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Instituto Astronômico e Geofı́sico, Universidade de São Paulo, Caixa Postal 9638, CEP 04301, São Paulo, Brasil

Received 29 August 1996 / Accepted 19 September 1996

Abstract. We have applied the frequency map analysis of
Laskar (1993) to the following dynamical models of the 2/1
asteroidal mean-motion resonance: the planar restricted three-
body model and the planar restricted four-body model with Sat-
urn. It allowed us to reproduce the chaotic region, which is
formed by the overlap of secondary resonances in low eccen-
tricities. We have examined the chaos generated by high-order
secondary resonances in moderate eccentricities and concluded
that, in the three-body planar model, most of the area remains
regular even in the model with Jupiter’s eccentricity equal to
0.061. But, when the basic secular frequencies of Jupiter’s orbit
were taken into account, the moderate-eccentricity region turned
chaotic and a slow chaotic diffusion appeared. The diffusion was
found to be more significant in the full, planar four-body model.
Asteroids exhibited random excursions in the phase space and
we studied this possible mechanism of resonance emptying in
several 10-Myr integrations.
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1. Introduction

The 2/1 asteroidal mean-motion resonance with Jupiter coin-
cides with the Hecuba gap. Until now, no complete explanation
of the origin of this gap exists. Apart from cosmogonic con-
jectures, the most promising is the hypothesis that asteroids
initially present in the resonant region were transferred to the
high-eccentricity or Jupiter approaching orbits and were conse-
quently ejected from the resonance.

Giffen (1973) discovered the chaotic motion in low eccen-
tricities of the 2/1 resonance. This chaotic region was found to
be confined to the low eccentricities in the three-body planar
model, but numerical integrations with the four major planets
(Wisdom 1987) showed escapes to high eccentricities and sug-
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gested a possible way of how the low-eccentricity chaotic region
was emptied.

Lemaı̂tre & Henrard (1990) explained the existence of the
chaotic zone in low eccentricities by the overlap of secondary
resonances involving the circulation of longitude of perihelion
$ and the libration of critical angle

σ = 2λJ − λ−$ (1)

(λ and λJ are mean longitudes of a resonant asteroid and
Jupiter). Morbidelli & Moons (1993) studied the effect of secu-
lar perturbations of Jupiter’s orbit. They found the chaotic mo-
tion generated by the secular resonances ν5 and ν6 near sepa-
ratrices of the 2/1 resonance and in high eccentricities. In the
case of ν16, they showed that, although placed near the libration
centers, it does not provide any mechanism for transition to the
high eccentricities.

Ferraz-Mello (1994) calculated a set of the Poincaré dia-
grams of the restricted, planar and averaged three-body problem
clearly showing the confinement of the low-eccentricity chaotic
region by regular trajectories. Moreover, he studied the spatial
four-body model with Saturn. His computation of the maxi-
mum Lyapunov exponent (MLE) for a representative sample
of initial conditions showed that the whole 2/1 asteroidal reso-
nance is dominated by chaos. Typical Lyapunov times (inverse
of MLE) were found between 104 and 106 years. This result
raised a question whether the slow chaotic diffusion present in
the model with Saturn led to significant transitions in the phase
space during the solar system existence.

A recent paper of Henrard et al. (1995) explained Wisdom’s
integration. They localized a bridge between the secondary and
secular resonances at inclinations ∼ 25 deg allowing a random
walk from the low to high eccentricities. But even this detailed
work did not answer completely the question of the Hecuba gap
origin. They concluded: ‘Orbits starting with small amplitude of
libration, small inclination and eccentricities between 0.25 and
0.45 do not seem to have many possibilities to evolve. There are
no resonances there except very high order resonances and the
evolution through Arnold diffusion should be very, very slow.’
A study of the chaotic diffusion in the moderate-eccentricity
region is a main objective of this article.
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Fig. 1. Fourier transforms of the filters A and B described in Quinn
et al. (1991), the thin line is 1 − |D| of B where the ripple as well as
the limit of passband are visible (sampling frequency fs is defined by
fs = 1/∆, where ∆ is the sampling interval)

A suitable tool for such a task is the frequency map analysis
(FMA) introduced by Laskar (1990). This technique is based
on a numerical calculation of frequencies, which do not de-
pend on time in a regular system but are time-dependent in a
chaotic system. The chaotic diffusion is then measured through
time evolution of the determined frequencies. The most detailed
overview of FMA was given in Laskar (1993).

2. The technique

The equations of motion of the restricted four-body model (Sun
- Jupiter - Saturn - asteroid) are

r̈ = −Gm�
r

r3
+ G

2∑
i=1

mi

(
ri − r

|ri − r|3 −
ri
r3
i

)
, (2)

where G is the gravitational constant, m� is the mass of the
Sun, m1 and m2 are the masses of Jupiter and Saturn, r, r1 and
r2 are the heliocentric position vectors of the asteroid, Jupiter
and Saturn.

We have performed an extensive number of numerical inte-
grations of Eq. (2) (system Sun-Jupiter-Saturn has been propa-
gated by a parallel integration of the three-body model) using
the symmetric multistep method of Quinlan & Tremaine (1990).
Although slower than the step-variable integrator RA-15 of Ev-
erhart (1985), especially at higher eccentricities, this method is
of better precision due to the reduced error propagation. The
integrator has the form

xn+1 = −
k∑
j=1

αk−jxn−j+1 + h2
k∑
j=1

βk−jfn−j+1 , (3)

where xn is the Cartesian coordinate at step n, fn is a corre-
sponding component of the acceleration computed by Eq. (2),
h is a fixed stepsize and αj , βj are coefficients of the method.
We used the symmetric method with k = 12 (SMU12), which
has αj = αk−j , βj = βk−j , α0 = 1 and β0 = 0. The coefficients
were chosen so that a 13th-order polynomial is integrated ex-
actly.

We have tested a precision of the integrator in the two-body
Keplerian problem. A comparison with the Störmer method
(Cohen et al. 1973) has shown better stability properties of the
symmetric method in higher eccentricities. For example, a step
of 10 days leads to the reasonable relative errors 4 × 10−6 in
semi-major axis and 7×10−4 in mean longitude after 1 Myr for
eccentricity e = 0.5 and orbit at the 2/1 resonance (a stepsize-
period ratio of ∼ 2.5 × 10−4) with SMU12 while the Störmer
method is unstable there. The Runge-Kutta method of the 4th-
order with small stepsize has been used to start SMU12. This is
as accurate as the starting iterator of Cohen et al. (1973).

An effective procedure of a memory management requires
a digital low-pass filter. We used two digital filters called A
and B which are described in Quinn et al. (1991). The filter
A has ripple 3.5 × 10−5, suppression 10−5, limits of passband
and stopband 0.005 and 0.05, respectively. The filter B has,
similarly, ripple 10−9, suppression 10−9, passband 0.05 and
stopband 0.15. See Press et al. (1992) for a definition of these
characteristic parameters.

Data w with a certain sampling on the filter input are re-
placed by w′ on the output following the convolution relation,

w′n =
M∑

m=−M
dmwn−m , (4)

where dm are coefficients of the filter with length 2M + 1. The
discrete Fourier transform of this relation gives

W ′
n = DnWn , (5)

where W ′
n, Wn and Dn denote transforms of w′n, wn and dn.

Fig. 1 shows the Fourier transforms Dn of both filters.
As a result we get the low-band limited signal W ′

n, which
allows us to increase the sampling. The typical value was a
decimation by the factor 6, from the initial spacing of 2 yr to 12
yr. It means, when working with the filter A, that the frequencies
smaller than 40 yr were removed and the frequencies larger than
400 yr were retained. For the filter B, which had to be applied
sequentially two times, these values were 40 yr and 120 yr.

The basic frequencies, which appear in the spectrum of as-
teroid’s osculating elements, are the libration frequency fσ of
the critical argument σ (characteristic period of several hun-
dreds of years) and the circulation frequency f$ of the longi-
tude of perihelion $ (thousands to tens of thousand years). See
Michtchenko & Ferraz-Mello (1995) for an overview of this
subject.
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Fig. 2. The secondary resonances calculated by the semi-numerical
method

The frequencies were determined by Laskar’s technique
(Laskar et al. 1992). One defines a scalar product of two func-
tions f (t) and g(t) on the interval −T ≤ t ≤ T by

〈f, g〉 =
1

2T

∫ T

−T
f (t)ḡ(t)χ(t) dt , (6)

where χ(t) = 1 + cos(πt/T ) is the Hanning window. If f (t) is
singly periodic, f (t) = a1eiω1t, where a1 is a complex amplitude
and ω1 is a frequency, then a modulus of the function φ(ω)
defined by

φ(ω) = 〈f (t), eiωt〉 (7)

has a maximum atω1 andφ(ω1) = a1. Thus, having the values of
f regularly spaced over the 2T -interval as an output of numerical
simulation, we numerically compute the maximum of |φ| and
obtain the frequency ω1.

In a general case, where f includes an infinite number of
periodic terms, we perform Laskar’s iterative process, which is
stopped when a desired number of frequencies is obtained or
if, at a certain step, the new frequency falls closer than π/T to
any already determined one. As a result, we get n frequencies
separated by more than π/T . Amplitudes ak, k = 1, . . . , n
obtained by the final projection complete the reconstruction f ′

of the function f : f ′(t) =
∑n

k=1 akeiωkt.
This representation is not exact and an error, which origi-

nates from overlapping of different terms in φ, is estimated in
the following way. We sample the function f ′ and reconstruct
its representation f ′′ =

∑n
k=1 a

′
keiω

′
kt. The differences between

frequencies |ωk − ω′k| and amplitudes |ak − a′k| can be consid-
ered to be the overlap errors of the representation f ′ (Laskar et
al. 1992).

Fig. 3a and b. The second derivative singularities of the frequency f$
at separatrix crossings and the ratio fσ/f$

Our extension of Laskar’s error estimation is the following.
A final error is calculated as composed from the overlap error
and an error ‘due to residuals’ left in the given peak. As an
error of the amplitude, we take max(ares, δ|a|), where ares is a
maximum of the spectra between f$−π/T and f$ +π/T after
the subtraction of all determined terms. In order to estimate the
frequency error due to the residuals, we imagine a sum of the
function

φ(ω) = 〈a$eif$t, eiωt〉 =

= −a$ sin(ω − f$)T
(ω − f$)T

π2

[(ω − f$)2T 2 − π2]
(8)

and some unknown function with the maximum value ares. The
φ can be approximated by φ′(ω) = a$(1 + bT 2(ω − f$)2) near
f$, where b = (π2−6)/6π2, and the conditionφ′(ω) = a$−ares

gives the maximum frequency distance where a false absolute
maximum can appear:√

6π2

π2 − 6

√
ares

a$

1
T
. (9)

This expression can be seen as an upper estimate of the error
due to residuals. Thus, the final frequency error is computed as
a maximum of δf and Eq. (9).

Now, for a chaotic trajectory, where a change of frequency
determined for different time periods is expected, the error es-
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Fig. 4a–c. Position of the secondary reso-
nances in three models: circular a, elliptic b
and with Saturn c

timation gives us the following criterion for adjusting of T and
an offset (the time interval separating two frequency determi-
nations): If, for certain T , the estimated error is larger than or
comparable with the observed frequency change over the given
offset, the time T must be enlarged and/or longer offset should
be used, and only if the error is apparently smaller than the
frequency change, the chaoticity of the trajectory is affirmed.
The frequencies and amplitudes should be fixed in the case of a
regular trajectory and sufficiently long T .

The error analysis is important since it is necessary to reduce
the timespan of integrations as much as possible in order to be

able to extend the frequency calculations to a large number of
initial conditions.

The frequency f$ is calculated as the strongest peak in the
spectrum of e(t) ei$(t) (e is eccentricity). The frequency fσ is
evaluated in a more complicated way since it is not easy to define
any phase-space variable in which the spectral peak fσ always
dominates (Michtchenko & Ferraz-Mello 1996). We determine
several peaks in spectra and choose the one which is the nearest
to the libration frequency of σ in the three-body circular model.
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Fig. 5. The secondary resonances in the four-body planar model

Fig. 6. The chaotic region in low eccentricities

3. Secondary resonances

Following the semi-numerical method of Lemaı̂tre & Henrard
(1990) and using the Ferraz-Mello & Sato (1989) evaluation of
the perturbing function, as it was done in Moons & Morbidelli
(1993), we have computed a position of several secondary reso-
nances in the planar and circular three-body model. The lowest
and the highest-order secondary resonances are denoted by a
corresponding ratio fσ/fω̃ in Fig. 2. The high-order secondary
resonances reach the moderate eccentricity region and, in the
forthcoming analysis, we will be interested in their exact posi-
tion in the elliptic and four-body planar models.

The behaviour of frequencies at the secondary resonances
is shown in Fig. 3a and b. In Fig. 3a we have plotted a numerical

estimate of ∂
2f$
∂a2 +∂2f$

∂e2 for the set of initial conditionse = 0.217,
$ = 0, λ = 0 and a between 0.624 and 0.629 aJ (3.2467
and 3.2727 AU for aJ = 5.203 AU), computed in the planar
elliptic three-body model by the technique described in Sect. 2.
The three discontinuities at approximately 0.6249, 0.6258 and
0.6278 aJ appear at separatrices of the secondary resonances.

Fig. 7. The 8/1 secondary resonance

Fig. 8. The 9/1 secondary resonance

We identified by evaluation of fσ that the first two correspond to
the 8/1 and the later to the 9/1 secondary resonances. In between
the first and the second discontinuity, the frequencies fσ and f$
are locked in a precise ratio of 8/1 (Fig. 3b). This plateau, which
is typical for the elliptic point crossing, as well as the hyperbolic
point crossing at 9/1, is associated with chosen e = 0.2168.
Other initial values of e, e ∼ 0.225 for instance, lead to the
hyperbolic point crossing at 8/1.

The frequency f$ for the estimate of the derivative in (a)
was calculated from only 2T = 3.2×104 yr, what led to a slight
distortion of the frequency curve. In fact, if T is longer, as it
was done in (b) where 2T = 4 × 105 yr, the second derivative
is equal to zero inside the libration island.
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Fig. 9. The chaotic trajectory in the 9/1 secondary resonance

Fig. 10. The sensitivity of the model to Jupiter’s eccentricity for e = 0.2168

Fig. 4a–c is a comparison of the secondary resonances posi-
tion in three planar models: (a) is the circular three-body model,
(b) is the elliptic three-body model (eJ = 0.048) and in (c), the
effect of Saturn was included. Each rectangle is a narrow strip
centered at the eccentricity 0.217. (a) is in fact a small part of
Fig. 2, the result of the semi-numerical method. The bright strips
in (b) and (c) are the places of the separatrix crossings seen in
Fig. 3a. We have made integrations spanning 3.2 × 104 yr for
a fine net of initial conditions inside the shown rectangles with

spacing 0.0005 in eccentricity and 0.0002 aJ in semi-major axis
(zero initial angles) and, similarly as in Fig. 3, we have computed

the value of |∂2f$
∂a2 | + |∂2f$

∂e2 |. Now, the bright areas in (b) and
(c) are the places where this quantity has a high value, which
shows an approximate position of the separatrices. In the elliptic
and four-body models the 8/1 and 9/1 secondary resonances are
shifted to the left in comparison to the circular model, which
means to lower values of the semi-major axis. They are close to-
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gether and the 8/1 secondary resonance apparently broadens in
the four-body model. Moreover, the 10/1 secondary resonance
appears on the right. The 8/1 secular resonance has an elliptic
island on the studied surface while the 9/1 resonance has a hy-
perbolic point there. It is clearly visible in Fig. 4b but less clear
in Fig. 4c where the resonant borders get fuzzy.

The same computation was extended in the planar four-body
model to a larger area of initial conditions in eccentricities. The
result is shown in Fig. 5. We see there, going along a diagonal
from bottom-left to top-right, the overlapping resonances 6/1
and 7/1 at a ∼ 0.625 aJ (3.25188 AU), a large island of the 8/1
resonance ata ∼ 0.627aJ (3.26228 AU) and weaker high-order
resonances further to the right.

4. The elliptic three-body model

For every initial condition, we have integrated a trajectory in
the three-body planar model (eJ = 0.048) for 1.5 × 105 yr.
We have determined the frequency f$ twice – in two intervals
105 yr overlapping by one half, that means an offset of 5× 104

yr. The initial conditions were 0.62 aJ ≤ a ≤ 0.64 aJ and
0 ≤ e ≤ 0.225 (all angles were zero). The initial conditions for
which the frequency f$ changed relatively by more than 10−3

over the given offset are marked by big crosses in Fig. 6. Small
crosses correspond to the relative changes larger than 10−4 and
the rest, with almost constant f$, is left empty. The chaotic
zone that appears along the low-order secondary resonances
(see Fig. 2) can be compared to Murray (1986) and Wisdom
(1987).

No significant chaotic behaviour exists for e = 0.2 and even
for lower eccentricities on the right side of the dotted rectangle.
In the planar three-body model the high-order secondary reso-
nances are present in this region but they do not overlap and do
not generate a large-scale chaos.

We zoom now the area around the 8/1 and 9/1 secondary
resonances. Figs. 7 and 8 show f$ versus semi-major axis. The
determination is done on the basis of 4× 105 yr numerical inte-
grations of each initial condition (e = 0.2168). Jupiter’s eccen-
tricity equals 0.048 26 here. Fig. 7 is a libration-island crossing,
showing positions of the separatrices at both borders of the flat,
almost horizontal area. We amplified the left separatrix (inset)
to see if some narrow chaotic zone appears there, but even this
additional zoom did not show any irregularities of the frequency
map. A discontinuity of the frequency map at a hyperbolic point
crossing was observed at the 9/1 secondary resonance (Fig. 8).
The zoom revealed a narrow chaotic layer in its vicinity (MLE
equals 10−4.5 yr−1 there).

We placed an asteroid inside this layer with initial conditions
a = 0.625 825 aJ and e = 0.2168 and numerically integrated its
trajectory over 10 Myr (Fig. 9). The frequencies fσ and f$ were
denoted by f1 and f2 in the figure. The parameters of FMA used
here were the same as the ones used for an investigation of the
chaotic diffusion over 10 Myr in the four-body model described
in the following section. Error bars are shown in the figure of
the f$ evolution.

Fig. 11a–d. The regularity of motion at e = 0.25 (left) and the confine-
ment of the low-eccentricity chaos at e = 0.15 (right) for eJ = 0.061

At approximately 6 Myr the trajectory switched from one
mode to another. This behaviour resembles the one observed in
a chaotic trajectory, which is originally at some relatively stable
trajectory with a slowly librating resonant angle and then crosses
the separatrix and appears in a region of faster circulation. The
period visible in the eccentricity evolution corresponds to the
period of the resonant angle of the 9/1 secondary resonance,
almost 3 Myr at the beginning and slightly less than 1 Myr at
the end.

Fig. 10 illustrates a sensitivity of the three-body planar
model to the value of Jupiter’s eccentricity (the number in the
corner of each top figure) in a region close to the low-order
secondary resonances. We estimated the temporal frequency
variation with an offset of 2 × 105 yr (bottom pictures) and
2T = 4× 105 yr. The initial eccentricity of the whole set of the
initial conditions is 0.2168.

From left to right we increased Jupiter’s eccentricity from
0.048 to 0.061. For eJ = 0.048 the whole region is regular
with an exception of a close vicinity of the separatrices of the
secondary resonances (as we have seen in Fig. 8). There are
some secondary resonances of higher degree between the 8/1
island on the left and the 9/1 hyperbolic point at a ∼ 0.6278 aJ :
the small island at a ∼ 0.6270 aJ (resonance 26/3) and the
hyperbolic-like crossing at a ∼ 0.6267 aJ (17/2). The sec-
ondary resonances become more apparent for eJ = 0.053 and
for eJ = 0.057 the area at the right of 8/1 turns chaotic leav-
ing only the small regular island, which is the enlarged 26/3
resonance. For eJ = 0.061 even that one disappears.

But the motion preserves regularity already for e = 0.25
or even for lower eccentricities, as e = 0.15, at a > 0.637 aJ .
Fig. 11a–d documents this fact with eJ = 0.061. On the left-
hand side of this figure, there is a set of initial conditions with
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Fig. 12a–d. The continuous frequency map vanishes in the four-body
model at e = 0.3

e = 0.25, and on the right-hand side, there is another with e =
0.15. The bottom pictures are changes of the frequency over
2 × 105 yr. For e = 0.25 only the strip at a ∼ 0.628 aJ is
chaotic ((a) and (b)) and the region a > 0.637 aJ is perfectly
regular for e = 0.15 ((c) and (d)).

5. Chaotic diffusion in the four-body model

Fig. 12a–d illustrates a disappearance of the continuous fre-
quency map in the full, four-body planar model. The top figures
are, once again, the frequency f$ versus semi-major axis and
the bottom figures are the frequency changes over 2×105 yr. Ini-
tial eccentricities are equal to 0.3. The planar three-body model
with fixed Jupiter’s orbit (eJ = 0.061) is on the left and the pla-
nar four-body model with Saturn is on the right. The frequency
map is smooth in the three-body model (a). Only slight discon-
tinuities appear at some places due to the high-order secondary
resonances and the corresponding frequency changes suggest a
presence of chaos near their separatrices (b). On the other hand,
the frequency map is irregular in the four-body model (c) and
a significant diffusion exists in the whole investigated interval
(d). Other similar experiments were done in different regions on
the plane σ = 0 and $ = 0. All of them showed the significant
chaotic diffusion in the four-body model.

We have studied several intermediate three-body models
including only some basic frequencies in Jupiter’s orbit. The
chaotic diffusion was already present in a wide area of the phase
space, when the two main secular frequencies g5 and g6 were in-
corporated in Jupiter’s eccentricity and longitude of perihelion,
but it was roughly by one order slower than in the four-body
model. The diffusion was significantly accelerated, roughly to
the same rate as in the four-body model, when we added the

Fig. 13. The trajectory with an increasing amplitude of libration

short-periodic terms as well. These short-periodic terms, which
are present due to the 2/1 and 5/2 quasi-resonances between
Jupiter’s and Saturn’s mean longitudes, seem to play a crucial
role in the diffusion acceleration (Ferraz-Mello 1996).

In order to investigate the possible diffusive effect on longer
time intervals, we have made numerical integrations with vari-
ous initial conditions over 10 Myr. Each integration was started
with σ = 0 and$ = 0. The initial positions of Jupiter and Saturn
were projected into the reference plane and turned so that ini-
tially λJ = 0. The frequencies were determined using 2T = 1
Myr and shifting the interval with a relatively small offset of
105 yr along the integration.

In Fig. 13 we show an interesting case of a trajectory ini-
tially situated near the libration centers: a = 0.63 aJ (3.27789
AU) and e = 0.217. An amplitude of the libration suddenly in-
creased (in this case at 3 Myr), what was observed in several
other examples in the neighbouring region.

In Fig. 14 we sum up the results of 16 integrated exam-
ples over 10 Myr and plot their diffusion trajectories in the
frequency space of fσ and f$. The thin lines in the figure are
the secondary resonances with fσ/f$ from 6/1 to 10/1. The
strong low-eccentricity chaos is located roughly under the 6/1
line (Fig. 2 and Fig. 6). The numbers correspond to each par-
ticular initial condition. The diffusion rate ranges from almost
zero for the example 8 to values leading to a notable transfer in
the frequency space as it can be seen, for instance, in the exam-
ples 3 and 10. In the case 3 (a = 0.635 aJ (3.303 905 AU)), an
asteroid crosses the secondary resonances 9/1, 8/1 and 7/1, and
almost reaches the low-eccentricity chaotic region. Its eccen-
tricity decreases from initial 0.2 to 0.15. The case 10 is initially
placed at e = 0.35 and a = 0.625 aJ (3.251 875 AU). The fσ
variations are accompanied by changes of the amplitude of the
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Fig. 14. Chaotic diffusion in the frequency space

semi-major axis oscillations, which decreases to roughly one
half of the initial value and the trajectory gets near the libration
centers. The moderate diffusion observed in the cases seen ap-
proximately along the line connecting the cases 1 and 11 in the
figure corresponds to initial conditions far from the librations
centers at a = 0.62 aJ (3.225 86 AU) and a = 0.64 aJ (3.329 92
AU).

Since each integration over 10 Myr needs several computer
hours at a workstation, we have not yet been able to extend the
set of initial conditions to a more representative sample. But,
at least as a qualitative estimate of the diffusion effect over 1
Gyr, one may suppose, as known for diffusive processes, that the
mean displacement depends on the square root of time. Thus,
if the phase-space were roughly homogeneous, the extent of
each trajectory in Fig. 14 would increase by one order. However,
longer numerical integrations showed a complexity of the phase-
space and an existence of the slow-diffusion barriers, which
often confine a trajectory with a fast diffusion to a small bounded
area for a long time.

6. Conclusion

We have applied the frequency map analysis on the problem
of asteroidal motion in the 2/1 mean-motion resonance with
Jupiter. Laskar’s technique was adapted for the particular use in
this dynamical system. The method was then applied to the pla-
nar three-body model. We have shown the most detailed correct
reproduction of the low-eccentricity chaotic region and inves-
tigated the chaos produced by the high-order secondary res-
onances. We compared their position with that predicted by
the semi-numerical method in the circular problem. The nar-
row chaotic layers were found to be localized in the vicinity
of their separatrices. The region around the low-eccentricity
chaos is sensible to the value of Jupiter’s eccentricity, the chaos

grown for eJ = 0.061 but still left a great portion of the phase
space regular. The regularity disappeared when the variations
of Jupiter’s orbit were included and the moderate eccentricity
region became chaotic. The effect of the slow chaotic diffu-
sion in moderate eccentricities was then studied on the basis
of several 10 Myr integrations with Saturn. It has not yet been
possible to make any statistic conclusions about the diffusion
effect over much longer time spans. But it seems clear, as the
observed changes of several integrated trajectories were so im-
portant, that a prolongation of the time interval by two orders of
magnitude would allow at least some portion of asteroids to en-
ter the fast low-eccentricity chaos or to reach directly the large
eccentricities allowing close encounters with the planets.
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