxons is shown in purple.
(a) The equilibrium system with no twist, (b) with one turn, which has not kinked, (c) with 1.43 turns which has herniated and is open at the upper boundary. (d) Shows
a different system with nine fluxons in the flux rope and three units of flux (27 fluxons) in the arcade at 2.1 turns, which demonstrates kinking without herniation. Note
that the systems with one unit of arcade flux exhibit a slight kink while confined as evidenced by a small distortion in the central fluxon, but the systems with higher
arcade flux exhibit much stronger kink before herniation.

flux rope is the same size in each case. For the rest of this paper,
a unit of magnetic flux refers to the amount of magnetic flux
associated with the flux rope, or the number of fluxons in the
flux rope. In these simulations, the flux rope and the ring consist
of one unit of flux, and the arcade contains one, two, or three
units.

3. SIMULATION RESULTS

In all cases, we find that the flux rope herniates through
the arcade after a certain amount of twist has been applied,
entraining a few arcade fluxons with it as it goes. Figure 3(a)–
(c) demonstrates a typical sequence of events for the case of a
25 fluxon flux rope and a one-unit magnetic flux arcade. First,
the flux rope twists about its central axis under the arcade.
After about 1.4 turns have been applied to the flux rope (for
one unit of arcade flux), the rope herniates. In this case, the
flux rope does not significantly kink—the central axis remains
mostly untwisted—but in the case of a stronger arcade, the flux
rope does kink before it herniates. The stronger the arcade, the
flatter the flux rope is, and the more twist is required to initiate

herniation. Figure 3(d) shows a three-unit arcade system after
it has undergone writhe; the black central fluxon is no longer
straight. The onset of kink does not trigger herniation through the
arcade. The flux rope continues to twist and writhe until it begins
to herniate. In every case, after the onset of herniation, the flux
rope expands rapidly while the arcade deflates. Figure 4 shows
a plot of the height of the flux rope versus the twist imparted
for various fluxon densities with one unit of arcade flux. The
expansion occurs extremely rapidly, within one equilibrium
step, once the flux rope breaks through the arcade.

We label this rapid expansion as an “eruption,” because the
size of the flux rope increases by a factor of 100 or more and
breaks through the open surface in a single equilibrium time
step, while releasing a nontrivial amount of energy. Thus, these
large expansions are deemed eruptions and the flux rope fluxons
are labeled as open.

The amount of twist needed to herniate through a given arcade
strength varies with the number of fluxons used to represent the
field (Figure 4); this may be indicative of grid effects that are
setting an unstable twist level or seeding the instability. Because
of the discrete nature of fluxons, the system is not always
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Figure 4. Flux rope remains well confined as it is twisted until it herniates
rapidly through the arcade. The data shown are for systems with one unit of flux
in the arcade.

symmetric, and this probably accounts for some uncertainty
in the critical twist. There is not always a consistent trend with
fluxon density, and so there may be other reasons behind this
behavior.

The energy of the final erupted state is less than the energy
of the confined flux rope (Figure 5). Note that the presence of
the open boundary does not skew these results. The magnetic
energy that escapes through the boundary would not be available
to drive the CME in any case because it is present beyond the
transition to the solar wind. In the latter stages of the expansion,
the twist per unit length in the flux rope is small, and hence
the free energy is low. It is the initial expansion that drives
the CME, not the later expansion. Compared to the physical
case, we overestimate the final magnetic energy of the system
because our boundary is much farther out than the transition. A
significant amount of energy is available to drive a CME, even
without reconnection.

This simulation allows us to put a strong upper and lower
bound on the amount of energy that is released with the eruption.
Of the free energy injected, 12.5% is lost after herniation.
The energy calculated in the ring field after herniation is an
overestimate, and the energy in the flux rope and the arcade is
an underestimate for the following reasons. The ring field was
added so that all of the last fluxels were in that ring. As stated
earlier, we do not trust the energy calculation for the ring field,
especially considering that before herniation less than 1% of
the system’s energy was in the ring field compared to ∼40%
after herniation. Also, on a spherical solar surface, the ring field
would be farther away than the disk limb if the flux rope were
at disk center, and consequently would not be highly sheared
away from radial after the eruption, so it would not store much
more energy than it had initially.

Because of the unreliability of the final energy in the ring
field, we also looked at the energy in only the flux rope and
the arcade. In this partial system, the final energy is less than
the initial potential energy in part because some of the energy is
carried through the open boundary and lost from the calculation,
and in part because this limited system does not account for any
background solar field that may be deformed by a CME.

Despite these effects, we are able to conclude that a significant
amount of energy is released and could be used to drive an
impulsive CME. The best way to resolve the energy would be

Figure 5. Typical energy plot for the simulations run. This one shows the energy
evolution of a 25 fluxon flux rope with a one-unit flux arcade. As the flux rope
is twisted under the arcade, the energy increases steadily. Once the system
herniates, the energy loss is substantial. Note that the energy in the flux rope
and arcade only (black line) drops to lower than the initial level. This is because
most of the energy in the system at that point is in the outer ring fluxons which
are highly stressed toward the horizontal.

to run a similar system as a full-Sun simulation in spherical
geometry so that there are no last fluxons, and include an
estimate of the energy outside the upper boundary with a
force-free field extrapolation. This future work may be able
to determine quantitatively how much magnetic energy is
available—a figure which is highly dependent on the geometry
of each event.

4. DISCUSSION

Our simulations show that reconnection is not necessary
to initiate a CME and that impulsive CMEs may be possible
without explosive reconnection. This theory is not new; it was
originally published by Sturrock et al. (2001), who described the
existence of metastable states, specifically a system similar to the
one that we have studied. Since then, other solar physicists have
studied this system computationally (Fan & Gibson 2004; Török
et al. 2004; Aulanier et al. 2005, etc.). The results from these
studies show that a highly twisted flux rope can herniate through
a confining magnetic arcade and reconnect into a plasmoid,
causing an eruption. However, this is the first study of this
system in the complete lack of reconnection. In general, our
results agree with those of other research groups.

The fact that many of these simulations, including ours, agree
that about 1.5 total turns are needed to herniate through an arcade
implies that reconnection is not greatly important to the overall
stability of the system. If it were, we would expect our ideal
simulation to support significantly more twist, and therefore
release more energy, than the dissipative simulations. The exact
value of the critical twist depends on the configuration of the
system: strength of the arcade, width of the flux rope, twist
profile within the flux rope, etc. But even with these variables,
we conclude that highly twisted flux ropes cannot easily be
confined by an external field, even when the reconnection rate
is extremely small.

Current research on the twist available photospheric fields
indicates that there may be an excess of one full turn available
in many active regions (Leka et al. 2005). This implies that
many pre-eruptive active regions may be on the brink of an ideal
instability when they flare or erupt, regardless of the eventual
trigger mechanism.
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Our results together with the results of Wolfson & Low
(1992), Wolfson (1993), and Choe & Cheng (2002) can finally
put to rest the concerns that the Aly–Sturrock conjecture have
created over the initiation of CMEs. Wolfson & Low (1992)
showed that a closed force-free field can have more energy
than a partially open field with the same lower boundary field
distribution and Choe & Cheng (2002) proved that there are
force-free fields that have more energy in the closed state than
the open one. In the present work, we have not only confirmed
that it is possible for a closed force-free system to store more
energy than a partially opened erupted state; we have also, for the
first time, demonstrated a mechanism by which an eruption may
liberate that energy without the need for magnetic reconnection
or other nonmagnetic confinement of the initial plasma. At
the beginning of the century there was “still no model which
demonstrates that a partly open magnetic field can be achieved
solely by a loss of ideal MHD equilibrium or stability” (Forbes
2000). Happily, this statement is no longer true.

This work was funded by NASA’s LWS-TR&T pro-
gram. FLUX is open source software available from
http://flux.boulder.swri.edu. Thanks to the PDL development
team http://pdl.perl.org. We also owe thanks to Spiro Antio-
chos, Bernhard Kliem, and Zoran Mikic for valuable discussions
of the fluxon technique, and to Hugh Hudson for constructive
comments on the paper.

REFERENCES

Aly, J. J. 1984, ApJ, 283, 349
Aly, J. J. 1991, ApJ, 375, L61
Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 10, 485
Aulanier, G., Démoulin, P., & Grappin, R. 2005, A&A, 430, 1067
Berger, T. E., et al. 2008, ApJ, 676, L89

Choe, G. S., & Cheng, C. Z. 2002, ApJ, 574, L179
DeForest, C. E., & Kankelborg, C. C. 2007, Journal of Atmospheric and

Terrestrial Physics, 69, 116
Fan, Y., & Gibson, S. E. 2004, ApJ, 609, 1123
Fong, B., Low, B. C., & Fan, Y. 2002, ApJ, 571, 987
Forbes, T. G. 2000, J. Geophys. Res., 105, 23153
Gibson, S. E., & Low, B. C. 1998, ApJ, 493, 460
Gold, T., & Hoyle, F. 1960, MNRAS, 120, 89
Hundhausen, A. J., Stanger, A. L., & Serbicki, S. A. 1994, in Solar Dynamic

Phenomena and Solar Wind Consequences, Vol. 373, ed. J. J. Hunt (Noord-
wijk: ESA), 409

Klimchuk, J. A. 2001, AGU Geophysical Monograph, 125, 2001
Kohl, J. L., et al. 1997, Sol. Phys., 175, 613
Leka, K. D., Fan, Y., & Barnes, G. 2005, ApJ, 626, 1091
Low, B. C. 1986, ApJ, 307, 205
Low, B. C. 1990, ARA&A, 28, 491
Low, B. C. 1994, Phys. Plasmas, 1, 1684
Low, B. C. 1996, Sol. Phys., 167, 217
Low, B. C. 2001, J. Geophys. Res., 106, 25141
Moore, R. L., & Roumeliotis, G. 1992, in IAU Colloq. 133, Triggering of Erup-

tive Flares—Destabilization of the Preflare Magnetic Field Configuration,
Eruptive Solar Flares, ed. Z. Svestka, B. V. Jackson, & M. E. Machado
(Berlin: Springer), 69

Parker, E. N. 1960, ApJ, 132, 175
Parker, E. N. 1963, ApJS, 8, 177
Petschek, H. E. 1964, in The Physics of Solar Flares, Magnetic Field Annihila-

tion, ed. W. N. Hess (Washington, DC: NASA), 425
Priest, E. R. 1982, Solar Magnetohydrodynamics (Dordrecht: D. Reidel)
Priest, E. R., Hood, A. W., & Anzer, U. 1989, ApJ, 344, 1010
Ridgway, C., Priest, E. R., & Amari, T. 1991, ApJ, 367, 321
Roussev, I. I., Forbes, T. G., Gombosi, T. I., Sokolov, I. V., DeZeeuw, D. L., &

Birn, J. 2003, ApJ, 588, L45
Sturrock, P. A. 1991, ApJ, 380, 655
Sturrock, P. A., Weber, M., Wheatland, M. S., & Wolfson, R. 2001, ApJ, 548,

492
Titov, V. S., & Démoulin, P. 1999, A&A, 351, 707
Török, T., Kliem, B., & Titov, V. S. 2004, A&A, 413, L27
van Ballegooijen, A. A., & Martens, P. C. H. 1989, ApJ, 343, 971
Wolfson, R. 1993, ApJ, 419, 382
Wolfson, R., & Low, B. C. 1992, ApJ, 391, 353
Zhang, M., & Low, B. C. 2004, ApJ, 600, 1043

http://flux.boulder.swri.edu
http://pdl.perl.org
http://dx.doi.org/10.1086/162313
http://adsabs.harvard.edu/cgi-bin/bib_query?1984ApJ...283..349A
http://adsabs.harvard.edu/cgi-bin/bib_query?1984ApJ...283..349A
http://dx.doi.org/10.1086/186088
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...375L..61A
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...375L..61A
http://dx.doi.org/10.1086/306563
http://dx.doi.org/10.1051/0004-6361:20041519
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...430.1067A
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...430.1067A
http://dx.doi.org/10.1086/587171
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...676L..89B
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...676L..89B
http://dx.doi.org/10.1086/342478
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...574L.179C
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...574L.179C
http://dx.doi.org/10.1016/j.jastp.2006.06.011
http://adsabs.harvard.edu/cgi-bin/bib_query?2007JATP...69..116D
http://adsabs.harvard.edu/cgi-bin/bib_query?2007JATP...69..116D
http://dx.doi.org/10.1086/421238
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...609.1123F
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...609.1123F
http://dx.doi.org/10.1086/340070
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...571..987F
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...571..987F
http://dx.doi.org/10.1029/2000JA000005
http://adsabs.harvard.edu/cgi-bin/bib_query?2000JGR...10523153F
http://adsabs.harvard.edu/cgi-bin/bib_query?2000JGR...10523153F
http://dx.doi.org/10.1086/305107
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...493..460G
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...493..460G
http://adsabs.harvard.edu/cgi-bin/bib_query?1960MNRAS.120...89G
http://adsabs.harvard.edu/cgi-bin/bib_query?1960MNRAS.120...89G
http://dx.doi.org/10.1023/A:1004903206467
http://adsabs.harvard.edu/cgi-bin/bib_query?1997SoPh..175..613K
http://adsabs.harvard.edu/cgi-bin/bib_query?1997SoPh..175..613K
http://dx.doi.org/10.1086/430203
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...626.1091L
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...626.1091L
http://dx.doi.org/10.1086/164407
http://adsabs.harvard.edu/cgi-bin/bib_query?1986ApJ...307..205L
http://adsabs.harvard.edu/cgi-bin/bib_query?1986ApJ...307..205L
http://dx.doi.org/10.1146/annurev.aa.28.090190.002423
http://adsabs.harvard.edu/cgi-bin/bib_query?1990ARA&A..28..491L
http://adsabs.harvard.edu/cgi-bin/bib_query?1990ARA&A..28..491L
http://dx.doi.org/10.1063/1.870671
http://adsabs.harvard.edu/cgi-bin/bib_query?1994PhPl....1.1684L
http://adsabs.harvard.edu/cgi-bin/bib_query?1994PhPl....1.1684L
http://dx.doi.org/10.1007/BF00146338
http://adsabs.harvard.edu/cgi-bin/bib_query?1996SoPh..167..217L
http://adsabs.harvard.edu/cgi-bin/bib_query?1996SoPh..167..217L
http://dx.doi.org/10.1029/2000JA004015
http://adsabs.harvard.edu/cgi-bin/bib_query?2001JGR...10625141L
http://adsabs.harvard.edu/cgi-bin/bib_query?2001JGR...10625141L
http://adsabs.harvard.edu/cgi-bin/bib_query?1992IAUCo.133...69M
http://dx.doi.org/10.1086/146910
http://dx.doi.org/10.1086/190087
http://adsabs.harvard.edu/cgi-bin/bib_query?1963ApJS....8..177P
http://adsabs.harvard.edu/cgi-bin/bib_query?1963ApJS....8..177P
http://dx.doi.org/10.1086/167868
http://adsabs.harvard.edu/cgi-bin/bib_query?1989ApJ...344.1010P
http://adsabs.harvard.edu/cgi-bin/bib_query?1989ApJ...344.1010P
http://dx.doi.org/10.1086/169631
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...367..321R
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...367..321R
http://dx.doi.org/10.1086/375442
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...588L..45R
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...588L..45R
http://dx.doi.org/10.1086/170620
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...380..655S
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...380..655S
http://dx.doi.org/10.1086/318671
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...548..492S
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...548..492S
http://dx.doi.org/10.1051/0004-6361:20031691
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...413L..27T
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...413L..27T
http://dx.doi.org/10.1086/167766
http://adsabs.harvard.edu/cgi-bin/bib_query?1989ApJ...343..971V
http://adsabs.harvard.edu/cgi-bin/bib_query?1989ApJ...343..971V
http://dx.doi.org/10.1086/173491
http://adsabs.harvard.edu/cgi-bin/bib_query?1993ApJ...419..382W
http://adsabs.harvard.edu/cgi-bin/bib_query?1993ApJ...419..382W
http://dx.doi.org/10.1086/171350
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJ...391..353W
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJ...391..353W
http://dx.doi.org/10.1086/379891
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...600.1043Z
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...600.1043Z

	1. INTRODUCTION
	2. NUMERICAL MODEL
	2.1. Computational Model
	2.2. Simulation Set Up

	3. SIMULATION RESULTS
	4. DISCUSSION
	REFERENCES

