Journal of
ATMOSPHERIC AND
SOLAR-TERRESTRIAL

ELSEVIER Journal of Atmospheric and Solar-Terrestrial Physics 69 (2007) 116—128 PHYS'CS
www.elsevier.com/locate/jastp
Fluxon modeling of low-beta plasmas
* b
C.E. DeForest™™, C.C. Kankelborg
Southwest Research Institute, 1050 Walnut Street Suite 400, Boulder, CO 80302, USA
® Montana State University, Bozeman, MT, USA
Received 10 May 2005; accepted 17 June 2006
Available online 15 November 2006

Abstract

We have developed a new, quasi-Lagrangian approach for numerical modeling of magnetohydrodynamics in low to
moderate f§ plasmas such as the solar corona. We introduce the concept of a “fluxon”, a discretized field line. Fluxon
models represent the magnetic field as a skeleton of such discrete field lines, and interpolate field values from the geometry
of the skeleton where needed, reversing the usual direction of the field line transform. The fluxon skeleton forms the grid
for a collection of 1-D Eulerian models of plasma along individual flux tubes. Fluxon models have no numerical resistivity,
because they preserve topology explicitly. Our prototype code, FLULX, is currently able to find 3-D nonlinear force-free
field solutions with a specified field topology, and work is ongoing to validate and extend the code to full
magnetohydrodynamics. FLUX has significant scaling advantages over conventional models: for ‘“magnetic carpet”
models, with photospheric line-tied boundary conditions, FLUX simulations scale in complexity like a conventional 2-D
grid although the full 3-D field is represented. The code is free software and is available online. In this current paper we

introduce fluxons and our prototype code, and describe the course of future work with the code.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

MHD modeling is key to understanding solar
eruptive events and their effect on the heliospheric
environment. Solar flares are known to be driven by
magnetic reconnection (e.g., Sturrock et al., 1984)
and coronal mass ejections (CMES) are generally
tied to magnetic instability of one kind or another
(e.g., Sturrock, 1989; Amari and Luciani, 1999;
Antiochos et al., 1999; Chen and Shibata, 2000; Fan
and Low, 2003; Roussev et al., 2003). Under-
standing and predicting such events requires
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numeric modeling of the plasma in the solar corona
as it evolves under the line-tied boundary conditions
imposed by the solar photosphere. Current MHD
modeling software is not able to reproduce the
conditions of the solar corona under controlled
conditions, because numerical effects in the simula-
tion dominate over their counterparts in the real
corona for many physical situations. This is evident
in the difficulty of maintaining strong current sheets
or other stressed flux systems, such as filaments, for
long periods of time; and in the difficulty of
reproducing the rapidly varying heating rate in
coronal loops and bright points.

Conventional magnetohydrodynamic models
typically use Eulerian (fixed) grids, introducing
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non-physical dissipative effects such as viscosity and
resistivity. These dissipative effects dominate the
behavior of quiescent structures with current sheets
and may even destabilize simulated CME-bearing
systems (Lin and van Ballegooijen, 2002), making
modeling of solar evolution difficult at best.
Further, numerical diffusion of both momentum
(numerical viscosity) and magnetic field (numerical
resistivity) are dependent on grid speed, so that
Eulerian grid size is typically chosen to oversample
the physical structure. The extra resolution is used
to minimize the unwanted diffusion and preserve
the plasma system for as much simulated time as
possible. Oversampling by a factor of 10in each
dimension yields a factor of 10* slowdown in the
overall simulation, requiring huge facilities to
simulate even simple systems in 3-D. Adaptive-
mesh refinement improves performance significantly
(e.g., Welsch et al., 2004; Lynch et al., 2003) but still
requires oversampling.

Lagrangian grids eliminate numerical resistivity
but add further problems. For example, as the grid
distorts with the plasma motion, the fidelity of
discrete differential operators degrades. Fully La-
grangian treatments of the corona shear rapidly
because fluid motion is decoupled in the cross-field
direction.

To maximize the advantages of both the Eulerian
and Lagrangian approaches to MHD modeling, we
have developed a prototype fluxon modeling code,
FLUX (the “Field Line Universal relaXer’), that is
a hybrid between the two. In the low-f regime, all
forces are negligible when compared to the Lorenz
force components; FLUX is essentially a force-free
field solver that can support an independent plasma
density parameter at each location in the simula-
tion. FLUX demonstrates the fluxon method, and
work is ongoing to add plasma pressure and related
physical phenomena to the simulation framework.
In the following sections, we briefly describe the
basis of the fluxon numerical approach (Section 2),
describe our code and its performance (Section 3),
and discuss the direction of future work both on
code development and on applications (Section 4).

2. Fluxon theory and implementation

The basis of the fluxon approach to numerical
modeling is the analogy between field lines and an
associated vector field: a field line map completely
describes the associated magnetic field, and vice
versa. This analogy has normally been used to

visualize the magnetic field: the field vector value is
calculated everywhere on a grid of values, and then
interpolated to ““shoot” field lines through the grid
for visualization. But the analogy works in the
reverse direction too: every physical property of the
magnetic field may be described in terms of the
geometry of individual magnetic field lines. In
highly conductive plasmas, the field line description
takes on more utility and meaning than in resistive
physical systems, because field line topology is
preserved under ideal MHD.

FLUX is currently a relaxation solver for force-
free magnetic systems: the magnetic field is repre-
sented as a skeleton of piecewise-linear curves,
Sfluxons, each of which represents a finite quantum
of magnetic flux contained in a thin volume around
a central curve. Fluxons differ from conventional
field lines in that a field line represents an
infinitesimal amount of magnetic flux, while a
fluxon represents a discrete, finite amount of
magnetic flux; the word is also used, with approxi-
mately the same meaning, in the context of
quantized magnetic systems such as Josephson
junctions and quantum computers (e.g., Calidonna
and Naddeo, 2005; Ustinov et al., 1993). The
magnetic field is considered to be nearly parallel to
the fluxon everywhere in its neighborhood, so that
each fluxon may be considered to represent a non-
twisted flux tube and (as with conventional field
lines) magnetic field strength may be calculated by
determining the areal density of fluxons that pass
through a plane perpendicular to the field direction.
Other quantities such as field gradients may be
calculated from the local geometry of the fluxons.

Each fluxon in a simulation arena is composed of
an ordered collection of flux elements, or fluxels
(Fig. 1). A fluxel represents a small amount of field-
aligned length ds, and the differential MHD
equations are discretized using d® = &, (where
&, is the quantum of magnetic flux) and ds = As
(when calculating curvature and similar quantities).
Each fluxel takes the same part in a fluxon
simulation that a pixel (or voxel or grid element)
takes in a conventional Eulerian simulation. In the
current implementation, fluxels are line segments
and their associated fluxons are thus piecewise-
linear. One may imagine spline or other curvilinear
interpolation, but the geometric calculations
are greatly simplified by a piecewise-linear repre-
sentation.

Computationally, fluxons are represented with
dynamically allocated data structures: each fluxon is
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Fluxon: piecwise-linear
representation of a field line

Fluxel: line segment
within a fluxon

Fig. 1. A fluxon representation of the magnetic field replaces smooth field lines (each of which represents an infinitesimal amount of flux)
with piecewise-linear fluxons (each of which represents a small but finite amount of flux). Each fluxon is composed of flux elements, or

fluxels, that represent small units of field-aligned length ds.

a linked list of fluxels, each of which contains
position information for one of the two endpoints of
the fluxel, and some ancillary data used to calculate
local geometry and forces. In a relaxation calcula-
tion, the fluxel positions are relaxed to find a force-
free equilibrium. At each relaxation step, all
included forces are calculated at each fluxel node,
and the node takes a step in the direction of the
vector sum of the forces acting on it. The motions
and force laws are constructed in such a way that
fluxels never cross one another, unless forced to by
the physics of the model. This ensures that magnetic
topology is conserved: the discrete nature of the
fluxon skeleton eliminates numerical reconnection.
Including just the Lorenz forces in the relaxation
yields approximations to non-linear force-free field
solutions with prescribed topology.

A single fluxon cannot by itself represent a field-
aligned current; but multiple fluxons can represent
currents through twist (Fig. 2). The differential
quantity V x B may be estimated directly from the
discrete geometry of nearby field lines.

In the remainder of this section, we describe the
theory and implementation used to find the Lorenz
force throughout the simulation and hence to relax
toward a force-free solution.

2.1. A geometric approach to the Lorenz force

Calculating force-free fields requires formulating
the Lorenz magnetic force in terms of the geometry
of the fluxon grid, which represents the magnetic

field as a collection of small magnetic flux tubes. We

here derive the familiar force law E} = 7 X 73)

from the energetics of a small, discrete flux tube, to

Fig. 2. Two-fluxon system demonstrating representation of

current. A computable current runs along the axis of the twisted
loop.

ds

Fig. 3. A curved flux tube carries flux @ along its length; its
geometry is parametrized by path length s and its cross-section is
A(s).

demonstrate that the familiar forces acting on
infinitesimal field lines can be represented using
only the geometry of finite flux tubes. Consider the
magnetic energy Ep of a finite, curved flux tube that
carries a magnetic flux ¢ and whose shape and
cross-section A are parametrized by path length s
along the tube, as in Fig. 3. (Note that the cross-
section may be an arbitrary shape, not only round
as depicted here.) If the magnetic field is constant
across the cross-section of the tube, then the
magnetic energy Ep is given by

B @ [ ds
Ep= [ —d&V=—» [ — 1
B 87 8n/A(s)’ M
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where one factor of A is cancelled from the
denominator by carrying out the cross-sectional
part of the volume integral. Taking the differential
along the length of the flux tube lets us characterize
the energy per unit length:

LA 2: ()
8mA(s) 8

Differentiating with respect to displacement x; of a
point on the flux tube yields the differential of the
ith component of the Lorenz force:

__0dEp) _ @ (3(dy)
dF; = ox;  8=m (ax, +ax,d> ®)

where the first term is due to the variation of the
path length from the displacement and the second
term is due to the gradient of B. Noting that the
path length variation is just the dot product of the
displacement with ds times the negative curvature
—(d/ds)(0s/0x;) allows us to interchange the differ-
entials, at the expense of a sign change:

a0 paa
ds = 8n ds 0x;  dx;/)°

dEp = ds. )

(4)

Breaking the total derivative d/ds into partial
derivative terms gives

Gx, Os dB
W) @)-w) o

which reproduces the familiar curvature and pres-
sure force terms. Separating out ¢ into BA and
converting to vector notation gives

dF A 5 . 5 VB
ds 8 ((B V)B_T>’ (6)

where we have taken advantage of the relation
< - B = 0 to commute the scalar B through the B-<
operator. Eq. (6) is just the familiar Lorenz force
relation, multiplied by the cross-section of the flux
tube. The left-hand term is the “curvature force”
and the right-hand term is “pressure force”. Eq. (6)
may be more cleanly expressed by collecting terms:

87 dF
@ ds
Finally, for force-free calculations it is useful to

divide out the magnitude B of the magnetic field,
yielding the field-normalized Lorenz force:

=(B-v)B-UB. (7)

8t dF . . B
B

E$Z(B'V)B— (8)

Setting the left-hand side of either Eq. (7) or Eq. (8)
to zero describes a force-free magnetic field, but Eq.
(8) is especially useful because the curvature force is
represented entirely in terms of the local curvature
of the flux tube without reference to the field
strength B, and the magnetic pressure force is also
reducible to simple form. We refer to the left-hand
term as F., the field-normalized curvature
force per unit length; and to the right-hand term
as Z pn, the field-normalized pressure force per unit
length.

2.2. Discretizing the Lorenz force with fluxons

The differential quantities in Section 2.1 must be
discretized for use with fluxons: each fluxon is a set
of piecewise-linear curves. Each fluxel has a finite
length / rather than a differential length ds, with
vertices at each end. What is desired is not the force
per unit length along each fluxon, but the force
acting on each vertex. The curvature and pressure
force are discretized slightly differently because the
curvature of a fluxon is defined only at the vertices,
while the pressure is only defined near the center of
each line segment.

The normalized curvature force is simple to
calculate, because of a fortunate cancellation: the
amount of curvature from fluxel center to fluxel
center is inversely related to the lengths of the
fluxels, canceling the length factor in the integral.
The B-normalized curvature force at each vertex v is
thus proportional to the offset angle at the vertex
between two fluxels, as can be seen by integrating
(B 9)B along the line segments between v and its
neighbors v — 1 and v + 1:

1 ot I\ [2A6,
Fcnu =3 ﬂcn =15 =A vy
2 /vfl Fends (2> < [ ) ’ ©

where /is the total line segment length and A0, is the
total amount of bend at vertex v.

The other half of the Lorenz force, the field-
normalized pressure force, requires characterizing
the geometry of each fluxon’s neighborhood to
determine the magnetic pressure gradient. While the
complete magnetic pressure /B is of interest in full
MHD simulations, we note that displacement of a
field line (and hence fluxon) along the direction of
the field makes no physical change in the absence of
plasma forces, and hence we use only the perpendi-
cular pressure gradient 57, B to find the force-free
equilibrium.
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The flux associated with each fluxon F is
considered to occupy the locus that is closer to F
than to any other. This locus is the Voronoi
neighborhood or Voronoi cell of the fluxon, and a
collection of fluxons, considered as curvilinear
manifolds in three dimensions, forms a Voronoi
foam of such cells. There is a large body of literature
on computerized Voronoi analysis, the process of
calculating and characterizing such neighborhoods
near various families of manifolds in two, three, and
more dimensions; interested readers are referred to
Preparata and Shamos (2000) for a good introduc-
tion to the subject.

The geometry of the Voronoi cell of the fluxon
completely describes the variation in the field
strength B of the flux tube represented by the
fluxon: the cross-sectional area of the cell gives B,
and the asymmetry determines ¥/, B, near the
fluxon.

The Voronoi neighborhood of a 1-D piecewise-
linear manifold (such as a fluxon) embedded in three
dimensions is described by a family of spliced
fourth-order bivariate polynomials (see, e.g., Pre-
parata and Shamos, 2000, and references therein);
solving such curves is computationally expensive.
We instead approximate the Voronoi neighborhood
of each fluxel along the fluxon with a prism
extruded along the length of the fluxel, and
determine the 2-D Voronoi neighborhood in the
cross-section of the prism. When projected into the
cross-sectional plane of a central fluxel, the nearby
fluxels appear as points, and the construction is
straightforward (as illustrated in Fig. 4). A line

Neighbor

~
=
A
®

4—4 Radius to neighbor

Non-neighbor "‘f Z

/ :
Y / @
- ; ‘ —— Neighborhood

\l H_L

Perpendicular bisector

Fig. 4. Construction of a 2-D Voronoi cell. See text for
discussion.

segment is constructed from the central fluxel to
each nearby fluxel, and the perpendicular bisector of
each such segment is found. The smallest convex
polygon that can be constructed from the bisectors
and that also includes the central fluxel is the 2-D
Voronoi cell of the central fluxel. The fluxels whose
bisectors contribute to the shape of the Voronoi cell
are the neighbors of the central fluxel, and a list of
them is retained. After an initial seeding step, the
Voronoi calculation at each relaxation step involves
only the neighbors and next-nearest-neighbors from
the previous step, speeding the calculation. In any
sufficiently large field of points, the average number
of edges in each Voronoi cell (and hence neighbors
of the central fluxel) converges to 6, so the Voronoi
calculation for each cell runs in constant average
time and for the entire simulation it runs in O(n)
time.

The projection function we use to project each
fluxel into the cross-sectional plane is not Cartesian:
we find the point on the candidate fluxel that is
closest to the central fluxel, project that point into
two dimensions, and then multiply the radial
distance by the fourth power of the secant of the
out-of-plane angle to the candidate, artificially
raising the distance to fluxels that are out of the
cross-sectional plane. This is a smooth way of
selecting the fluxels of most interest—those near the
perpendicular plane of the central fluxel. Fluxels
that are far out of the plane are projected at a
farther distance, so that they are usually not close
enough to become neighbors during the cell
construction. Fluxels are not permitted to interact
with the previous and next fluxel on the same
fluxon, because the distance to those fluxels is ill-
defined (0/0 discontinuity).

The out-of-plane radial scaling function does not
affect relaxation results strongly, provided that it is
symmetric and grows fast enough: once a nearby
projected fluxel is removed far enough from the
origin, it is no longer considered a neighbor and
does not affect the local force calculation. The
fluxels of interest are those near the perpendicular
plane of the central fluxel, and there the scaling
function is near unity.

Once the Voronoi geometry is known, the
magnetic field still remains to be calculated. We
are free to choose any non-pathological distribution
of flux within the Voronoi cell, as the cells are by
definition smaller than the physical resolution of the
model. For analytic convenience, we treat the
magnetic field in the Voronoi cell as being in
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sectorwise angular equipartition: the cells are de-
scribed as a collection of triangular segments, each
of which has uniform magnetic field and each of
which has a total amount of flux that is propor-
tional to the angle subtended by the segment. This
prevents currents from forming at the boundaries
between parallel fluxons (by construction, the field
strength is equal on opposite sides of such a
boundary), allows current sheets to form between
non-parallel fluxons, and yields simple formulas for
the average field and the perpendicular field
gradient. This assumption yields a simple formula
for the field-normalized magnetic pressure force
Fpn:

v+1 B ~
5l O (V ) ’liA¢[
Fpn —Z =/pnds—l < ) =] Ei 7"[ 5 (10)

where 7; is the direction to the ith neighbor, A¢; is
the angle subtended by the corresponding edge of
the Voronoi cell, r; is the distance of closest
approach of the corresponding perpendicular bisec-
tor, and / is the length of the line segment from v to
v+ 1. The formula works even in the case of open
Voronoi cells (which are not closed polygons),
because although the field is considered to be
identically zero in the open directions, it is non-
zero in the closed directions. This prevents the
magnetic pressure force from being identically zero
on the outermost field lines of the simulation (which
usually have open Voronoi cells).

2.3. Grid relaxation to find equilibrium solutions

At each relaxation step, FLUX calculates the
field-normalized curvature force at each node, and
the pressure force at the center of each fluxel. The
pressure forces for the leading and trailing fluxels
for each node are averaged together, to produce an
average pressure force at the node. The average
pressure force, in turn, is added to the curvature
force at the node to find a normalized total force. At
each relaxation step, all nodes are moved in the
direction of the corresponding normalized total
force, until a relaxation condition is met. This type
of relaxation is similar to the magnetofrictional
method (Yang et al., 1986; van Ballegooijen, 1999)
except that the field line location, rather than local
field direction, is being relaxed.

All relaxation codes become proportionally less
stable as equilibrium is approached, because the
component forces are much larger than their

resultant, making the local linearization matrix
stiff. To overcome this problem and prevent
oscillation around the equilibrium, FLUX scales
each node’s relaxation step by the square of the
stiffness coefficient (|ZF}|/Z |F}|), where j runs
over all component forces in the relaxation (in this
case the pressure and curvature forces). Further,
although the forces are field-normalized, smaller
steps must be taken where the fluxons are close
together. Hence, the step law used for FLUX with
field-normalized forces is

S o\ 2
AZ = 5T<|Zf>/|> Vmin,izﬁ‘a (11
Do

where [ is node number, j runs over all forces
included in the relaxation, d7 is a small Eulerian step
coefficient in fictitious “‘relaxation time”, the central
fraction is the stiffness coefficient, and ry, i the
closest-approach distance of the closest neighbor to
the following or trailing fluxel of each node.
Relaxation continues until the stiffness coefficient
falls everywhere below some threshold, or until a
maximum number of steps have been taken.

To consider additional forces in the simulation, it
is only necessary to calculate the new force at each
node at each relaxation step, and add it to the other
forces in the relaxation.

2.4. Boundary conditions

The end of each fluxon may be /ine-tied (end node
forced to a particular location; this is the norm on
the photosphere), open (end forced at each relaxa-
tion step to the surface of a very large sphere), or
plasmoid (ends of the fluxon are forced to the same
location). With no further consideration for bound-
ary conditions, the fluxon formalism yields free-
space boundary conditions, effectively extrapolating
the field to infinity in vacuo.

Impenetrable plane-like boundaries with pre-
scribed field normal to the boundary (such as the
solar photosphere) are modeled by the method of
images: during each Voronoi calculation, each fluxel
interacts not only with its physical neighbors but
with an image of itself reflected through the plane of
the boundary. The reflection is culled in the Voronoi
calculation process, just like any other fluxel, so that
elements far from the boundary do not interact with
it directly. The image fluxel forces edge fluxels to
have a voronoi cell boundary coincident with the
boundary plane, confining the modeled flux.
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The field normal to the boundary may be prescribed
by tying fluxon end-points to the boundary itself:
the pattern is a constant of relaxation, and
determines the field in the vicinity of the boundary.
If no fluxons are tied to the boundary, then the field
normal to the boundary is identically zero.

Formally, there is no magnetic method of images
for most curviplanar boundaries. FLUX supports a
spherical or cylindrical boundary using a polyplanar
(or “disco ball’) approach, in which each fluxel has
an image that is reflected through the tangent plane
directly under the fluxel’s center. This method
works because the only fluxels that interact directly
with their reflections are close enough to the surface
that the boundary approximates a plane.

2.5. Initial conditions

Because fluxon models explicitly conserve topol-
ogy, the initial topology map must be specified in
advance of the relaxation, in the form of a collection
of fluxons that have the correct topology and
endpoints, but not necessarily the correct shape;
this makes fluxons useful for tracking systems with
specified initial topology, such as flare models (e.g.,
Longcope, 1996) or semi-empirical results from
tracking of photospheric magnetic features (e.g.,
DeForest and Lamb, 2004). An example initial
condition and resulting field solution are shown in
Fig. 5: an initial collection of fluxons is constructed
to represent the connection map and desired
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topology of the solution, and then relaxed to find
the actual magnetic field configuration in the
system. To solve quasi-static time dependent pro-
blems, one may deform a relaxed solution in a non-
physical way to match updated boundary condi-
tions at the next time step, and then relax to find the
new solution.

Fluxon models are less directly suited to solving
problems where the initial topology is not known
but the full vector field is known at the boundary. In
such cases, one must begin with a guessed initial
topology, and then use the mismatch between the
computed and measured field angle at the boundary
as an error function to find the correct topology by
trial and error. Alternatively, one may use vector
magnetograms to validate topological inferences,
for example those derived from magnetic tracking
and/or coronal imaging.

2.6. Grid regularization and refinement

Since the shape of the field lines, and not the full
position of the nodes, determines the Lorenz force,
we are free to impose a non-physical force along the
field to arrange the nodes for optimal sampling. To
ensure optimal distribution, FLUX nodes along the
same fluxon repel one another with an inverse-
square law force, and also are attracted to
curvature. This results in a compromise Dbet-
ween uniform distribution and clustering near
places where curvature is high. Every few hundred

Randomly connected magnetic carpet

Seed condition

(A)

(B)

Fluxon force-free solution

Fig. 5. A randomly connected “magnetic carpet” field over a photosphere, calculated with FLUX. The initial field was seeded with a
collection of flux concentrations located randomly on a square patch of photosphere. North poles are blue; south poles are red. (A) Seed

condition. (B) Fluxon force-free solution.
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relaxation steps, the grid is checked for denseness.
Additional nodes are placed wherever the fluxels are
longer than the inter-fluxon spacing, and wherever
the turn angle at each node is too great. Currently,
there is no way to add more fluxons to a model in
mid-relaxation, though that type of grid refinement
is planned for future work.

2.7. Reconnection

Fluxon models lock in topology, preventing any
reconnection that is not inserted explicitly into the
model. Because fluxons are represented digitally as
linked lists of fluxel locations, it is simple to relink
two fluxon lists to achieve discrete reconnection in
the model. FLUX supports this capability and
offers a programmer interface to relink neighboring
fluxons when particular local conditions are met.
Planned future work includes studies of current-
triggered reconnection in which, once a threshold
current density is achieved, reconnection proceeds
very rapidly. This behavior is represented by the
stick/slip reconnection model of Longcope (1996)
and is a possible mechanism for nanoflare heating of
the coronal (e.g., Parker, 1988).

3. FLUX implementation and performance

FLUX is written in portable C, with a user
interface in Perl/PDL (Glazebrook et al., 2003).
Initial conditions may be specified either as an
initial topology map (non-equilibrium fluxon geo-
metry) or as a collection of potential sources
together with boundary tie-points (in which case
the code shoots fluxons through the specified
potential field from each tie-point). Output is in
the form of node coordinate arrays that contain the
fluxon geometry and any ancillary data (such as
plasma density) indexed by node ID number. The
simulation arena is represented as a Perl object that
is manipulated using method call syntax. Individual
nodes are allocated and freed dynamically. The code
can also render fluxon geometry in 3-D using the
OpenGL graphics library. Subroutines imple-
menting several forces (both field-normalized and
non-normalized) are available in the code, and the
user can choose between them at run time. A
programmer interface exists for adding more
forces into the balance. Initial fluxon configuration
and boundary conditions may be specified using the
PDL interface.

3.1. Scaling

While developing FLUX we noticed an interest-
ing phenomenon in the code’s scaling properties.
The number of nodes required to represent a loop of
magnetic flux is dependent on the total amount of
curvature in the loop, plus the number of inflection
points in the loop. But magnetic fields that are line-
tied at the Sun’s photosphere are approximately
self-similar against scaling transformations, so that
large loops require about the same number of nodes
as small loops to represent. The result is that in
typical use, FLUX’s memory usage depends almost
linearly on the total amount of line-tied flux that is
represented, rather than on the total simulation
volume. The simulation complexity scales more like
a conventional 2-D model than like a 3-D model.
We tested this hypothesis with collections of
randomly connected “magnetic carpet” fields. One
such randomly generated magnetic carpet was
shown in Fig. 5, in which 40 randomly located flux
concentrations have been connected into 20 sepa-
rate magnetic domains with varying amounts of
current. We generated and relaxed 20 carpet
models spanning two orders of magnitude in
complexity, from 3 flux concentrations to 300 flux

Scaling of 3-D fluxon‘carpet'models
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Fig. 6. Number of nodes vs. number of flux concentrations on
the boundary, for a family of magnetic carpet simulations similar
to the one in Fig. 5. Because of the field’s self-similarity against
scaling, the number of nodes scales linearly with the (2-D)
complexity of the boundary although the simulations represent
the full 3-D field.
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concentrations, refining each so that the final vertex
angle was limited to 0.25rad (about 15°) during
relaxation by 200 steps of At =0.2. The final
complexity (number of vertices) of each simulation
is plotted in Fig. 6. We found that the required
number of nodes indeed scales as the amount of flux
at the boundary over the full range that we tested:
more than two orders of magnitude in carpet
complexity.

3.2. Simple validation cases

We demonstrate here that FLUX can reproduce a
simple potential field calculation and the behavior
of the Lundquist (1950) (linear force-free) and Gold
and Hoyle (1960) (nonlinear force-free) flux tubes.

3.2.1. Potential solution

Because FLUX is a full nonlinear force-free field
solver, the potential solution has no special proper-
ties for testing the code, aside from convenience and
ease of representation. We used nine fluxons to
connect a square grid of tie points with spacing 0.05,
centered at location (0,0,0), to a similar grid at
(1,0,0), with a photosphere located in the XY plane.
Free-space boundary conditions apply elsewhere
than the photosphere, allowing the solution to
expand into the positive-Z half-space. Each fluxon’s
initial configuration was a single upward jump
followed by five horizontal steps and a downward
jump (8 nodes per fluxon, including endpoints). The
fluxons were relaxed for 1000 timesteps with 7 set

9-fluxon potential field over a photosphere

(Field line at right)

to 0.2, with nodes added periodically to limit the
inter-fluxel angle to 0.1rad (about 6°). The relaxa-
tion required about 40 CPU-seconds on a 1.4 GHz
Athlon workstation, ending with just under 700
nodes total and an average stiffness coefficient of
8 x 1072, indicating good relaxation. The resulting
potential field approximation is rendered in Fig. 7.
The tied line locations approximate the surface
penctration of a finite dipole with poles at
(0,0,—0.1) and (1,0,—0.1), so we compared the
final relaxed shape of each fluxon to the shape of an
analytically calculated field line with the same
footpoints. The match is quite good, espegally
considering the coarseness of the model: |A B|/B
between the analytic and fluxon solution is under
8% at every fluxon node, and under 2% everywhere
except within 0.05 of the footpoints.

3.2.2. Linear force-free (Lundquist) flux tube

To demonstrate that FLUX is capable of match-
ing analytic force-free solutions that are not
potential, we demonstrate convergence to the
Lundquist (1950) solution in linear geometry. The
Lundquist solution is a cylindrical twisted flux tube
along the z axis, with the form

B. = ByJo(kr), By = BoJi(kr), B,=0. (12)

We seeded the solution by shooting fluxons through
the analytic Lundquist solution with & = 1, between
the z =0 and 30 planes, for r values from 0 to 10
(near the third node of J;). At each dr step in
radius, we computed the number of field lines
penetrating the z =0 plane at that diameter and

Potential field line comparison

—— Fluxon solution \

---- Analytic field line

Z coordinate

" 1 M 1 " " 1 " L L L 1 L L
0 05 1
X coordinate

Fig. 7. Simple nine-fluxon relaxation reproduces a potential field. Left: 3-D rendering of the final fluxon configuration. Right: the central
vertical field line closely approximates the shape determined by shooting through an analytic field, as seen in this rendering of the XZ

plane. All nine fluxons achieve similar matches in shape.
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truncated to the nearest integer, saving the floating-
point residual to add at the next dr. The integer
number of field lines were launched equidistant in 0
around the flux tube, with a phase shift of 2.0 rad at
each dr. This field line placement has the correct
field topology by construction, but is far from
correct: chance groupings of field lines in the
essentially randomly oriented cylindrical shells
dominate variations in field strength.

The resulting paths were inserted into a fluxon
model that was relaxed for 300 steps with dt set to
0.2, with nodes added periodically to limit the inter-
fluxel angle to 0.2rad. Because [ xJﬁ dx diverges,
the Lundquist flux tube cannot be reproduced with
free-field boundary conditions and a finite amount
of flux; hence, we applied a low-beta cylindrical
boundary at r = 10.05 during the relaxation: among
the neighbor candidates for each fluxel at each time
step was an “image fluxel” created by reflecting each
of the fluxel’s two vertices through the plane tangent
to the cylinder radially outward from the corre-
sponding vertex. This prevented flux tube expansion
through the free space around the cylinder, while
not directly affecting any flux element in the interior
of the modeled tube.

The relaxation involved 200 fluxons anchored in
50 concentric rings, consumed about 1000 CPU-
seconds, and ended with just over 7000 nodes and
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an average stiffness coefficient of 2 x 1072. The
resulting approximation of the Lundquist flux tube
is rendered in Fig. 8. In cylindrical coordinates,
the Lundquist solution is dependent only on r, the
distance from the z axis; hence, to determine the
quality of the solution, we produced scatterplots of
the calculated field components at each fluxel center
in the relaxed solution. Only fluxels in the central
third of the solution (10<z<20) were considered,
to reduce edge effects at the top and bottom of the
fluxon system. The scatterplots are shown in Fig. 9,
demonstrating that the solution has converged from
the non-physical initial condition (red points) to the
Lundquist solution (black points clustered around
the analytic solution). The RMS |A§|/B is 5.4%
throughout the volume.

Two features of the plots in Fig. 9 require some
explanation. First, there is considerable scatter in
the plots compared to the potential solution. The
scatter is attributable to two separate effects. First,
because of the small number of fluxons in each
radial sheath, there is some distortion of the field as
the fluxons bend one around the other. Second, we
are representing the field within each fluxon using
sectorwise angular equipartition—essentially as-
suming that the currents are concentrated along
the boundaries of triangular prisms around each
fluxon—but the Lundquist solution requires a

Lundquist flux tube (linear force-free solution)

Seed field

(A)

(B)

Fluxon solution

Fig. 8. Three-dimensional rendering of the Lundquist flux tube solution with FLUX. Analytically computed field lines were generated and
converted to fluxons (left), then perturbed randomly and relaxed with FLUX (right) in the presence of a cylindrical impermeable
boundary. Field line direction is rendered in color, grading from blue at north magnetic poles to red at south magnetic poles.
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Fluxon solution of the Lundquist flux tube

Radial component

Tangential component

Vertical component

T r 1 1 117 1

6] 2 4 6 8 10 6] 2
Radius
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Radius

6 8 10 0] 2 4 6 8 10
Radius

Fig. 9. B-field components in cylindrical coordinates at each fluxel center location in the Lundquist flux tube solution in Fig. 8. The
theoretical values are plotted as solid lines. The initial condition is plotted in red, and the relaxed numerical solution is plotted in black.

volume current. Increasing the number of fluxons,
or using an interpolation technique that averages
the field over more than one fluxel, reduces the
scatter significantly both by reducing the bending
effect and by better approximating a volume
current.

Secondly, the z component of the field strength
jumps across zero near the nodes of J, rather than
passing smoothly through it. This is due to the
discrete nature of the fluxons and the construction
of our initial seed solution: no fluxons were
launched from the rings where Jy = 0, because by
construction each ring only contained sufficient
fluxons to approximate the total magnetic flux
penetrating the ring. Hence our solution develops
a small current sheet near each node of J,. While
better attention to the seed field would reduce this
artifact, we have retained it here to point out the
care that is required in selecting the initial seed field
and fluxon locations. The gaps in the statistical
population between r = 2.5 and 5.5 are due in part
to this effect and in part to the periodicity in r of the
original seed population of fluxels; this fossil
periodicity is more readily apparent in the radial
component scatterplot at far left.

While we have plotted field values only at fluxel
centers, the field can be calculated anywhere within
the simulation volume by interpolating between the
field values at nearby fluxels.

3.2.3. Nonlinear force-free (Gold— Hoyle) flux tube
The Gold—Hoyle flux tube has the interesting
property that df/dz is constant across field lines.

Gold-Hoyle flux tube (nonlinear force-free solution)

(A)

(B)

Seed field Fluxon solution

Fig. 10. Three-dimensional rendering of the Gold-Hoyle flux
tube solution with FLUX. Analytic non-physical field lines were
generated and converted to fluxons (left), then relaxed with
FLUX (right) in the presence of a cylindrical impermeable
boundary. Field line direction is rendered in color, grading from
blue at north magnetic poles to red at south magnetic poles.

The Gold-Hoyle solution has the form

B, B,
2, Bi=—5. B =0,

which, like the Lundquist solution, carries an
infinite amount of flux (the enclosed flux diverges
logarithmically in r). We tested a Gold—Hoyle-like
solution by launching a square, 11 x 11 array of
fluxons from each of two flux concentrations in free
space, separated by a distance of 30 on the z axis.
The flux concentrations were parallel to the xy
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Fluxon solution of the Gold-Hoyle flux tube

Radial component
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Fig. 11. B-field components in cylindrical coordinates at each fluxel center location in the Gold—Hoyle flux tube solution in Fig. 10. The
theoretical values are plotted as solid lines. The initial condition is plotted in red, and the relaxed numerical solution is plotted in black.

plane, and had an inter-fluxon spacing of just 0.1.
The total twist was 2.0 turns along the length of the
flux concentration. Because the twist is locked in by
the fixed topology, this non-physical initial condi-
tion should relax to approximate a Gold—Hoyle flux
tube with the correct amount of twist for its final
radius. We allowed it to expand to a radius of 7.5
using zero-normal-field cylindrical boundary condi-
tions; the geometry is rendered in Fig. 10. Fig. 11
shows the seed field configuration and the relaxed flux
tube. We compared the fluxon field results to the
family of analytic solutions by plotting field compo-
nent values at each fluxel center in the middle third of
the simulation volume, and fit the value of u by eye to
about 0.65. The results are shown in Fig. 11.

As with the Lundquist solution, we have plotted
the magnetic field value only at fluxel centers. Fig.
11 shows a good match between the fluxon result
and the analytic solution, with no large current
sheets as were demonstrated in the Lundquist flux
tube. In this case, the initial condition (the cloud of
red points) was completely unphysical but relaxed
quite well to the analytic solution. As above, the
field strength and direction are close to the analytic
value everywhere, though the periodicity of the
fluxon placement is reflected in the density of
plotted points. The fossil periodicity is much more
evident in this solution than in the Lundquist
solution, both because of the relative uniformity
of the fluxon placement in the initial condition and
because there is less shear in the solution so the
interacting fluxons are nearly parallel rather than
bending sideways around one another.

The slope of By vs. r is slightly steeper in the
fluxon curve than in the analytic solution. We
attribute this effect to the vertical expansion of the
outermost fluxons outside the intended cylindrical
volume, which reduces the amount of twist per unit
length in the outer portion of the volume. The effect
may be reduced by expanding the source pattern, as
in the seed condition for the Lundquist solution,
above, or by imposing impenetrable boundary
planes above and below the tube.

4. Conclusions and future work

We have introduced fluxon modeling and a
prototype code, FLUX, that is being released as
free software; and have demonstrated that FLUX
can reproduce simple potential, linear, and non-
linear force free field solutions. FLUX is currently
useful as a magnetofrictional force-free field solver,
but it is also intended as a prototype of a much
more complete MHD model. FLUX is very
promising in two important respects: first, it exactly
preserves field topology, potentially yielding a better
approximation of ideal MHD than is possible with a
conventional Eulerian approach to MHD; and
second, it demonstrates good scaling properties that
suggest it will perform very well when applied to
more complex systems.

We are releasing FLUX as free software that is
available as source code for any purpose at all. It
may be obtained from the authors, via the web at
http://www.boulder.swri.edu/~deforest/ FLUX, via
Solarsoft (Freeland and Handy, 1998) as part of the
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“PDL” package, or via the Community Coordi-
nated Modeling Center (Hesse et al., 2002). Future
work on FLUX will take two directions: addition
and testing of plasma and other forces to study non-
force-free equilibria; and addition of dynamic forces
to study quasi-stationary MHD systems and,
ultimately, full inertial MHD evolution.
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