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ABSTRACT

A distinctive feature of the irregular moons of the giant planets is their orbital grouping. Previously, the
prograde and retrograde groups of irregular moons at Jupiter were believed to be groups of fragments produced
by the disruption of two large moons. More recently, we have shown that the retrograde group has not one but
probably four or more parent bodies. We also found that fragments were launched from two of the four identified
parent moons, producing two clusters of irregular moons with members of each group having similar orbits.
Named the Ananke and Carme families, these two groups consist of seven and nine known member moons,
respectively. The origin of this orbital clustering is unknown. Current rates of collisions among satellites in the
retrograde group are too low to explain them. Collisions with cometary impactors are even less likely. Groups
of irregular satellites with similar inclinations at Saturn are also yet to be explained. It is conceivable that the
satellite families are remnants from early epochs of solar system formation when impactors were more numerous.
In this paper we investigate the possibility that satellite families formed via collisions between large parent
moons and stray planetesimals. We find that the Ananke and Carme families at Jupiter could indeed have been
produced by this mechanism, unless the residual disk of planetesimals in heliocentric orbit was already severely
depleted when the irregular satellites formed. Conversely, we find that formation of the Himalia group of
prograde Jovian satellites by the same mechanism is unlikely unless a massive residual planetesimal disk was still
present when the progenitor moon of the Himalia group was captured. We place constraints on the mass of the
residual disk (1) when satellites were captured, and (2) when the Ananke and Carme families formed. These
values depend sensitively on the assumed size-frequency distribution of planetesimals.
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1. INTRODUCTION

The irregular satellites of the Jovian planets are those
moons that are far enough from their parent planet that the
precession of their orbital plane is primarily controlled by the
Sun (see Burns 1986). According to this definition, as of 2003
September 15, we know of 53 irregular satellites at Jupiter
(Sheppard & Jewitt 2003), 14 at Saturn (Gladman et al. 2001a),
six at Uranus (Gladman et al. 1998, 2000), and four at Neptune
(Kuiper 1949; Holman et al. 2003).3

The irregular moons appear to show an interesting hierarchy
of orbits. For example, Jupiter’s irregular moons can be divided
into two groups: seven prograde and 46 retrograde moons. The
retrograde bodies, moreover, show two subgroups of tightly
clustered orbits (the Carme and Ananke families; Nesvorný
et al. 2003a; Sheppard & Jewitt 2003). These satellite groups
are reminiscent of the distribution of orbits in the main asteroid
belt, where disruptive collisions between asteroids produced
groups of fragments sharing similar orbits (the so-called as-
teroid families; Hirayama 1918; Zappalà et al. 1994).

Using this analogy, we may ask whether disruptive colli-
sions between irregular moons may explain their orbital

groupings. The answer is, probably not, or at least they cannot
explain all the observed groups. Nesvorný et al. (2003a) cal-
culated the rates of disruptive collisions between irregular
moons. There it was found that approximately one collision
per 1 Gyr occurs between known moons in the prograde group
at Jupiter. Conversely, the retrograde group of Jovian irregular
satellites has a much lower rate of collisions, because of the
longer orbital periods of these moons and the large volume of
space occupied by their orbits. The current impact rate on
these moons from kilometer-sized comets and escaped Trojan
asteroids is also negligible (Zahnle et al. 2003). It thus seems
likely that the origin of the Carme and Ananke families (and
also of some other groups of irregular moons; Nesvorný et al.
2003a) dates back to early epochs of the solar system, when
impactors were more numerous.
To show that this scenario is plausible, we crudely estimate

the number of disruptive collisions of irregular moons at
Jupiter. We assume that a 100 M� residual planetesimal disk in
the region of the Jovian planets, which we take to originally
extend from 10 to 35 AU, contains �3�1010 planetesimals
with diameters k10 km and a 1 g cm�3 bulk density (x 4).
Beaugé, Roig, & Nesvorný (2002) estimated that a planetesi-
mal has on average 27 encounters within 1 Hill radius of
Jupiter before it is ejected from the solar system (see x 7). If
the cumulative number of encounters within a distance R scales
as R2, a 50 km radius moon of Jupiter (Himalia has a mean
radius R� 70 km, Elara has R� 35 km) suffers 27(3�1010)
� [(50+5)/(5�107)]2 � 1 disruptive collision. Here RH = 5�
107 km is the Hill radius of Jupiter. Similar estimates yield
about three collisions for Saturn’s moon Phoebe, and about
seven collisions for Neptune’s moon Nereid. In these latter
cases, however, impacts of 10 km diameter planetesimals on
the moons are subcatastrophic, owing to the large sizes of
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Phoebe and Nereid (R� 110 km and R� 170 km, respec-
tively) and because the typical impact speeds are lower (x 7).
Nevertheless, collisions with external impactors may have
been important for shaping the size and orbital distributions of
smaller moons at these planets.

In this paper, we study the scenario in which the parent
moons of satellite families were impacted by stray plane-
tesimals. We show that the observed satellite families such as
the Ananke and Carme groups (x 2) may be outcomes of such
events. We also determine the range of planetesimal disk
masses that is compatible with the observed satellite fam-
ilies. To this end, we calculate the rates of collisions between
bodies on elliptical and hyperbolic orbits (x 3). To calculate the
probability that a moon with a given orbit and diameter was
disrupted or cratered during early stages, we generate the size-
frequency distribution of planetesimal impactors (x 4) and their
orbital distribution (x 5) and make use of standard scaling laws
for impacts (x 6). Results are presented in x 7.

2. OBSERVED SATELLITE FAMILIES

Historically, the distant satellites of Jupiter were believed to
belong to two groups: the prograde group of irregular moons
(including Himalia, Elara, Lysithea, and Leda) and the retro-
grade group (Pasiphae, Carme, Sinope, and Ananke). Research-
ers have struggled to explain these two groups by presuming
that member moons of the two groups are fragments of two
large, disrupted parent moons (Colombo & Franklin 1971;
Pollack, Burns, & Tauber 1979). This basic presumption has
been reexamined since the recent discoveries of the irregular
moons at Jupiter.

To determine which satellites have similar orbits and may
thus share a common origin, Nesvorný et al. (2003a) com-
puted the mean orbital elements of irregular moons by aver-
aging their orbital elements over 108 yr. These mean values
are plotted in Figure 1 for the irregular moons of Jupiter.

The prograde group of irregular moons around Himalia
(Themisto excluded; Figs. 1a and 1b) is more compact than
the population of the retrograde moons (taken as a single
group here; Figs. 1c and 1d). Assuming that these groups were
formed by two collisional breakups (Colombo & Franklin
1971), we find that the collision that formed the prograde
group was less energetic than the one that formed the retro-
grade group. We calculate from the Gauss equations4 that

50 m s�1P �V P 400 m s�1 for the prograde group, and
300 m s�1P �V P 500 m s�1 for the retrograde group, where
the �V is the ejection speed of individual fragments. Curiously,
both these speed ranges (especially that for the population of
the retrograde moons) are inconsistent with the velocity dis-
persion of multikilometer collisional fragments derived for
catastrophic collisions by other means. For example, labora-
tory impact experiments, where centimeter-sized projectiles
are shot into targets, and numerical hydrocode experiments,
which are capable of simulating hypervelocity collisions
among large bodies, both indicate that the mean and median
ejection speeds from impacts are on the order of several times
10 m s�1 (Benz & Asphaug 1999; Michel et al. 2001). Sim-
ilarly small ejection speeds were found for asteroid families
that have not yet been dispersed by thermal forces (such as the
Karin, Veritas, and Iannini families; Nesvorný et al. 2002,
2003b).

We are thus left with a contradiction: either we invoke some
mechanism that further disperses orbits in addition to the
velocity spread expected from their formation, or we should
reject the scenario in which the prograde and retrograde
populations of moons at Jupiter formed by collisional break-
ups of two precursor bodies.

A closer inspection of the retrograde satellite group shows
that there exist several subclusters (Fig. 1; see also Nesvorný
et al. 2003a; Sheppard & Jewitt 2003). The mean orbits of
S/2000 J2, S/2000 J4, S/2000 J6, S/2000 J9, S/2000 J10,
S/2001 J6, S/2001 J8, and S/2001 J11 cluster tightly around
the mean orbit of J11 Carme, a �46 km diameter moon;
S/2000 J3, S/2000 J5, S/2000 J7, S/2001 J2, S/2001 J3, and
S/2001 J7 have orbits similar to J12 Ananke, a �28 km di-
ameter moon. (The sizes quoted assume that Carme and
Ananke have geometric albedos of 0.04; see Rettig, Walsh, &
Consolmagno 2001.) Moreover, S/2000 J8 may be part of the
group related to Pasiphae. Of the very recently discovered
moons of Jupiter (not shown in Fig. 1), S/2003 J1, S/2003 J5,
S/2003 J9, S/2003 J10, and S/2003 J11 may be members of
the cluster around J11 Carme, and S/2003 J6 has an orbit
similar to that of J12 Ananke.5

From the Gauss equations we find 5 m s�1P �V P 50 m s�1

for the group of Carme (which we call the Carme family) and
15 m s�1P �V P 80 m s�1 for the group of Ananke (the
Ananke family). These speeds are more compatible with a �V
expected from simple collisional breakups than the speeds
computed for the whole population of retrograde moons.

Based on these results, Nesvorný et al. (2003a) proposed
that the retrograde group of Jovian irregular moons witnessed
a more complicated collisional history than thought before. In
particular, it seems likely that we see fragments from at least
two distinct precursor moons. The spectral differences be-
tween Carme and Ananke suggest that these precursor bodies
correspond to two captured satellites rather than having a
common ancestor (Luu 1991; Sykes et al. 2000; Brown 2000;
Rettig et al. 2001; Grav et al. 2003). In a recent study, Grav
et al. (2003) demonstrated that members of the Ananke and
Carme families have homogeneous colors and suggested that
they originated by fragmentation or cratering of two homo-
geneous progenitor moons.

Gladman et al. (2001a) classified the irregular moons of
Saturn into groups of similar orbital inclination: the first satel-
lite inclination group (S/2000 S4, S/2000 S10, and S/2000 S11),

4 We use the Gauss equations to relate the size of a satellite family in the
mean orbital elements space (�a, �e, �i) with a selected velocity impulse (�V ):

�a

a
¼ 2

nað1� e2Þ1=2
½ð1þ e cos f Þ�VT þ ðe sin f Þ�VR�;

�e ¼ ð1� e2Þ1=2

na

�
eþ 2 cos f þ e cos2f

1þ e cos f
�VT þ ðsin f Þ�VR

�
;

�i ¼ ð1� e2Þ1=2

na

cos ð!þ f Þ
1þ e cos f

�VW :

Here a, e, and i are the semimajor axis, eccentricity, and orbital inclination of a
satellite prior to an impact; �a, �e, and �i are the changes in these elements due
to the impact; n is the orbital frequency of a satellite; and �VT, �VR, and �VW

are components of �V along the direction of the orbital motion, in the radial
direction, and perpendicular to the orbital plane, respectively. Assuming that a
satellite family originated by an impact, f and ! are the true anomaly and the
perihelion argument of the parent body at the instant of the impact. If frag-
ments are isotropically ejected from the breakup site with speeds Vejc ex-
ceeding the escape velocity Vesc by �V = (V 2

ejc � V 2
esc)

1/2< Vmax, the Gauss
equations show that their osculating orbital elements will be located within an
ellipsoid centered at the parent body’s initial (a, e, i) orbit. The size, shape,
and orientation of the ellipsoid are determined by Vmax, f, and !.

5 These recently discovered moons do not have good orbital determinations
yet, so their classification into groups is difficult.
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the second satellite inclination group (S/2000 S2, S/2000 S3,
S/2000 S5, and S/2000 S6), and a rather loosely clustered
Phoebe group (Phoebe, S/2000 S1, S/2000 S7, S/2000 S9, and
S/2000 S12). The moons in each of these inclination groups
probably do not have a common collisional origin, unless
(1) asymmetric and large-magnitude ejection velocity fields
occurred, or (2) collisions occurred early and some subsequent
primordial mechanism modified the semimajor axes. Other-
wise, it is hard to reconcile the magnitude and compo-
nents of �V computed from the Gauss equations with the
current understanding of collisional breakups (see Nesvorný

et al. 2003a or Grav et al. 2003 for a detailed discussion of
this issue).
Because of the small number of Uranian and Neptunian

irregular moons known at this moment, it is impossible to tell
whether or not their orbits can be grouped in some way. Per-
haps S/1997 U1 Caliban and S/1999 U2 Stephano may be
linked (see Nesvorný et al. 2003a, their Fig. 13 and the related
discussion, or Grav et al. 2003), but this association is yet to be
demonstrated. In fact, the orbital distributions of Uranus’s and
Neptune’s irregular moons are not statistically distinguishable
from random distributions of orbits within stability limits.

Fig. 1.—Orbits of the irregular satellites of Jupiter: (a, b) mean orbits of the prograde moons; (c, d) mean orbits of the retrograde moons. The mean orbital
elements were taken from Nesvorný et al. (2003a). In (c) and (d), the orbits of many irregular moons are tightly clustered around the orbits of Ananke and Carme.
The similarity of orbits of these moons suggests their common origin.
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Here we concentrate on the Ananke and Carme families at
Jupiter because the �V-values determined for these two groups
are compatible with impact-generated structures. If, indeed,
the Ananke and Carme families were produced by collisions,
we find that cratering impacts on Ananke and Carme can best
explain them. To show this, we calculate the total volume of
ejecta and compare it with the sizes of the parent moons. First
we convert the magnitudes of the member moons into sizes
assuming a geometric albedo A = 0.04 (Rettig et al. 2001). We
then combine the volumes of the satellites within each group.
We find that the total volumes of ejecta are �4.7� 1017 and
�4.3� 1017 cm3 for the Ananke and Carme families, re-
spectively. These volumes correspond to only 4% and 1%
of the volumes of the parent moons, respectively. Using a
0.2 depth-to-diameter ratio (Schenk et al. 2004), we estimate
that in both cases the crater diameters corresponding to
these volumes are roughly 18 km. By comparison, Ananke
and Carme are �28 and �46 km across. Thus, the putative
family-forming impacts formed large craters on Ananke and
Carme but did not catastrophically disrupt and disperse the
parent moons.6

To relate the amount of ejecta to the impactor size, we use
the scaling suggested by Schmidt & Housen (1987; see
eq. [19] below). With a 1 g cm�3 density and a 1.25 km s�1

impact speed (equal to the mean collision speed between the
known retrograde irregular moons; see Nesvorný et al. 2003a),
we find that a �1.5 km diameter impactor is required in order
to produce the Ananke family and that a �1.65 km diameter
impactor is required to produce the Carme family. With
N(>D)� 100[D/(1 km)]�2.5 (Sheppard & Jewitt 2003), where
N(>D) is the number of moons larger than diameter D, we find
that N(>1.5 km) � 36 and N(>1.65 km) � 29. Nesvorný et al.
(2003a) found that the probabilities of collision of Ananke
and Carme with the other retrograde moons are 2.8� 10�15

and 2.5� 10�15 km�2 yr�1, respectively. Taken together, these
numbers suggest cratering rates of 2� 10�3 and 6� 10�3 per
impactor per 4.5 Gyr on Ananke and Carme, respectively.

With 36 and 29 impactors in the required size range and
assuming Poisson statistics, we find only 7% and 15% proba-
bilities that the Ananke and Carme families were produced by
satellite-satellite collisions. We conclude that it is difficult to
explain these satellite families by satellite-satellite collisions
unless (1) more Dk 1 km moons exist than the number sug-
gested by Sheppard & Jewitt (2003; these authors suggest that
this number is known to within a factor of 2), or (2) the popu-
lation of retrograde moons at Jupiter was much larger in the
past. On the other hand, our estimate for the ejecta volume was
conservative because we derived it from the observed, incom-
plete population of family members. Larger ejecta volumes and
larger impactor sizes are probably more plausible. If so, it
becomes even more difficult to explain the Ananke and Carme
families by collisions between retrograde irregular moons.

We favor a scenario in which these satellite families were
produced during early epochs of the solar system, when he-
liocentrically orbiting impactors were more numerous. To
investigate this scenario in detail, we must (1) calculate colli-
sion rates between these impactors and moons, (2) model the

size-frequency and orbital distributions of impactors, and
(3) use scaling laws to determine collision outcomes. Sections
3–6 address these issues.

3. COLLISION RATES BETWEEN MOONS
AND PLANETESIMALS

To compute the rate of collisions between moons and
planetesimals, we first recall that a population of satellites
moving in Keplerian ellipses around planets with the same
semimajor axis a, eccentricity e< 1, inclination i, and uni-
formly random k, $, and � has a space density distribution
given by

P1ðr; �Þ ¼
1

2�3a2r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � ðr=a� 1Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 � � cos2 i

p ð1Þ

(Kessler 1981; Nesvorný et al. 2003a) with the limits

að1� eÞ � r � að1þ eÞ; �i � � � i: ð2Þ

Here r = (x2 + y2 + z2)1/2 and � = arcsin (z/r), where (x, y, z)
are the Cartesian coordinates. The angular variables intro-
duced prior to equation (1) are the mean longitude k, longitude
of pericenter $, and longitude of the ascending node �. We
normalized the above distribution to the total number of one
body in the population, and thus P1(r, �)�x �y �z is the
probability that the body is located within an infinitesimal box
�x��y��z centered at (x, y, z).

Planetesimals that enter the Hill sphere of a planet generally
move in hyperbolic orbits in a reference frame centered on the
planet. Assuming a population of planetesimals with the same
(planetocentric) a, e > 1, i, and uniformly random k, $, and
�, the space density distribution of unbound orbits can be
determined in a similar manner and yields

P2ðr; �Þ ¼
K

2�3a2r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=aþ 1Þ2 � e2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 � � cos2 i

p : ð3Þ

Once we normalize the distribution in equation (3) to contain
one body within a sphere of radius R, the constant K becomes

K ¼ �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � e2

p
� ln

�
a

e

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � e2

p
þ A

a

����1

; ð4Þ

where A = R/a + 1.
Given these functions, the probability of collision per unit

time between a body on an elliptical orbit with elements a1, e1,
and i1 and a body on a hyperbolic orbit with orbital elements
a2, e2, and i2 is

Pcol ¼ �ðR1 þ R2Þ2

� 2�

Z rmax

rmin

Z �max

�min

P1ðr; �ÞP2ðr; �ÞVcolðr; �Þ

� r2 cos � dr d�; ð5Þ

where P1 and P2 are the probability distributions from equa-
tions (1) and (3) with (a1, e1, i1) and (a2, e2, i2), respectively.
The other quantities are defined as follows: the collision
speed Vcol = |V1 � V2|, where V1 and V2 are the orbital veloc-
ities of the two bodies; rmin = max [a1(1 � e1), a2(e2 � 1)],
rmax ¼ min ½a1ð1 þ e1Þ;R�; �max ¼ min ½i1; i2; 180

� � i1;

6 We are severely underestimating the energetics of these family-forming
impacts if (1) a large fraction of the ejected mass ended in small, unobserved
fragments, or (2) many of the ejected fragments were destroyed by subsequent
collisions (see x 8). While we believe that cratering impacts on Ananke and
Carme are our best interpretation of the current observational data, the possi-
bility that the Ananke and Carme families were produced by catastrophic
breakups of much larger parent bodies cannot be ruled out.
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180� � i2], and �min = ��max; � = �(R1 + R2)
2 is the effec-

tive cross section of the two bodies, with R1 and R2 being
their effective radii [defined as (3Vj/4�)

1/3 for irregularly
shaped bodies, where Vj, j = 1, 2, are their volumes].

The orbital velocities V1 and V2 at (x, y, z) are computed
from (a1, e1, i1) and (a2, e2, i2), respectively. Note that the
collision probability in equation (5) is not a function of either
(k1, $1, �1) or (k2, $2, �2), since these quantities are uni-
formly random variables (i.e., insofar as the space density
distributions are given by eqs. [1] and [3]).

The integrals in equation (5) are not trivial, but they can be
evaluated numerically with little difficulty.7 Using this new
algorithm, we verified that our collision probabilities and
speeds agree within 1% with values reported by Bottke &
Greenberg (1993) and Manley, Migliorini, & Bailey (1998) for
their test cases of asteroidal and cometary orbits. We also
confirmed that our algorithm produces the expected result in a
special case in which the moon’s orbit is circular (Öpik 1951;
Shoemaker & Wolfe 1982).8

4. SIZE-FREQUENCY DISTRIBUTION
OF PLANETESIMALS

Let the differential and cumulative size-frequency dis-
tributions of heliocentric planetesimals be N(d) and N(>d),
respectively, where d is the planetesimal’s diameter.9 We use
N(d) = f NEC(d), where NEC(d) is the differential size distri-
bution of the present-day ecliptic comets (primarily derived
from crater records on the Galilean satellites and Triton;
Zahnle et al. 2003) and f is a multiplication factor. We will
vary f over the range that gives plausible values for the
total mass of the planetesimal disk (Hayashi, Nakazawa, &
Nakagawa 1985).

It is notable that most small craters on Jupiter’s moons
appear to be secondaries, indicating a relative paucity of
small impactors (Bierhaus et al. 2001; Bierhaus, Chapman, &
Merline 2003; Schenk et al. 2004), while small craters on Triton
imply a relatively abundant population of small impactors.
However, it is unclear whether the craters on Triton are of
heliocentric or planetocentric origin (Croft et al. 1995; Stern &

McKinnon 2000; Zahnle et al. 2001). We therefore, like Zahnle
et al. (2003), present two cases, a case A, depleted in small
impactors, in which the size-frequency distribution (SFD) is
like that at Jupiter, and a case B in which small objects follow a
distribution as at Triton. At large sizes, the SFD is constrained
by observations of Kuiper belt objects: Gladman et al. (2001b)
and Trujillo, Jewitt, & Luu (2001) found that N(>d) / d�3.4

for d > 50 km and N(>d) / d�3.0 for d > 100 km. We take the
mean of the two power indices, that is, an index of�3.2 at large
sizes.
Following Zahnle et al. (2003), our case A and B dis-

tributions are (here d is measured in kilometers)

NAð>dÞ ¼ Ncal �

(
ðd=1:5Þ�1; d < 1:5;

ðd=1:5Þ�1:7; 1:5 � d < 5;

ð1:5=5Þ1:7ðd=5Þ�2:5; 5 � d < 30;

ð1:5=5Þ1:7ð5=30Þ2:5

�ðd=30Þ�3:2; d 	 30; ð6Þ

NBð>dÞ ¼ Ncal �
ðd=1:5Þ�1:7; d < 1:5;

ðd=1:5Þ�2:5; 1:5 � d < 30;

ð1:5=30Þ2:5ðd=30Þ�3:2; d 	 30: ð7Þ

8><
>:

We also consider, like Zahnle et al. (2003), as case C a dis-
tribution that is suggested by studies of the formation of
Kuiper belt objects in situ (Stern 1995; Kenyon & Luu 1998;
Kenyon 2002). This distribution assumes that the SFD of
bodies with d < 6.3 km has Dohnanyi’s (1972) equilibrium
slope and the measured slope for Kuiper belt objects at larger
sizes:

NCð>dÞ ¼ Ncal �
ð1:5=6:3Þ2:5ðd=6:3Þ�2:5; d < 6:3;

ð1:5=6:3Þ3:2ðd=6:3Þ�3:2; d 	 6:3: ð8Þ

(

In equations (6), (7), and (8), Ncal is a calibration constant
defined as the number of planetesimals with d> 1.5 km.
Assuming a 1 g cm�3 bulk density for a planetesimal, Ncal =
1.5� 1012 gives a total mass of 100 M� for case A, 40 M� for
case B, and 10 M� for case C. Hahn & Malhotra (1999)
suggested that a disk mass on the order of 50M� is required to
expand Neptune’s orbit by �a� 7 AU, in order to explain the
eccentricities of Pluto and its cohort of Kuiper belt objects at
Neptune’s 3:2 mean motion resonance. We will examine
cases in which the residual planetesimal disk has a mass Mdisk

ranging from 10 to 200 M�.

5. ORBITAL DISTRIBUTION FOR ENCOUNTERS

We analyzed the planetesimal encounters with the outer
planets simulated by Beaugé et al. (2002) for the in situ for-
mation of Uranus and Neptune and designed an ‘‘encounter
generator,’’ which is a fast code with several adjustable
parameters [such as N(D)] that mimics the orbital distribution
of encounters obtained in their realistic numerical integrations
but is not limited to a small number of planetesimals. This was
accomplished following a similar route as Zahnle, Dones, &
Levison (1998) and Zahnle et al. (2001, 2003) in their studies
of cratering rates on the regular satellites of the Jovian planets.
As expected, we found no preferred values in the dis-

tributions of the planetocentric angular variables $ (longitude
of pericenter), � (longitude of node), and k (mean longitude).

7 To avoid numerical problems for r ¼ a1ð1 
 e1Þ; r ¼ a2ðe2 � 1Þ; � ¼ 
i1;
and � ¼ 
i2; where the integrand has an integrable singularity, we use renor-
malization variables t1 ¼ ðr � qÞ1=2; t2 ¼ ðQ� rÞ1=2; and t3 ¼ ðcos2 � �
cos2 iÞ1=2:

8 Assuming a circular orbit for a moon, the impact probability per one
planetesimal encounter is

Pi ¼
R2
sat

a2sat

�
1þ v2esc

v2orbU
2

�
U

Uxj j
1

� sin i
;

where Rsat is the satellite radius and vorb and vesc are the satellite’s orbital speed
and the escape velocity from its surface. U and Ux are the encounter speed and
the radial component of the encounter velocity in units of the satellite’s orbital
speed vorb (Öpik 1951). Following Öpik’s formulae as written for hyperbolic
orbits (Shoemaker & Wolfe 1982), we have

U 2 ¼ 3� ð1� eÞ=q� 2 cos i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1þ eÞ

p
;

U2
x ¼ 2� ð1� eÞ=q� qð1þ eÞ;

v2i ¼ v2esc þ v2orbU
2;

where q, e, and i are the planetocentric orbital elements of a stray planetesimal
and vi is the impact speed. Because vescTvorbU in our case, the effects of
gravitational focusing in the above equations can be neglected.

9 Here and in the following we use d for the planetesimal’s (i.e., impactor’s)
diameter to distinguish it from D, which we use for the moon’s (i.e., target’s)
diameter.
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We therefore assumed that these angles have uniform random
values between zero and 2�. We found that the distribution of
inclination i with respect to the planet’s equator can be de-
scribed by

Nð<iÞ ¼ 1
2
ð1� cos iÞ ð9Þ

(see also Zahnle et al. 1998). This distribution corresponds to
an isotropic distribution of velocities of planetesimals as seen
by the planet.

Beaugé et al.’s (2002) simulations also yielded information
about the distributions of planetocentric pericentric distances q
of planetesimals. From their results we found that N(<q) / q2

for q > 0.06RH and every outer planet. This is consistent
with a regime in which high-speed hyperbolic encounters
abound. For q< 0.06RH, most of the encounters occur in
quasi-parabolic orbits, and consequently, the square-law ap-
proximation ceases to be precise. This is not a problem,
however, because we are primarily interested in the impact
rates on irregular satellites, which are dominated by plane-
tesimals with q > 0.06RH.

5.1. Distribution of Jacobi Constant

In addition to$, �, k, i, and q, we need one last variable for
the complete description of an encounter. Instead of the plan-
etocentric eccentricity, we use the heliocentric Jacobi constant
C because it provides an interesting link between local (plan-
etocentric) variables and the global heliocentric distribution of
the disk planetesimals. A detailed construction of the rela-
tionship between C and e is given in the Appendix. There we
show that in planetocentric orbital elements, the Jacobi con-
stant C is given by

C ¼ c0 þ c1hþ c2h
2; ð10Þ

where h = [GM0q(1 + e)]1/2 is the planetocentric angular mo-
mentum per unit mass of the incoming body. The coefficients
ci are given by

c0 ¼
2a0GðM� þM0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a20 þ 2qa0 cos �

p � GðM� þM0Þ

þ 2GM0

�
a0

q
� 1

�
þ 2a0n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM� þM0Þa0

p
� 2a0

�
GM0q

a20
þ a0n

2
0q

�
cos �; ð11Þ

c1 ¼ 2a0n0 cos i;

c2 ¼�a0=q; ð12Þ

where G is the gravitational constant,M� and M0 are the Sun’s
and the planet’s masses, a0 is the planet’s semimajor axis, and
n0 is the planet’s orbital frequency. Equation (10) with these
coefficients is valid for any type of conic, be it elliptical
(e< 1), parabolic (e = 1), or hyperbolic (e > 1). The coeffi-
cient c0 depends on the phase angle �; the quantity � � � gives
the relative position of the pericenter with respect to the Sun in
the planetocentric reference frame. We assume that � is a
random variable with a uniform distribution between zero
and 2�.

We find that the distribution of C in Beaugé et al.’s (2002)
numerical simulations bears a close resemblance to a lognor-
mal distribution in Cmax�C, where Cmax is the maximum
value of C detected for encounters with a given planet. We can

thus approximate the differential distribution of C via

NðCÞ ¼ 1ffiffiffiffiffiffi
2�

p
Cmax � Cj jS

� exp

�
� ½ log ðCmax � CÞ �M �2

2S2

�
; ð13Þ

where M and S are the mean value and standard deviation,
respectively. These parameters were determined numerically
from Beaugé et al.’s data (Table 1).

A comparison between the determined lognormal distri-
butions of C and the distributions of C obtained numerically by
Beaugé et al. (2002) is shown in Figure 2. The numerical
distribution for Jupiter shows some peaks and valleys that are
not reproduced by the lognormal distribution. In addition, the
lognormal distribution shows somewhat larger values at C�
2.9–3.0 than the numerical data. The errors introduced by this
compromise are small in the context of this work.

The cumulative distribution for a lognormal function is
given by

Nð>CÞ ¼ 1

2
þ 1

2
erf

�
log ðCmax � CÞ �Mffiffiffi

2
p

S

�
; ð14Þ

where erf is the error function. Taking x = N(>C) with x 2
[0, 1] and inverting equation (14), we obtain

log ðCmax � CÞ ¼ M þ
ffiffiffi
2

p
S erf�1 ð2x� 1Þ: ð15Þ

Thus, in terms of a uniform random variable x 2 [0, 1], the
distribution of C is given by

C ¼ Cmax � exp ½M þ
ffiffiffi
2

p
S erf�1 ð2x� 1Þ�: ð16Þ

5.2. Distribution of Eccentricities

So far, and apart from the trivial angular variables, we ob-
tained the encounter distributions in terms of C, q, and i.
Inverting equation (10), we determine the angularmomentum as
h = h(C, q, i, �), where � is a random angle. Finally, using the
relationship between angular momentum and eccentricity, we get

e ¼ h2

qGMp

� 1: ð17Þ

Figure 3 shows the eccentricity distributions for Jupiter and
Neptune for q = 0.2RH, 0.4RH, and 0.8RH. The agreement
between model and numerical distributions is good. In gen-
eral, the model distribution reproduces the numerical data with

TABLE 1

Parameters of the Lognormal Distribution of the

Jacobi Constant for Each Planet

Planet Cmax M S

Jupiter.................................................... 3.039 �1.694 0.780

Saturn .................................................... 3.017 �1.856 0.928

Uranus ................................................... 3.005 �2.750 1.315

Neptune ................................................. 3.006 �2.773 1.311

Notes.—The columns list the maximum value of C detected for encounters
with a given planet (Cmax), the mean value of C (M ), and the standard devi-
ation of C (S ). These parameters are used by our encounter-generator program
to produce distributions of C.
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errors smaller than �20% for qk 0.1RH. Errors of this order
will not affect our results, because uncertainties in other model
parameters (e.g., the SFD of planetesimals) are much larger.
For qT0.1RH (not shown here), the model distribution is
deficient in quasi-parabolic orbits (i.e., orbits with e� 1).
Fortunately, these values of q are less relevant for this study
because encounters at small q are infrequent. Consequently,
most impacts on the irregular moons occur from impactors
with qk 0.1RH.

6. SCALING FOR IMPACTS

We will study two cases: (1) impacts that lead to cata-
strophic disruptions of moons and dispersal of the resulting
fragments, and (2) large cratering impacts. While case 1 is

important to understand issues related to satellite survival,
case 2 is more relevant for satellite families at Jupiter.
For case 1, we use the threshold for a catastrophic disrup-

tion and dispersal of fragments determined by Benz &
Asphaug (1999). They used a smoothed particle hydrody-
namics method to simulate colliding rocky and icy bodies in
an effort to self-consistently define the threshold Q *D. This
threshold is defined as the specific energy required to shatter
the target body and disperse the fragments into individual but
possibly reaccumulated objects, the largest one having exactly
half the mass of the original target. Where appropriate, we will
use a simplified terminology in the following text, where by
catastrophic ‘‘disruption’’ we mean catastrophic disruption of
the parent body and dispersal of the resulting fragments

Fig. 2.—Differential distributions of the Jacobi constant from Beaugé et al. (2002, solid lines) and our lognormal fits (dashed lines; eq. [13]). Parameters of the
lognormal distribution are given in Table 1.
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Fig. 3.—Comparison between model and numerical distribution of eccentricities for Jupiter (left) and Neptune (right) for q = 0.2RH, 0.4RH, and 0.8RH.
Histograms in dashed lines show numerical data obtained from Beaugé et al. (2002); histograms in solid lines are the model distributions (see eq. [16]). The peak
present for Neptune at q = 0.2RH is probably caused by the temporary capture of one or a few planetesimals and is thus beyond the scope of our model.



in the sense defined above. We will not study cases in which
precursor moons were catastrophically disrupted but not
dispersed (i.e., shattered; see Richardson et al. 2002 for a
definition), because these events do not produce observable
families.

The functional form of Benz & Asphaug’s (1999) law is
given by

Q *D ¼ Q0ðRPBÞa þ B�ðRPBÞb ergs g�1; ð18Þ

where RPB is the radius of the parent body (in centime-
ters), � is the density of the parent body (in g cm�3), and Q0,
B, a, and b are constants. This functional form represents
two distinct regimes, dominated by (1) material strength
(first term, a< 0) and (2) self-gravity (second term, b > 0).
Because self-gravity dominates for RPBk 100–200 m (Benz
& Asphaug 1999), we concentrate on the second term in
equation (18).

We will assume that irregular moons are primarily composed
of ice. Benz&Asphaug (1999) calculate coefficients B and b for
ice and two different impact speeds: 0.5 and 3 km s�1. For
0.5 km s�1, B = 2.1 ergs cm3 g�2 and b = 1.19. For 3 km s�1,
B = 1.2 ergs cm3 g�2 and b = 1.26. Because impact speeds
(Vimp) between planetesimals and satellites range between 0.5
and 10 km s�1 (Beaugé et al. 2002; Table 2 of this paper), we
interpolate/extrapolate from the B and b given by Benz &
Asphaug to obtain Q *D for any value of the impact speed.

For cratering impacts, we use the scaling law derived from
laboratory experiments of impacts into sand and from large
explosions. Schmidt & Housen (1987; supplemented with the
angular dependence assumed by Zahnle et al. 2003) suggest
the following relation for the volume of a crater:

V ¼ 0:13

�
mi

�t

�0:783

g�0:65

�
�i
�t

�0:217

v1:3i cos � cm3; ð19Þ

where the impactor has mass mi, density �i, and speed vi, and
where the surface gravity is g and the target density is �t. All
quantities in equation (19) have to be evaluated in cgs units.
The incidence angle � is measured from the zenith. The mean
and median value for the incidence angle for isotropic ve-
locities is 45

�
. We will assume � = 45

�
.

Strictly speaking, equation (19) applies only to the volume
of a geometrically simple, bowl-shaped transient crater that
forms immediately after impact; a different scaling applies to
larger, morphologically complex craters (Zahnle et al. 2003).
We use equation (19) for the following reasons: (1) Craters on
the Moon that have diameters smaller than about 15 km are
simple craters. The transition from simple to complex should
occur at a smaller crater size for a lunar-sized body made of a
weaker material, such as ice. However, the size above which a
crater is complex is expected to be larger for a smaller body
(because gravity is weaker). When the competing effects of
material strength and gravity are taken into account, it appears
likely that complex craters may not occur at all on most ir-
regular satellites. (2) Even if we used the relation given by
Zahnle et al. (2003) for icy satellites (see Schenk et al. 2004),
complex craters would be at most 50% bigger in diameter than
simple craters. That accuracy is adequate for us because the
uncertainty originating from the Schmidt & Housen (1987)
scaling relationship is probably of comparable size. Moreover,
volumes of simple (eq. [19]) and complex (Zahnle et al. 2003)
craters differ by less than 50%, because complex craters are
shallower than the simple craters.

7. RESULTS

We calculate the rates of disruptive and cratering collisions
of real and fictitious irregular moons. For each real irregular
moon, we assume that its orbital elements a, e, and i are fixed
and equal to the mean values determined by Nesvorný et al.
(2003a). We neglect gravitational focusing by the moons,
which is negligible in the regime of sizes and impact speeds
investigated here.
Table 2 shows the mean collision probabilities per en-

counter per area (�Pcol /�) and mean impact speeds (Vcol) for
selected irregular moons.10 For Jupiter, we list only the
largest moons of every group. The quantities Pcol and Vcol

were computed by averaging over 105 planetesimal encounters
within 1 Hill radius of a planet. This number of encounters is
large enough to attain the convergence limit to within a 1%
precision. The encounters were generated using the recipe
explained in x 5.
In Table 2, the collision speeds Vcol are generally larger for

moons that are closer to a planet. This is expected because the
orbital speeds of satellites and planetocentric speeds of plan-
etesimals are both larger at smaller distances from the planet
(Beaugé et al. 2002). Also, the collision probabilities Pcol are
larger at smaller distances. What we see here is probably the
effect of gravitational focusing by the parent planet. In the
absence of gravitational focusing, Pcol would be roughly con-
stant with planetocentric distance because all locations within a
Hill sphere would be receiving roughly the same number of
planetesimals. In fact, the difference in Pcol between the in-
nermost and outermost irregular satellites of a given planet is
not large. The effects of gravitational focusing by a planet are
more important for the regular moons that orbit at smaller a
than for the irregular satellites (Zahnle et al. 2003).
Because Pcol and Vcol do not vary much among the irregular

moons of planet j ( j = 5–8 from Jupiter to Neptune), we
calculate their mean values hPcolij and hVcolij (Table 2) and use
hPcolij and hVcolij to discuss the disruption and cratering rates on
the irregular moons of planet j. The mean values hPcolij and
hVcolij progressively decrease with the increasing semimajor
axis of a planet, that is, from Jupiter to Neptune. For this reason,
we expect that the consequences of planetesimal bombardment
were more severe at Jupiter than at Neptune. At first glance, this
result may be compatible with observations, because the orbital
distribution of Jovian irregular satellites shows clear signatures
of past collisions (e.g., the Ananke and Carme families), while
the same structures are not observed among the irregular sat-
ellites of Saturn, Uranus, and Neptune. Unfortunately, we do
not yet know of enough irregular moons with 1–10 km diam-
eters at Saturn, Uranus, and Neptune to detect structures like the
Ananke and Carme families at these planets. Moons of these
sizes at Saturn, Uranus, and Neptune are very faint and difficult
to detect (see, e.g., Nesvorný & Dones 2002).
We use the following procedure to calculate the probabil-

ity that a diameter D moon of planet j is catastrophically
disrupted: For Q *D (eq. [18]) and the characteristic impact
speed hVcolij (Table 2), we calculate the diameter d* of the
smallest impactor that can catastrophically disrupt the moon.
The total population of impactors larger than this size is
N(>d*) (eqs. [6]–[8]). Beaugé et al. (2002) found that every
planetesimal suffers on average N enc

j = 27.4, 21.4, 31.9, and

10 The quantity listed as 1014Pcol /� in Tables 5, 6, and 7 of Nesvorný et al.
(2003a) should have been labeled 1014�Pcol /�. The calculations of impact rates
in Nesvorný et al. (2003a) are correct.
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51.2 encounters within 1 Hill radius of Jupiter, Saturn, Uranus,
and Neptune, respectively, before it is removed from the solar
system. The disruption rate is then x = N enc

j N(>d*)h�Pcol/�ij
� (D/2)2, where hPcolij is taken from Table 2. The probability
p(D) that the diameter D moon is catastrophically disrupted by
impacts from the residual planetesimal disk of mass Mdisk is
p(D) = 1 � exp (�x) (according to Poisson statistics), where
Mdisk is calculated from equations (6), (7), and (8) using a bulk
density of 1 g cm�3 for planetesimals.

Figures 4, 5, and 6 show p(D) for our case A, B, and C size-
frequency distributions of planetesimals, respectively. We first
discuss these cases separately.

Figure 4 shows an interesting behavior of p(D). Large
moons (D > 100 km) are difficult to disrupt because a large d*
is needed and there are not enough impactors with diameters
greater than d* for plausible values of Mdisk. On the other
hand, p(D) decreases with D for D< 10 km because NA(>d)
is very shallow for d< 1 km and there are just not enough
impactors in this size range to compensate for the small cross

sections of D< 10 km moons. In effect, planetesimals with
our case A size-frequency distribution NA(>d) will pref-
erentially disrupt satellites of intermediate sizes (D� 10–
100 km).

Figure 5 tells a different story. Because NB(>d) is steeper
than NA(>d) at small d, there are now enough small impactors
to make the survival of small moons difficult. The transition
from high to low probability of disruption generally occurs in
the 10–100 km diameter range. The same transition is more
abrupt in case C because NC (>d) (eq. [8]) is steeper than
NB(>d) down to smaller sizes (Fig. 6). With NC(>d), satellites
with DP 10 km have disruption probabilities of �1 for even
the smallest considered Mdisk (=10 M�). This makes the sur-
vival of early-captured DP 10 km moons difficult.

8. DISCUSSION

To place Figures 4–6 in the context of satellite formation,
we describe the likely sequence of events that led to the
capture of irregular satellites. The irregular satellites were

TABLE 2

Collision Rates and Impact Speeds for Irregular Satellites

Satellite

�Pcol /�

(10�16 km�2)

hVcoli
(km s�1)

hai
(AU) hei

hii
(deg)

D

(km)

Jupiter:

Themisto (S/1975 J1) ........ 4.24 8.70 0.049422 0.2513 44.41 8

Leda.................................... 4.12 7.78 0.074448 0.1633 28.07 20

Himalia............................... 4.12 7.73 0.076427 0.1591 28.59 120�150

Elara ................................... 4.10 7.65 0.078113 0.1158 27.63 86

Lysithea .............................. 4.10 7.70 0.078334 0.2126 28.05 36

Ananke ............................... 3.80 6.70 0.14067 0.2429 147.73 28

Carme................................. 3.79 6.58 0.15450 0.2633 164.53 46

Pasiphae ............................. 3.77 6.50 0.15671 0.3871 148.43 60

Sinope ................................ 3.77 6.52 0.15811 0.2967 157.39 38

Average .......................... 3.99 7.32

Saturn:

Kiviuq (S/2000 S5)............ 3.32 5.11 0.075561 0.3082 47.90 17

Ijiraq (S/2000 S6) .............. 3.32 5.10 0.075914 0.3027 48.00 14

Phoebe................................ 3.31 5.07 0.086478 0.1642 175.18 240

Paaliaq (S/2000 S2) ........... 3.24 4.87 0.10035 0.3462 49.23 25

Skadi (S/2000 S8).............. 3.22 4.88 0.10412 0.2731 152.00 8

Siarnaq (S/2000 S3)........... 3.21 4.78 0.11739 0.3180 47.73 45

Erriapo (S/2000 S10) ......... 3.21 4.74 0.11706 0.4690 37.49 10

Albiorix (S/2000 S11) ....... 3.22 4.79 0.10949 0.4907 37.46 30

Tarvos (S/2000 S4) ............ 3.21 4.77 0.12126 0.5178 38.07 16

Mundilfari (S/2000 S9)...... 3.20 4.76 0.12421 0.2079 167.14 7

Suttung (S/2000 S12) ........ 3.18 4.67 0.12938 0.1155 176.05 7

Thrym (S/2000 S7) ............ 3.18 4.69 0.13553 0.4709 175.56 7

Ymir (S/2000 S1) .............. 3.14 4.63 0.15334 0.3368 173.06 20

Average .......................... 3.23 4.84

Uranus:

Caliban (S/1997 U1).......... 3.37 2.70 0.047900 0.1922 141.19 60

Stephano (S/1999 U2) ....... 3.34 2.65 0.053133 0.2325 143.46 20

Sycorax (S/1997 U2) ......... 3.23 2.44 0.081501 0.5197 156.93 120

Prospero (S/1999 U3) ........ 3.19 2.38 0.10952 0.4378 149.32 30

Setebos (S/1999 U1).......... 3.16 2.36 0.11711 0.5776 153.58 30

Average .......................... 3.26 2.51

Neptune:

Nereid................................. 1.57 2.46 0.03690 0.7460 9.66 340

Average .......................... 1.57 2.46

Notes.—The columns are satellite name, ‘‘intrinsic’’ collision probability (�Pcol /�, from eq. [5]), mean collision speed (Vcol),
mean semimajor axis (hai), mean eccentricity (hei), mean inclination (hii), and diameter (D). The intrinsic collision probability is
given in units of 10�16 km�2 per encounter of a planetesimal within 1RH of a planet. Mean orbital elements were taken from
Nesvorný et al. 2003a. The sizes of most moons were calculated from their magnitudes using albedos A = 0.04, 0.05, and 0.07
for satellites of Jupiter, Saturn, and Uranus, respectively. The sizes for Himalia and Nereid were taken from Porco et al. 2003 and
Thomas, Veverka, & Helfenstein 1991.
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probably captured via dissipation of their orbital energy in
circumplanetary gas disks (Pollack et al. 1979; Ćuk & Burns
2004). Indeed, an object that suffers a low-speed encounter
with a planet may be temporarily captured even in the absence
of a disk (Kary & Dones 1996), then lose kinetic energy via
aerodynamic drag in the residual circumplanetary gas disk,
and eventually end up on a planet-bound orbit. These events
probably occurred during the late phases of the circum-
planetary disk’s lifetime, because otherwise the captured ob-
ject would spiral into the planet by the effects of gas drag
(Pollack et al. 1979; Ćuk & Burns 2004). By contrast, in the
late stages of formation of the Jovian planets, the surface
density in the circumplanetary disk was likely orders of
magnitude smaller than in a ‘‘minimum mass’’ nebula, and the
lifetime against gas drag, even for a kilometer-sized irregular
satellite, probably exceeded 1 Myr (Canup & Ward 2002;
Mosqueira & Estrada 2003a, 2003b).

During early epochs, satellites must have survived not only
the effects of circumplanetary gas drag, but also a phase of
heavy bombardment during which myriads of planetesimals

were traversing the planets’ neighborhoods. To constrain the
maximum mass of the planetesimal disk at the time of the
irregular moons’ formation, we will require that the collision
rates between moons and planetesimals were low enough to
guarantee the moons’ survival. We will use Figures 4, 5, and 6
to this end. It is also clear that the mass in the planetesimal
diskwas not strongly depletedwhen the irregularmoons formed
if the irregular moons are, in fact, captured planetesimals.
For the case B and C distributions (Figs. 5 and 6), survival

of an irregular satellite at Jupiter was unlikely unless (1) the
moon was large enough or (2) the planetesimal disk was
already partially depleted when the moon was captured. For
example, the probability of catastrophic disruption p(D)< 0.5
for case C for Dk 60 km and Mdisk = 10 M� and for Dk
80 km and Mdisk = 50 M�. Because parent retrograde irregu-
lar satellites at Jupiter have 28 km P D P 60 km, we require
MdiskP 10 M� for their survival if case C applies. Most pro-
grade irregular satellites at Jupiter probably derive from a
single large parent body with D� 150 km (Ćuk & Burns
2004). Interestingly, the breakup of this large parent moon by

Fig. 4.—Disruption probability p(D) of irregular satellites from impacts by stray planetesimals: (a) Jupiter, (b) Saturn, (c) Uranus, and (d) Neptune. The planets
gradually eliminate the residual planetesimal disk at 10–35 AU and send numerous potential impactors into planet-crossing orbits. For impactors, we use NA(>d)
(eq. [6]) normalized to Mdisk = 10, 50, and 200 M� (solid lines; from bottom to top). The sizes of selected irregular satellites are denoted by vertical dashed lines.
Survival of these moons is likely only for low p(D). From left to right, we show (a) Themisto, Ananke, Carme, and Himalia at Jupiter; (b) the smallest known
irregular moons, S/2000 S3 (Siarnaq) and Phoebe at Saturn; (c) Stephano and Sycorax at Uranus; and (d) Nereid at Neptune.
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an external planetesimal impactor is unlikely for even large
Mdisk and independent of whether we use the case A, B, or C
distribution. We discuss this interesting case below. Themisto,
a D = 8 km prograde irregular moon of Jupiter, does not seem
to be related to the Himalia family. Its survival is more
problematic and requires small Mdisk, the case A distribution,
or both. In general, the case A distribution poses weaker
constraints on Mdisk because p(D)< 0.7 at Jupiter for any D
with MdiskP 50 M� (Fig. 4a).

The constraints shown in Figures 4–6 for satellites of
Jupiter are shown in a different way in Table 3. (We focus on
the Jovian system because much smaller irregular moons have
been discovered at Jupiter than around the other giant planets.
Thus, Jovian satellites provide the strongest observational
constraint.) We list the range of satellite diameters DD (for
case A) or the maximum diameter (cases B and C) for
which disruption of a given moon is 50%, 95%, or 99% likely.
Cases B and C constrain the mass of the protoplanetary disk
to be less than 50 M� (and for case C, much less) at the
time when the present-day irregular satellites formed. Jupiter
has 20 known irregular moons with D� 2 km. It seems
most unlikely that these are the surviving remnants of a
population of 2000 irregular moons (assuming 99% were

destroyed).11 Thus, we reject models in which DD(99%) >
2 km. This criterion implies that Mdisk < 27 M� for case B and
Mdisk < 0.4 M� for case C. These correspond to upper limits of
1� 1012 and 6� 1010 planetesimals with d > 1.5 km at the
time the irregular satellites formed. (By contrast, if the
‘‘scattered disk’’ of comets beyond Neptune is the source of
the Jupiter-family comets [Duncan, Levison, & Dones 2004],
the scattered disk must contain some 108–109 such plane-
tesimals at present [Bottke et al. 2002.]) Thus, at the time the
irregular satellites formed, the protoplanetary disk would have
been depleted compared with the original disk, but much more
populous than at present.

Phoebe (D = 240 km), Sycorax (D = 120 km), and Nereid
(D = 340 km) outlast the phase of heavy bombardment by

Fig. 5.—Same as Fig. 4, but for NB(>d) (eq. [7])

11 Because �50% of the small irregular moons at Jupiter that we see today
are members of the Carme and Ananke families, having 2000 or more defunct
small irregular moons in total would mean that the Carme and Ananke families
originally had k50 times more multikilometer members than they have today.
Consequently, they would correspond to large-scale catastrophic collisions
rather than to the smaller scale cratering impacts that we favor in this work.
Although such catastrophic collisions cannot be ruled out, we believe that
small-scale cratering impacts are a more straightforward interpretation of the
current observational data.
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planetesimals for any plausible Mdisk. Other known irregular
satellites of Saturn and Uranus range in size from D� 7 to
D� 60 km. With the case C distribution, these smaller
satellites require small Mdisk. In particular, p(D)< 0.5 for
D > 30 km with Mdisk = 10 M� at Saturn (Fig. 6b). Thus, sur-
vival of many DP 30 km irregular moons at Saturn is prob-
lematic unless MdiskT10 M�, or the observed moons
represent only a small fraction of the original population.
Cases A and B (Figs. 4 and 5) place weaker constraints on
Mdisk.

Some time after their captures occurred, some of the moons
suffered energetic (but probably subcatastrophic) collisions
(e.g., Ananke and Carme; x 2). The tight clustering of orbits of
the Ananke and Carme family members suggests that the
circumplanetary gas envelope had already dissipated at the
time when these collisions occurred. Otherwise, the size-
dependent aerodynamic gas drag would disperse these clusters
and sort them according to the moons’ diameters, which is not
observed (see, e.g., Gladman et al. 2001a). Using equation
(19) and typical impact speeds and ejecta mass (x 2) for
the Ananke and Carme families, we estimate the required size
for a planetesimal impactor d. Using this size, the SFD of
impactors, and impact probabilities, we then determine the

minimum required Mdisk that yields cratering impacts of di-
ameter d planetesimals on Ananke and Carme.
With a 6.7 km s�1 impact speed (Table 2) for an impact on

Ananke and equation (19), we find that a planetesimal im-
pactor with d�0.53 km and 1 g cm�3 bulk density would
excavate and disperse enough material to produce the ob-
served members of the Ananke family. Similarly, a d �
0.59 km impactor is needed in order to create the Carme
family if it collides with Carme at �6.6 km s�1. Both these
collisions are subcatastrophic, because MLF/MPB� 0.96 and
0.99, where MLF and MPB are the masses of the largest frag-
ment and the parent body, respectively. The specific energies
of these impacts are 1.5� 106 and 4.5� 105 ergs g�1, or
only �2.3% and �0.4% of Q *D defined by equation (18). We
calculate that to have a k50% probability that an impact of
this energy or greater occurred on Ananke, Mdiskk 8 M� with
case A, Mdisk k 1.7 M� with case B, and Mdiskk 0.2 M� with
case C. For Carme, we find Mdiskk 3.3 M� with case A,
Mdiskk 0.7 M� with case B, and Mdiskk 0.1 M� with case C.
The required values of Mdisk are very sensitive to the assumed
SFD of planetesimals because our cases A, B, and C have
very different power indices at subkilometer impactor sizes.
Nevertheless, all calculated values for Mdisk are plausible,

Fig. 6.—Same as Fig. 4, but for NC (>d) (eq. [8])
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making it conceivable that the Ananke and Carme families
were, indeed, produced by impacts of subkilometer plane-
tesimals during early epochs. To summarize, to form theAnanke
and Carme families by this mechanism, we require an Mdisk of
the contemporary disk that is only a small fraction of the mass
of solids initially present (Hayashi 1981; Hahn & Malhotra
1999).

Another interesting and related issue is the provenance of the
prograde Himalia group at Jupiter. We estimate from the ob-
served members of the Himalia family that the prograde group
progenitor was a body �150 km across. If so,MLF/MPB� 0.78.
This ratio is smaller and requires a larger scale impact than that
needed to explain the Ananke and Carme families. Using
equation (19) and a 7.7 km s�1 impact speed (Table 2), we
calculate that a d� 13 km planetesimal must have impacted the
prograde group progenitor body. The specific energy of this
impact is 2.1� 108 ergs g�1, or about 40% of Q *D (eq. [18]),
which is in perfect agreement with the scaling for sub-
catastrophic collisions given by Benz & Asphaug (1999; their
eq. [8]).

We calculate that to have a k50% probability that an im-
pact of this energy occurred on the prograde group pro-
genitor, Mdiskk 70 M� for any of our three SFDs. These
values of Mdisk may be too large (Hahn & Malhotra 1999;
Beaugé et al. 2002) unless Himalia was captured very early.
In that case, it probably would have been swallowed by
Jupiter as a result of gas drag or density wave torques. We
thus believe that the Himalia group probably did not form by
an impact of a stray planetesimal. Instead, we speculate that

the progenitor of the Himalia family was hit and disrupted
more recently by an impact of another irregular satellite of
Jupiter. Nesvorný et al. (2003a) found that the expected
number of impacts between Himalia and Elara is �1.5 per
4.5 Gyr and that such a collision would be catastrophic. It is
difficult to characterize the disruption history of Himalia
more precisely, because satellites in the Himalia group prob-
ably suffered other collisions between themselves since their
formation (Nesvorný et al. 2003a).

The Phoebe group at Saturn (Gladman et al. 2001a) poses
another intriguing problem that requires explanation. If this
group formed by a collision of Phoebe with a stray planetes-
imal, we calculate that a d� 3 km planetesimal impacting at
5.1 km s�1 (Table 2) and excavating a �40 km diameter crater
on Phoebe’s surface can best explain it. It is likely that such
an event would occur (i.e., with over 50% probability) if
Mdisk k 0.2–1.4 M� at the time when Phoebe was captured,
with the exact value depending on the detailed profile of the
planetesimals’ SFD. It is thus statistically plausible that the
Phoebe group was created by such an event. What is less
well understood is the unusually large �V (100–400 m s�1)
calculated for the Phoebe group members from the Gauss
equations (Nesvorný et al. 2003a). Even more striking is the
fact that the outermost satellites of this group do not intersect
the orbit of Phoebe (Ćuk & Burns 2004). It is possible that
some yet-to-be-identified mechanism dispersed fragments of
the Phoebe group after its formation, or that its members
have other (possibly unrelated) origins.

9. CONCLUSION

We proposed that the Ananke and Carme families of ir-
regular satellites at Jupiter formed during early epochs when
Ananke and Carme were cratered by impacts of stray plane-
tesimals from the residual protoplanetary disk. Conversely, we
found that formation of the Himalia group by the same
mechanism is unlikely unless a massive residual planetesimal
disk was still present when the parent body of the Himalia
group was captured. We speculate that the Himalia family
formed more recently by a collision of its progenitor with
another irregular satellite of Jupiter.

We placed constraints on the mass of the residual disk
(1) when satellites were captured, and (2) when the Ananke
and Carme families formed. These values depend sensitively
on the assumed size-frequency distribution of planetesimals. For
example, we require MdiskP 10 M� to guarantee survival of the
retrograde irregular satellites at Jupiter with 28 kmPDP
60 km diameters (Ananke, Carme, Pasiphae, and Sinope), if
our case C distribution applies. Similarly, we estimated that
Mdisk k 0.1–8 M� is required to produce the Ananke and
Carme families by cratering impacts of planetesimals on
Ananke and Carme.

Unfortunately, we cannot draw stronger constraints on
Mdisk because of the uncertainty caused by the poorly known
profile of the size-frequency distribution of planetesimals. By
using three distributions, we made an effort to span a realistic
range of SFDs. It may be that the case C distribution is
more realistic for the primordial planetesimal disk and that the
case A and B distributions, which are more characteristic for
ecliptic comets, have resulted from later collisional grinding
in the Kuiper belt. We do not know. Hopefully, future studies
of these issues will help us to select a specific SFD and cal-
ibrate constraints generated by this work on Mdisk to this
distribution.

TABLE 3

Constraints on the Mass of the Planetesimal Disk from the

Known Sizes of the Jovian Irregular Satellites

Mdisk DD(50%) DD(95%) DD(99%)

Case A:

10....................... . . . . . . . . .

50....................... 9–69 . . . . . .

200..................... 1–169 10–66 21–33

Case B:

10....................... 21 . . . . . .

50....................... 67 26 10

200..................... 164 64 48

Case C:

10....................... 55 22 17

50....................... 79 64 48

200..................... 136 76 70

Notes.—For three assumed size distributions (cases A, B, and C)
and total heliocentric disk masses (10, 50, and 200 M�), we list the
range of Jovian satellite diameters (DD) such that 50%, 95%, and
99% of the satellites would have been catastrophically disrupted
and dispersed. The case A size distribution has the fewest kilo-
meter-sized (and smaller) impactors for a given disk mass, while
case C has the most such impactors, so that satellite destruction
probabilities are larger for case C than for the other cases. For
example, in case A with a 10 M� disk, all satellites with diameters
D > 1 km have better than a 50% chance of survival. In case Awith
a 200M� disk, satellites with diameters between 10 and 66 km have
at least a 95% chance of being destroyed, while both smaller and
larger satellites are more likely to survive (see Fig. 4). For cases B
and C, the probability of destruction is a monotonically decreasing
function of satellite diameter, so we only list one number, the upper
limit on D. For example, for case C and a 10M� disk, satellites with
D � 17 km have a 99% chance of being catastrophically disrupted.
We also indicate with boldface the cases that are inconsistent with
the known sizes of the Jovian irregular satellites.
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APPENDIX

THE JACOBI CONSTANT IN
PLANETOCENTRIC ELEMENTS

We consider a circular restricted three-body system consist-
ing of the Sun, a planet, and a planetesimal with infinitesimal
mass in heliocentric orbit. In this system, the Jacobi constant C
is an integral of the motion. Although this function is usually
written in the Cartesian coordinates of a rotating reference
frame, we can also express C in terms of the coordinates of the
fixed nonrotating system (Brouwer & Clemence 1961) as

C ¼ GM�
rh

þ GM0

rp
þ n0ðxhẏh � yhẋhÞ �

V 2
h

2
; ðA1Þ

where G is the gravitational constant, M� and M0 are the solar
and planetary masses, n0 is the mean motion of the planet,
(xh, yh, zh) are the heliocentric Cartesian coordinates of the
planetesimal, and Vh is its heliocentric speed. Finally, rh and rp
are respectively the heliocentric and planetocentric distances
of the planetesimal.

Denoting by (x0, y0, z0) the heliocentric coordinates of the
planet, we obtain the planetocentric coordinates of the plane-
tesimal (xp, yp, zp) from its heliocentric coordinates (xh, yh, zh)
as

xp ¼ xh � x0; yp ¼ yh � y0; zp ¼ zh � z0: ðA2Þ

Expressions for the velocities are analogous. Assuming ż0 = 0,
we can write

V 2
h ¼ V 2

p þ V 2
0 þ 2ðẋpẋ0 þ ẏpẏ0Þ; ðA3Þ

where Vp and V0 are the planetocentric speed of a planetesimal
and the heliocentric speed of the planet, respectively. Simi-
larly, we have

xhẏh � yhẋh ¼ ðxpẏp � ypẋpÞ þ ðx0ẏ0 � y0ẋ0Þ
þ ðxpẏ0 � y0ẋpÞ þ ðx0ẏp � ypẋ0Þ: ðA4Þ

Because the orbit of the planet is assumed to be circular,

x0 ¼ a0 cos k0; ẋ0 ¼ �a0n0 sin k0;

y0 ¼ a0 sin k0; ẏ0 ¼ a0n0 cos k0; ðA5Þ

where k0 is the mean longitude of the planet. Similarly, we can
express the planetocentric coordinates of the planetesimal as

xp ¼ rp cos ð f þ$Þ; yp ¼ rp sin ð f þ$Þ;
ẋp ¼ ṙp cos ð f þ$Þ � rp ḟ sin ð f þ$Þ;
ẏp ¼ ṙp sin ð f þ$Þ þ rp ḟ cos ð f þ$Þ; ðA6Þ

where this is written in terms of the planetocentric orbital
elements: f is the true anomaly and $ is the longitude of the
pericenter.
In the following, we will write C as a function of planet-

ocentric orbital elements at pericenter. We require that

f ¼ 0; rp ¼ q; ṙ ¼ 0: ðA7Þ

Introducing these expressions into equations (A3) and (A4),
we obtain

xhẏh � yhẋh ¼ ðxpẏp � ypẋpÞ þ ðx0ẏ0 � y0ẋ0Þ
þrpa0ðn0 þ ḟ Þ cos ð$� k0Þ;

V 2
h ¼ V 2

p þ V 2
0 þ 2rpa0n0 ḟ cos ð$� k0Þ: ðA8Þ

Before introducing these new expressions into C, we can
simplify them further. For example, we can use the following
relationships:

xpẏp � ypẋp ¼ h cos i;

x0ẏ0 � y0ẋ0 ¼ ½GðM� þM0Þa0�1=2;
V 2
0 ¼ GðM� þM0Þ=a0;

r 2s ¼ q2 þ a20 � 2qa0 cos ð$� k0Þ; ðA9Þ

where h is the planetocentric angular momentum per unit mass
of the planetesimal. Similarly, at pericenter, we have that

ḟ ¼ h=q2; Vp ¼ h=q; ðA10Þ

which allow us to write the angular and linear velocities in
terms of the angular momentum.
Finally, introducing all these expressions into the equations

for C and grouping terms in powers of h, we obtain

C ¼ c0 þ c1hþ c2h
2; ðA11Þ

where the functions ci are given in equations (11)–(12). These
expressions constitute a precise relationship between the
planetocentric elements of a planetesimal at pericenter and C.
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