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Abstract. Digital image data are now commonly used throughout the field of solar physics. Many
steps of image data analysis, including image co-alignment, perspective reprojection of the solar
surface, and compensation for solar rotation, require re-sampling original telescope image data under
a distorting coordinate transformation. The most common image re-sampling methods introduce sig-
nificant, unnecessary flaws into the data. More correct techniques have been known in the computer
graphics community for some time but remain little known within the solar community and hence
deserve further presentation. Furthermore, image distortion under specialized coordinate transform-
ations is a powerful analysis technique with applications well beyond image resizing and perspective
compensation. Here I give a brief overview of the mathematics of data re-sampling under arbitrary
distortions, present a simple algorithm for optimized re-sampling, give some examples of distortion
as an analysis tool, and introduce scientific image distortion software that is freely available over the
Internet.

“First get your facts straight. Then you can distort them as you please.” – Mark Twain

1. Introduction

Coordinate transformations and data re-sampling are central to modern solar data
analysis. Linear coordinate transformations are used to co-align simultaneous di-
gital images taken with different telescopes; the family of perspective map pro-
jection transformations are used to generate maps of the solar surface layers, as
in running synoptic maps (Hoeksema et al., 2000); to remove solar rotation or
other perspective effects from images of the solar surface; or to highlight particular
aspects of the data, such as super-radial expansion of a coronal hole (DeForest
et al., 1997).

While the theory and techniques of data re-sampling are well-known parts of
the computer science curriculum (Heckbert, 1989; Foley et al., 1996), there is not
a strong awareness in the solar data analysis community of either the advantages or
pitfalls of image distortion and data re-sampling. As a result, image data are often
analyzed less well than they could be in an appropriate coordinate system; and,
when existing re-sampling tools are used (as for solar rotation compensation), un-
needed spatial artifacts and photometric errors are introduced into the data. These
types of systematic errors, while avoidable, are common enough in the current
literature that it is not worthwhile to single out particular examples.
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In the computer graphics field, the subject of coordinate transformation re-
sampling is called ‘texture mapping’ (Heckbert, 1989), and the emphasis of current
work is on improving and speeding implementation of the specific class of per-
spective transformations used to render a 3-D scene. Very clear overviews of the
mathematics and theory of re-sampling, texture mapping, and spatial filtering may
be found in Heckbert (1989), Turkowski (1990), and Turkowski (1993).

Software to perform specific coordinate transformations on solar data is widely
used. The SolarSoft distribution tree (Freeland and Handy, 1998) contains several
popular re-sampling tools for specific coordinate transformations. Those modules
include many piecemeal subroutines, the ZTOOLS (DeForest, 1998) and PLOT_MAP
(Zarro, 1998) utility packages, and high-level graphical codes such as IMAGE_TOOL
(Wang, 1994). Other specialized tools exist in the SOHO/MDI (Scherrer et al.,
1995) and GONG (Harvey et al., 1996) data analysis pipelines, for example to
apply particular map projections to solar oscillation data (Bogart et al., 1995).

General-purpose image re-sampling under nonlinear coordinate transformations
is less commonly used but is supported by several available software packages. For
example, NRAO’s AIPS (Greisen, 2003) is intended for analysis of radio astro-
nomy data, but includes image re-sampling code; ISIS is a remote-sensing car-
tographic transformation package distributed and maintained by the United States
Geological Survey (Torson and Becker, 1997); and Rutherford Laboratory’s
STARLINK software library (Berry, 2001) includes generic coordinate transform-
ation code written in C (under the module name AST).

Most existing re-sampling software uses direct interpolation or sampling of an
input data array to produce distorted output data. But the mere fact of popularity
does not indicate that interpolation is the best, or even an especially good, way
to re-sample images. Quite the contrary, Section 2 of this article shows why dir-
ect interpolation is not a good approach. Further, Section 3 describes a sampling
algorithm that overcomes the limitations of local interpolation without excess-
ively inefficient use of computing resources. Section 4 introduces PDL:Transform,
a software toolkit that implements optimized re-sampling and provides a natural in-
terface for manipulating generic coordinate transformations; and Section 5 demon-
strates two applications of specialized image distortion to visualize particular as-
pects of solar image data.

2. The Mathematics of Image Re-sampling

A solar image or other dataset is a collection of pixel values that are defined on a
regular grid. It is a representation of a more general construct: a mapping D from N

independent variables (such as focal plane spatial coordinates, wavelength, or time)
to M separate components (such as brightness in independent wavelength pass-
bands, different physical parameters, or spatial components of a vector parameter):

DC1 : IRN
C1

→ IRM, (1)
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where C1 is the original coordinate system of the data and IRN is the space of
N-vectors with real-valued components.

One has a coordinate transformation C that converts vectors in the input co-
ordinate system C1 to an output coordinate system C2:

C : IRN
C1

→ IRN
C2

. (2)

The idea is to create another dataset, DC2, such that

DC2 (C (xi)) = DC1(xi), (3)

where i is a dimensional index and xi is an input-plane coordinate. Letting Xi be
the output-plane coordinate C(xi) one may write:

DC2(Xi) = DC1

(
C−1 (Xi)

)
. (4)

The mappings DC1 and DC2 are the images that are represented digitally with arrays
of pixel values. Equation (4) is useful because it describes the output data values in
closed form, given the input data values and coordinate transform.

In the remainder of this article I will implicitly set N = 2 and refer to ‘images’
and image re-sampling; but the techniques are applicable in the general higher-
dimensional case.

2.1. SAMPLING, INTERPOLATION, AND ALIASING

In practice, digital images aren’t infinitely detailed mappings from IRN → IRM .
The data exist only at locations with integer pixel indices:

DC1,ZZ : ZZN
C1

→ IRM, (5)

where DC1,ZZ is a digital data array such as the data portion of a FITS file, and ZZ

represents the integers. Producing the re-sampled image DC2,ZZ involves looping
over all the pixel locations Xi ∈ ZZN in the output image, calculating the associ-
ated xi = C−1 (Xi), and determining the appropriate pixel value from DC1,ZZ. It is
this last step of finding the output pixel value that needs improvement in common
usage.

Figure 1 shows an example of a coordinate transform in image space: the con-
version of a SOHO/EIT image (Delaboudinière et al., 1995) to a plate caree (‘lon-
gitude/latitude’) map of the Sun. In this case, the coordinate transformation C−1 is
the true-perspective projection mapping from longitude and latitude to focal plane
coordinates. The mapping is fully determined by a priori knowledge of the SOHO
orbit and the assumption that the Sun is spherical1 . The output plane is a plate caree
1For very accurate positioning of surface features, additional information is also needed about the
optics in the telescope: treating a compound telescope as a pinhole camera yields inaccuracies due
to the additional tan (θ) distortions imposed by magnification in the optics. Other types of optical
distortion enter at higher order.
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Figure 1. Mapping between an EIT solar image and the derived solar map. A perspective transform-
ation maps locations on the EIT image to associated locations on the solar map (A′). Following
common practice, each output pixel value of this image was interpolated directly from the corres-
ponding input plane location. While the result looks convincing, it contains systematic errors due to
the sampling.



RE-SAMPLING OF SOLAR IMAGES 7

(longitude/latitude) map of the solar surface; the input plane is the focal plane of a
solar telescope. The input plane coordinates are marked in ‘arc sec’, but are more
properly described as ‘tangent arc sec’, as flat focal plane coordinates correspond to
the tangent of incident angle. The values of the image at the right-hand side were
calculated by transforming each pixel coordinate (such as A′) via C−1 back into
input image plane locations, and interpolating from the nearby input pixel values
in the left-hand image (such as at A).

Interpolation is only half of the story. Figure 2 shows visually the relation-
ship between geometry and re-sampling for a coordinate transformation CP that
is described by a high-order bivariate polynomial in xi . Figures 2(A) and 2(B)
show the relationship between the input pixels (grid) and the output pixels (marked
with ‘×’ at each pixel center), in both the input plane and the output plane. The
transformation acts on a 21×21 pixel image that is shown in the input (xi) plane
in Figure 2(C). Figure 2(D) contains a transformed image, produced by bi-linearly
interpolating the values from integer xi locations at the ‘×’ loci in Figure 2(A).

At the left side of each panel of Figure 2, the image is being magnified, and
each input plane pixel is sampled by many output plane pixels. This is visible in
Figure 2(A) as a dense cloud of sample loci; in Figure 2(B) as large pixels in the
distorted input grid; and in Figure 2(D) as the large, blurred image of the vertical
bar at the left of Figure 2(C).

At the right side of each panel of Figure 2, the image is being reduced2 , and
only a few input pixels are sampled. This is visible in Figure 2(A) as a scarcity of
sample loci; in Figure 2(B) as a region where the distorted grid squares are smaller
than output pixels; and in Figure 2(D) as a noisy, aliased region at the right side of
the re-sampled image.

The reduced area of the image in Figure 2(D) is noisy and incoherent because
of the large spaces between the pixel samples shown in Figure 2(A). The spaces
between individual samples are larger than the input pixel spacing, so that the
image is only sporadically sampled. The white pixel in the center of the upper
right-hand quadrant is not sampled at all, much of the lower and middle horizontal
bars are missing, and the vertical bar at the right side of the image is reduced to 2
bright pixels (out of its ideal length of 9 pixels in the re-sampled image).

The lowest portion of the image shows that the aliasing problem holds wherever
the image is reduced in any direction, not only where the reduction is uniform.
Here, the input pixels are magnified in one diagonal direction and reduced in the
perpendicular direction, so that only four output pixels are significantly influenced
by the bottom edge of the input image. (They are at X coordinates (11,0), (12,1),
(13,2), and (16,6); and approximate x coordinates (5.3,0.5), (6.2,-0.3), (7.1,-0.6),
and (8.9,0.8), respectively.)

This type of aliasing exists whenever local sampling (including interpolation)
is used for image reduction: the input image is under-sampled, aliasing high spa-
2In graphics literature one often finds ‘decimated’ rather than ‘reduced’.
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Figure 2. Map of a sample polynomial coordinate transform, showing the effects of local image
magnification, stretching, and reduction with simple sampling. (A) The input plane, showing the
irregular grid of locations (‘×’) from which output values are interpolated in the xi plane. (B) The
output plane, showing the regular spacing of output pixel centers (‘×’) and distorted input grid in
the Xi plane. (C) A sample image in the original input plane. (D) Bi-linearly interpolated re-sampled
data, showing extreme aliasing and loss of photometry near the it bottom and right-side of the figure.

tial frequencies from above the new Nyquist frequency down into the represented
spatial frequency range for the new image. In typical cases, photometric noise and
errors in the shape and size of small features are introduced into the output image.
In extreme cases, entire features may be missed or exaggerated more than tenfold
in strength.
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2.2. THE FOOTPRINT OF A PIXEL, AND LOCAL LINEARIZATION

There are several strategies for overcoming the under-sampling problem. Unfor-
tunately the two most obvious and widely-used strategies to mitigate aliasing are
neither particularly accurate nor particularly efficient.

The most obvious technique is to oversample the output plane by a factor m,
and then apply m × m pixel summing to get it down to the desired dimension. The
problem is that oversampling by a linear factor of L in N dimensions increases the
computing load by O(LN), and is easily overwhelmed by transformations that are
even mildly pathological: aliasing will occur unless the output oversampling factor
exceeds the highest reduction ratio anywhere in the image plane. The technique
is marginally feasible for image data (N = 2), but horrifically bad in higher di-
mensions. Removing the aliasing from all points of Figure 2 would require 5 × 5
oversampling, at a factor-of-25 computational cost. In three dimensions, similar
oversampling would cost more than a factor of 100 in computing load.

Another common approach is to reduce the high spatial frequencies in the input
plane by uniform smoothing, which reduces aliasing at low CPU cost but shifts
the heavy O(LN) burden to unnecessary loss of resolution in the data. Smoothing
the input plane of Figure 2 with a boxcar 5 × 5 kernel would remove the spatial
aliasing but would spread the x1 = 0 white vertical bar to the entire left half of the
Xi image.

What is needed is a spatially variable filter that is keyed to the characteris-
tics of the transformation, providing spatial averaging where necessary and direct
sampling where appropriate (Turkowski, 1990). The function C−1 itself contains
the required information to build such a filter. In particular, each output pixel has a
‘footprint’ in the input plane, and the shape of that footprint should determine the
mix of averaging and interpolation that is used to calculate the value of the output
pixel.

In general, finding the transformed shape of a pixel under a nonlinear transform-
ation is computationally difficult and analytically intractable. Fortunately, linear
transformations are quite tractable and essentially all useful transformations can be
locally linearized. Taylor expanding around the point x0 gives:

xi � C−1
L,X0

(Xi) = x0,i + J −1
0,ij (Xj − X0,i) + · · · , (6)

where j is an implicit summation index and the matrix J −1
0,ij is the Jacobian deriv-

ative matrix of the inverse transformation at X0:

J −1
0,ij =

[
dxi

dXj

]
X=X0

. (7)

Linearizing C about each pixel center brings singular value decomposition to
bear on the problem. Every square matrix Jij can be resolved into a rotation matrix
Akj that rotates column vectors into Jij ’s singular value basis, a diagonal scaling
matrix Slk of singular values; and a second rotation matrix Bil that rotates the
singular value basis into the output space. One writes:
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Figure 3. (A) Pixel footprints for the transformation shown in Figure 2. The ellipses are in-
verse-transformed circles centered on each output-plane pixel. (B) The output plane, with the image
re-sampled by averaging over the input-plane footprint of each pixel. Photometry and spatial structure
are much better preserved than in Figure 2(D).

J −1
ij = BilSlkAkj . (8)

where repeated indices are again meant to be summed over.
Applying J −1

0,ij to each vector on a unit circle centered on the origin yields an
ellipse3 . The major and minor axes of the ellipse are the singular values of J −1,
expressed as the diagonal elements of Slk. The second rotation matrix Bil determ-
ines the orientation of the ellipse. This ellipse of transformation of J −1

0 is useful
because, when translated by the additive terms in Equation (6), it approximates the
locus in input space that is mapped to the output pixel X0 by C; and it can be used
as the basis of more exact approximations (such as skewed versions of original
square pixels).

Figure 3 shows a variation on Figures 2(A) and 2(D) showing the ellipse of
transformation of each output pixel’s local linearization of C−1. The ellipses were
produced from circles with radius 0.7, close to the diagonal radius of each pixel.
Re-sampling the image by averaging over each footprint preserves the average
surface-brightness photometry and morphology even on the right-hand side of
the panel, where simple interpolation fails. Figure 3(B) is directly comparable to
Figure 2(D), showing vast improvement compared to sparse interpolation.)

The simplest way to produce output pixel values using the linearized footprints
is to average together all of the input data points whose pixel centers lie within the
elliptical footprint of each output pixel. However, this naive scheme fails where
J −1 has small singular values, because the footprint may be small enough not to
intersect any pixel centers at all. This happens, for example, at the left side of
3In higher dimensions, an ellipsoid.
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Figure 3(A). Hence, the footprints used for averaging pixel center values must be
constructed not from J −1, but from a padded version J −1

P whose A and B matrices
are the same as those of J −1 but whose S matrix values are padded to a minimum
value of at least unity.

Averaging over each footprint applies a spatial low-pass filter to each neigh-
borhood in the image, so that the overall image is subjected to a spatially variable
low-pass filter. The theory of spatially variable filters for re-sampling is covered
by Turkowski (1990). The ideal re-sampling filter is a local convolution of anti-
aliasing filters in the input and output planes; padding the ellipses of transformation
approximates the convolution operation.

In practice, one uses an analytic filter function to weight the pixel values in
each footprint. An isotropic Gaussian filter whose tails extend beyond the ellipse
boundaries is ideal for critically sampled data with information up to the spatial
Nyquist frequency of the image and an isotropic frequency spectrum. Broader fil-
ter functions blur the output image; excessively narrow ones allow aliasing. The
optimum balance occurs with a full-width at half maximum of about

√
2, the

maximum diameter of a square pixel.
In cases where the image frequency spectrum follows the sampling frequency

(for an n-dimensional square grid, the sampling frequency varies by factor of√
n between grid-aligned and grid-diagonal directions), an anisotropic filter better

reproduces the original data. One uses a filter that is the product of individual one-
dimensional filter functions along each dimension – a Hanning window (sin2 roll
off) in each dimension is a robust choice that preserves pixel locality while not
impacting the image frequency spectrum too much.

3. Singular-Value Padding: a Better Re-sampling Algorithm

Here is an algorithmic recipe for carrying out optimized re-sampling of a single
pixel under an arbitrary coordinate transform in n dimensions, using the padded
ellipse of transformation to approximate the input sampling area for each out-
put pixel. Looping, vectorizing, or parallelizing are language-dependent and not
presented here.

The algorithm requires an input array $A[NA,0,...,NA,n−1], an input X-space
vector $ox, and a subroutine Ci() that accepts a vector in X space and returns the
associated inverse-mapped vector in x space. In the typical case, n = 2 and the data
are images; but the technique works for higher dimensions as well. Ci is assumed
to work in index (pixel) coordinates in the input and output arrays. In practice, Ci is
typically the composition of a main transform in physical space and two interface
transforms that convert between physical coordinates and array index coordinates.



12 C. E. DeFOREST

3.1. FIND THE JACOBIAN OF C−1

Allocate the inverse Jacobian matrix: an n × n array $Ji[n,n]. Looping over $i,
set each column of $Ji to the symmetric discrete derivative with respect to Xi of
C−1(X):

for ($i=0; $i < $n; $i++) {
$delta = zeroes( $n );
$delta( $i ) += 0.5;
$Ji( $i, : ) .= Ci( $ox - $delta ) - Ci( $ox + $delta );

}

3.2. MANIPULATE THE JACOBIAN’S SINGULAR VALUES

Singular-value decompose $Ji into its components $Ra, $S, and $Rb. (see, e.g.,
Press et al., 1986 for singular value decomposition algorithms).

Pad the singular values of J −1 to at least unity. Using the rotation matrices and
the padded singular values, re-constitute the modified Jacobian back into $Ji, and
also assemble its inverse $J:

($Rb, $S, $Ra) = svd($Ji);
$S->diagonal .= maximum( $S->diagonal, 1 );
$Ji = $Rb x $S x $Ra; ## ’x’ is matrix multiplication here.
$Si = $S;
$Si->diagonal .= 1.0 / $Si->diagonal;
$J = transpose($Rb x $Si x $Ra);

3.3. CALCULATE THE FILTER-WEIGHTED SUM

Find the maximum singular value of $Ji: $Smax = maximum($S). Find the input
location $ix = Ci( $ox ).

Loop over input pixels within a square 4∗$Smax on a side, approximately centered
on $ix. At each integer pixel location $px, calculate the offset vector $of = $px -
$ix. The weighting value for that pixel is then filt( $J x $of ). Accumulate and
sum weighted pixel values over the whole square.

The filter function filt() accepts a vector and returns a weighting value. Two
obvious choices of filter function are: (A) a circularly symmetric Gaussian, which
is useful for images with isotropic frequency spectra despite the anisotropy of the
square grid:

filtg(�X) = exp

(
−

∑
i

2b�X2
i

)
, (9)
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where b is a blurring parameter whose normal value would be 1; and (B) an inde-
pendent Hanning function in each dimension, which approximately preserves the
shape of the original pixels:

filth(�X) =
∏

i

[
(cos (min(|�Xi| , 1)π) + 1)

2

]
. (10)

The filter function should be normalized to a total integral of unity over all of
Xi space.

It is likely (as in the transformation in Figures 2 and 3) that some coordinates
will be mapped outside the domain of the input data array, so some care is required
in handling out-of-bounds samples. For example, some transforms that involve
spherical coordinates require periodic boundary conditions on the longitude axis
and truncation on the latitude axis.

If you want to conserve flux, finish by multiplying the final sum by the determ-
inant of the unpadded inverse Jacobian, present in step 2.

3.4. OPTIMIZATIONS

Several optimizations to the basic algorithm are immediately apparent. Here are a
few:

Filter shapes: the spatial filtering is accomplished by grabbing a large, square
chunk of the input array and multiplying by a weighting function. When the ellipse
of transformation is particularly eccentric, many pixels (in the region where the
filter function has a negligible value) are referenced unnecessarily. More care-
ful manipulation of the sample shape significantly speeds processing when the
transformation has high levels of geometric distortion.

Pre-scaling: in cases where a large part of the image is reduced, uniformly
reducing the original image by an integer factor can yield significant speed gain,
because N × N pixel binning is much faster than the weighted-average scheme
described here.

Vectorization: in interpreted, vectorizing languages such as PDL or IDL, it is
best to implement each step for all pixels in parallel, to minimize use of the in-
terpreter; but this is not the ideal way to use a computer with high-speed CPU
cache and slower main RAM (which is the norm for current desktop workstations).
Low-level compiled implementations that perform all of the steps in order for each
pixel are likely to run significantly faster than comparable implementations in step-
wise (vectorized) order, because the pixel-wise order preserves the fast CPU cache
whereas the stepwise order generally requires access to slower RAM.

3.5. PHOTOMETRIC COMPARISON

Here is a comparison of optimized and interpolated re-sampling for a typical solar
case, differential rotation of a solar image. After linear transformation to co-align
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Figure 4. The EIT image of Figure 1, differentially rotated forward 28 days, to illustrate the differ-
ence between interpolated and optimized re-sampling. (A) The rotated EIT image, with optimized
re-sampling. The long/lat. grid has been warped as well, to illustrate the amount of distortion. (B) Pro-
portional error between optimized and linear re-sampling. About 5% of pixels show errors of 5% or
more. Errors are most pronounced near small structures and regions that are sheared or reduced.
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images, differential rotation compensation is perhaps the most common applic-
ation of solar data re-sampling. De-rotation includes shearing and compression
aspects, and so is particularly susceptible to aliasing. Figure 4 shows the benefit of
optimized re-sampling.

At the top of Figure 4, The EIT image in Figure 1 has been advanced 28 days
using the solar differential rotation curve from Cox (2000). The warped longit-
ude/latitude grid indicates the degree of distortion in just one solar rotation. At
bottom, the absolute value of the relative difference between the two methods (after
subtraction of the EIT digitizer offset) shows that sampling errors are concentrated
near small solar structures and where the image shear or reduction is greatest.
Hence the eastern limb near the poles has the highest concentration of error, while
most of the total error is spread along the western portion of the image. The cleanest
portion of the image is near and just east of disk center, where the mapping doesn’t
reduce the local feature size in any direction.

This EIT image has a balance of large and small features, but is not particu-
larly ‘spiky’: most features are at least several pixels across. Nevertheless, relative
errors of at least 5% occur in about 5% of the linearly interpolated pixels for this
transformation, and errors of over 30% occur in about 0.2% of the pixels. Trans-
formations with more shear or acting on ‘spikier’ data will yield more and stronger
errors.

Sampling errors are enhanced by high spatial frequencies, so optimized re-
sampling should be used wherever the objects of interest are small and well-se-
parated, such as tracking of magnetic ephemeral regions, or identification of bright
points in EUV images. The errors introduced by local interpolation in Figure 4
are systematic with position on the transformed plane and could easily poison the
results of statistical surveys or evolution studies.

Sampling errors of the type shown here could certainly affect helioseismology
results: transformations with singular values below unity will lengthen the parallel
component of any observed wave’s spatial k vector. k vectors that extend beyond
the spatial Nyquist frequency of the re-sampled image will be aliased to lower
spatial frequencies. The Gaussian-weighted average over each pixel’s footprint has
the effect of applying a spatially variable filter, locally tuned to prevent aliasing.
For more information, see Heckbert (1989).

4. An Implementation of Coordinate Transformations

I have implemented the algorithm described above in the PDL language (Glazebrook
et al., 2003), which is available as the package ‘PDL’ in the SolarSoft distribution
(Freeland and Handy, 1998). The algorithm is present in the PDL::Transform and
PDL::Transform::Cartography modules, which include support for many stand-
ardized (and parameterized) coordinate transforms, including most commonly used
map projections (e.g., Snyder, 1987). The software has a simple, streamlined inter-
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#!/usr/bin/perl # UNIX scripting magic
map{eval "use $_"} (PDL, PDL::Transform::Cartography, PDL::AutoLoader);

# Read in the EIT data. Any FITS file with WCS pointing info
# will work. (PDL stores the header as part of $a).

$a = float rfits(’eit-sample.fits’);

# Prepare data for Figure 1 of this article.
# Define mapping from lon/lat to image coordinates. Set B angle and
# observer distance. im_unit fills in for CUNIT<n> in the hdr.

$t = t_perspective( B=>6.5, r0=>217, im_unit=>"arcsec" );
$amap = $a->map( !$t, method=>Jacobian ); # ’!’ is func. inverse
wfits($amap, "eit-map.fits");

# Prepare data for Figure 4 of this article.
# Demonstrate differential rotation after 28 days: ’x’ is function
# composition; t_diff_rot shears the data in lon/lat space.

$t2 = $t x t_diff_rot( 28.0 ) x !$t

$awarp1 = $a->map( $t2, method=>Jacobian );

$awarp2 = $a->map( $t2, method=>linear );

wfits( $awarp1, "eit-warped.fits" );

wfits( $awarp1 - $awarp2, "eit-warp-diff.fits" );

Figure 5. PDL script demonstrating re-sampling for Figures 1 and 4. An EIT image is read in, then
converted to solar long./lat. coordinates using spherical perspective projection. The map’s FITS
header is updated automatically. At bottom, the image is rotated forward by 28 days to generate
the error plot in Figure 4. The top two lines ensure that the script can run directly from the UNIX
command line, but are unnecessary for use within PDL’s interactive environment.

face. The underlying language environment is built on perl, the popular scripting
language (Wall, Christiansen, and Orwant, 2000).

The PDL::Transform module defines a new data type that represents a coordin-
ate transformation. Transform objects can be inverted, composed, and otherwise
manipulated with a simple expression syntax. Several generators are included for
common transformations – e.g. t_linear() creates an arbitrary linear transform-
ation based on a variety of parameters, t_fits() accepts a FITS/WCS header
and returns a transformation object mapping pixel values to scientific coordinates,
t_radial() creates a radial coordinate transformation, and t_diff_rot represents
solar differential rotation using one of the familiar rotation laws from
Cox (2000) or Howard, Harvey, and Forgach (1990). More than twenty specialized
map projections and other transforms are available.

Transforms operate on vector data, transforming collections of vectors from
one coordinate system to another via the apply method. For example, the ex-
pression $a->apply (t_radial()) converts the set of vectors $a from Cartesian
to radial coordinates. Transforms also operate on image data via the map method,
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implementing several re-sampling schemes including the Jacobian singular-value
padding method presented in Section 3. Typical image distortions require only 1–
2 lines of code. Figure 5 lists the script that was used to distort the solar data in
Figures 1 and 4. To my knowledge, the PDL::Transform package in perl/PDL is the
only scientific software package that combines a generic coordinate transformation
facility with optimized re-sampling.

5. Specialized Distortions and Applications

After linear transformation to co-align images, the most common application of im-
age re-sampling is removal of differential rotation from time-series data. However,
in many cases specialized coordinate transformations can greatly aid data analysis.
Here I present two examples of coordinate transformations that reveal subtle but
important aspects of particular solar images, and discuss further applications for
image correction and regularization.

5.1. AZIMUTHAL STRUCTURE

Radial coordinate transformation is useful wherever azimuthal symmetry is import-
ant to an observation. For example, DeForest et al. (1997) and DeForest, Plunkett,
and Andrews (2001) used azimuthal projection to study the structure of coronal
holes during solar minimum. Figure 6 shows two images of the active, declin-
ing phase corona recorded by SOHO/LASCO (Brueckner et al., 1995) in August
of 2003, and the corresponding conformal radial projection4 . Radially projecting
shows the super-radial and sub-radial expansion rates at a glance. The conformal
radial projection has an additional advantage: because the distance scale is log-
arithmic, it is possible to meaningfully overlay data from instruments that meas-
ure the solar surface and the outer corona (DeForest et al., 1997), despite vast
differences in scale.

Radial projection maps concentric circles to horizontal lines; notionally, a radi-
ally projected time series of images is a generalization of the sinogram data used
by DeForest, Lamy, and Llebaria (2001) and Li et al. (2000) to study timeseries
evolution of the solar corona: individual coronal ‘sinograms’ or ‘TIDs’ are slices
through such a data cube.

Because radial projection has a strongly varying spatial scale, it is particularly
important to use optimized re-sampling for this type of analysis, to avoid missing
important structures in the very sparse sampling grid far from the origin. DeForest,
Plunkett, and Andrews (2001) were able to use the sparseness to average large
4Conformal mappings preserve the shape, but not size or orientation, of small features. In math-
ematical terms, a mapping is conformal if its Jacobian is everywhere a scalar times a rotation
matrix.
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numbers of pixels and beat down photon noise in the dim regions far from the Sun,
enabling visual detection of polar plumes at altitudes over 25 Rs.

5.2. PULSE WAVE PROPAGATION

Several traditional map projections of the solar surface are useful for helioseis-
mology and other studies. In particular, gnomonic projection is useful for studying
propagation of directional disturbances on the solar surface, because of its property
of preserving geodesics (great circles) as straight lines; and Postel’s azimuthal,
equidistant projection (Snyder, 1987) is useful for identifying wave propagation
from a point source, because the projection preserves the k-vector of waves passing
through the center of projection (Bogart et al., 1995). Both of these projections
introduce significant spatial distortions, and benefit from optimized re-sampling
because the Jacobian is significantly sheared over large portions of the sphere.

Figure 7 shows an application of Postel’s projection for characterization of pulse
waves in the solar corona. Figure 7(A) and 7(B) are unmodified difference images
taken with SOHO/EIT’s 195 Å pass band on 24 September 1997. In the minutes
before Figure 7(A), a flare occurred in the active region at lower left, yielding a
Moreton wave with (rare) direct signatures in the 195 Å band. Some minutes later
(Figure 7(B)), a coronal pulse wave of the type commonly referred to as an ‘EIT
wave’ is visible about 0.5 solar radii from the origin. Biesecker et al. (2002) have
plausibly identified these two features as the same wave front viewed at different
times.

De-projecting the perspective view from EIT and reprojecting the solar surface
into an oblique Postel projection centered on the active region (Figures 7(C) and
7(D)) removes the perspective distortion of the telescope view and demonstrates
that the pulse wave in fact propagates nearly isotropically. In this projection, k-
vectors through the origin (in this case the active region) are preserved, so that the
wave front should remain exactly circular if the wave speed doesn’t vary with dir-
ection. Because the wave propagates nearly isotropically, it fits very well between
the concentric dotted circles (Figure 7(D)).

Distorting the image one more time by radial expansion about the origin (Fig-
ure 7(E) and 7(F)) reveals more about the two observed fronts: they are not con-
centric, suggesting that they may in fact be different phenomena. In this coordinate
system, circles concentric to the origin of the projection appear as horizontal lines.
The pulse wave front in Figure 7(F) fits well the boundaries drawn here, but the
Moreton wave front is clearly not concentric with the pulse wave front. Moving
the coordinate system origin so that the Moreton wave is rendered as a horizontal
line renders the ‘EIT wave’ as a sine curve in this coordinate system. The two wave
centers are separated by about 2 arc min.
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Figure 7. SOHO/EIT running-difference images in the Fe XII (195 Å) band showing coronal pulse
wave phenomena associated with the flare of 24 September 1997. The running-difference images
approximate the time derivative of brightness. (A) and (B) show two wave fronts in the original
focal-plane coordinate system, visible 15 min apart; (C) and (D) are an oblique Postel projection
that removes foreshortening, maintaining the wave fronts as nearly circular; and (E) and (F) are an
azimuthal transformation of the Postel plane, showing that the two waves are non-concentric: the
Moreton wave in (E) is not horizontal, because it is not centered at the origin of the projection.
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5.3. DISCUSSION: OTHER APPLICATIONS

Parameterized image distortions have uses beyond perspective correction and ap-
propriate coordinate-system selection. In particular, one might re-sample to remove
geometric distortion that is inherent in the collecting optics. One example is cor-
recting images from a telescope to simulate a pinhole camera: telescopes with
optical magnification introduce significant tan(θ) distortion into the edges of the
field of view. Another is correction for off-axis, obliquely oriented focal planes. It
is not uncommon for the plane of best average focus in a spectrometer or off-axis
telescope to have known but variable magnification across the plane. In either case,
knowing the distortion function allows one to remove the optical distortion from
the data and work with images in a fictional pinhole-camera focal plane.

Telescopes that operate within an atmosphere have the problem of image dis-
tortion from an unknown optical system – the layered atmosphere overhead. Solar
observatories typically identify the eccentricity of the ellipse described by the Sun’s
limb and stretch images along the minor axis, to account for the refractive effect of
the atmosphere. A larger problem is atmospheric seeing, which distorts the image
in an unknown way. Shine (1997) and others have developed image correlation
and spatiotemporal filtering techniques that can remove from an image sequence, a
posteriori, most of the geometric effects of seeing. In image correlation, small dis-
placements are used to maximize the correlation coefficient between small patches
of images collected at similar times. The image displacements determined by the
maximization describe a distortion function which is then used to re-sample and
stabilize the images. Optimized re-sampling is important for this application, to
avoid re-sampling errors that are correlated with either seeing or surface motion.

6. Conclusions

Image re-sampling technique significantly influences the result of mathematical
image distortion. Given the increasing popularity of image distortion as a tool for
removing perspective and solar rotation effects, authors should be aware of the lim-
itations of simple sampling and interpolation. Image re-sampling algorithms exist
that can preserve image data much better under arbitrary transformations than does
interpolation. I have presented one such algorithm, singular-value padding, that
is simple to implement in most computational environments. An implementation
exists in the Perl/PDL environment distributed with SolarSoft; authors are encour-
aged either to use it or to implement similar re-sampling code in other popular
environments.

It is demonstrated that nonlinear coordinate transforms are useful in more con-
texts than ordinary perspective and rotation compensation. Two examples show
cases where image morphology can be much easier tracked in coordinate systems
that are unrelated to the simple projective geometry of a solar telescope. Azimuthal
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projection is useful for systems where angle is important, such as the morphology
of the mid corona. Specialized map projections exist that are useful for many ap-
plications; one such projection, Postel’s projection, is demonstrated in the context
of global tracking of coronal pulse waves.

Interactive manipulation of coordinate systems is a powerful analysis technique
and should be part of the software ‘toolkit’ that data analysts bring to bear on
solar data. Several useful software packages exist to fill this need. The Perl/PDL
re-sampling code mentioned above exists in the context of one such general pur-
pose nonlinear coordinate transformation suite. Other coordinate transformation
packages exist, but appear to not (yet) use optimized re-sampling.
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