Orbit Fit and Astrometric record for 13SF106

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 13SF106   
# Created Fri Apr 26 01:15:10 2024
# Orbit generated by ELGB
# -->Covariance matrix from a Bernstein fit
# Fitting     51 observations of     51
# Arc:   6.94y
# First observation: 2013/09/06
#  Last observation: 2020/08/13
# Chi-squared of fit:     8.83 DOF:     96 RMS:  0.07
# Min/Max residuals:    -0.16    0.39
# Exact a, adot, b, bdot, g, gdot:
  1.807796E-05  2.630317E-02 -3.140723E-07 -7.840897E-04  2.324239E-02  1.232200E-03
# Covariance matrix:
  7.8045E-14 -3.4349E-14 -1.3485E-14  1.5512E-15  4.0296E-14 -1.3161E-13
 -3.4349E-14  5.0158E-14 -1.9740E-15  1.7658E-16  8.8450E-15  3.0583E-13
 -1.3485E-14 -1.9740E-15  7.0471E-14 -1.5941E-14 -4.8015E-14 -2.9315E-14
  1.5512E-15  1.7658E-16 -1.5941E-14  8.0265E-15  5.4335E-15  2.9823E-15
  4.0296E-14  8.8450E-15 -4.8015E-14  5.4335E-15  1.4873E-13  1.1035E-13
 -1.3161E-13  3.0583E-13 -2.9315E-14  2.9823E-15  1.1035E-13  2.2242E-12
#      lat0       lon0       xBary       yBary       zBary        JD0
  -40.627945  -38.370942   -0.375495   -0.609742   -0.710828  2456541.730548
# Heliocentric elements and errors
Epoch:              2456542.5000  =  2013/09/07
Mean Anomaly:            3.86581 +/-     0.004
Argument of Peri:      257.89418 +/-     0.011
Long of Asc Node:       54.43133 +/-     0.000
Inclination:            39.84881 +/-     0.000
Eccentricity:         0.42187738 +/-    0.0001
Semi-Major Axis:     75.28669079 +/-    0.0106
Time of Perihelion: 2453980.2931 +/-       2.7
Perihelion:          43.52493897 +/-    0.0083
Aphelion:           107.04844261 +/-    0.0161
Period (y)              653.2592 +/-      0.14
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X           26.56843763 +/-    0.0004
Ecliptic Y          -20.55375698 +/-    0.0003
Ecliptic Z          -28.01540538 +/-    0.0005
Ecliptic XDOT         0.00195636 +/-    0.0000
Ecliptic YDOT         0.00239699 +/-    0.0000
Ecliptic ZDOT        -0.00016447 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   43.74012022 +/-    0.0004
Geocenter to KBO     43.02484772 +/-    0.0007
# Hcoef:  4.89

The following table shows the complete astrometric record for 13SF106. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (13SF106) followed by the observatory code and reference code for the source of the astrometry.

2013 09  06.22977  22 55 04.257  -51 42 12.67  21.8g 13SF106   W84  C~4yR2      
2013 09  06.23117  22 55 04.247  -51 42 12.65  21.1r 13SF106   W84  C~4yR2      
2013 09  06.23257  22 55 04.236  -51 42 12.68  20.7i 13SF106   W84  C~4yR2      
2013 09  24.08011  22 53 07.215  -51 43 18.08  22.1g 13SF106   W84  C~4yR2      
2013 09  24.08011  22 53 07.22   -51 43 18.1   22.3g 13SF106   W84  C~3clG      
2013 10  12.13353  22 51 24.508  -51 38 38.86  20.8z 13SF106   W84  C~4yR2      
2013 10  12.13353  22 51 24.51   -51 38 38.9   20.9z 13SF106   W84  C~3clG      
2013 10  12.17113  22 51 24.316  -51 38 37.93  21.1i 13SF106   W84  C~4yR2      
2013 10  12.17113  22 51 24.32   -51 38 37.9   21.2i 13SF106   W84  C~3clG      
2013 10  12.23942  22 51 23.969  -51 38 36.18  21.4r 13SF106   W84  C~4yR2      
2013 10  12.23942  22 51 23.97   -51 38 36.2   21.4r 13SF106   W84  C~3clG      
2013 10  14.04411  22 51 15.152  -51 37 49.39  21.0Y 13SF106   W84  C~4yR3      
2013 10  14.04411  22 51 15.15   -51 37 49.4   21.0Y 13SF106   W84  C~3clG      
2013 11  09.07665  22 49 46.157  -51 20 54.69  20.7Y 13SF106   W84  C~4yR3      
2013 11  09.07665  22 49 46.16   -51 20 54.7   20.8Y 13SF106   W84  C~3clG      
2013 11  21.10152  22 49 33.572  -51 10 06.14  20.9z 13SF106   W84  C~4yR3      
2013 11  21.10152  22 49 33.57   -51 10 06.2   20.9z 13SF106   W84  C~3clG      
2013 12  04.09707  22 49 42.171  -50 56 55.88  21.5r 13SF106   W84  C~4yR3      
2013 12  04.09707  22 49 42.17   -50 56 55.9   21.5r 13SF106   W84  C~3clG      
2013 12  06.05456  22 49 45.501  -50 54 50.90  21.1i 13SF106   W84  C~4yR3      
2013 12  06.05456  22 49 45.50   -50 54 50.9   21.2i 13SF106   W84  C~3clG      
2013 12  06.07319  22 49 45.534  -50 54 49.69  21.4r 13SF106   W84  C~4yR3      
2013 12  06.07319  22 49 45.53   -50 54 49.7   21.4r 13SF106   W84  C~3clG      
2014 08  18.24409  23 05 31.985  -50 50 19.57  21.8g 13SF106   W84  C~4yR3      
2014 08  18.25195  23 05 31.929  -50 50 19.75  20.5z 13SF106   W84  C~4yR3      
2014 08  18.25195  23 05 31.93   -50 50 19.8   20.6z 13SF106   W84  C~3clG      
2014 09  12.18056  23 02 50.129  -50 59 14.93  21.1Y 13SF106   W84  C~4yR3      
2015 08  16.27798  23 13 47.783  -50 02 16.89  21.0i 13SF106   W84  C~4yR3      
2015 08  16.28073  23 13 47.762  -50 02 16.91  21.9g 13SF106   W84  C~4yR3      
2015 09  01.22123  23 12 09.433  -50 10 05.64  20.8Y 13SF106   W84  C~4yR3      
2015 09  01.22123  23 12 09.43   -50 10 05.6   20.9Y 13SF106   W84  C~3clG      
2015 09  02.22930  23 12 02.938  -50 10 27.81  20.9z 13SF106   W84  C~4yR3      
2015 09  02.22930  23 12 02.94   -50 10 27.8   21.0z 13SF106   W84  C~3clG      
2015 09  28.14040  23 09 16.576  -50 14 03.92  21.2Y 13SF106   W84  C~4yR3      
2015 09  28.14040  23 09 16.58   -50 14 03.9   21.2Y 13SF106   W84  C~3clG      
2016 10  06.12999  23 16 14.878  -49 25 32.04  21.2i 13SF106   W84  C~4yR3      
2016 10  06.12999  23 16 14.88   -49 25 32.0   21.3i 13SF106   W84  C~3clG      
2016 11  04.02624  23 14 03.947  -49 12 16.60  21.1z 13SF106   W84  C~4yR3      
2016 11  04.02624  23 14 03.95   -49 12 16.6   21.1z 13SF106   W84  C~3clG      
2017 08  21.25949  23 28 30.192  -48 26 32.22  21.0i 13SF106   W84  C~4yR3      
2017 08  21.26086  23 28 30.182  -48 26 32.23  21.4r 13SF106   W84  C~4yR3      
2017 08  21.26223  23 28 30.178  -48 26 32.35  22.1g 13SF106   W84  C~4yR3      
2017 09  12.18867  23 26 16.333  -48 35 42.96  20.8Y 13SF106   W84  C~4yR3      
2017 09  30.12857  23 24 24.721  -48 37 24.50  21.1z 13SF106   W84  C~4yR3      
2017 10  11.24700  23 23 21.099  -48 35 35.21  21.1z 13SF106   W84  C~4yR3      
2017 11  10.17330  23 21 16.536  -48 20 09.86  21.4r 13SF106   W84  C~4yR3      
2017 11  10.17468  23 21 16.528  -48 20 09.83  22.2g 13SF106   W84  C~4yR3      
2018 11  07.10163  23 28 40.462  -47 33 03.55  21.1i 13SF106   W84  C~4yR3      
2018 11  07.10300  23 28 40.458  -47 33 03.50  21.5r 13SF106   W84  C~4yR3      
2020 08  13.14649  23 50 00.41   -45 41 36.0   20.9G 13SF106   X01  C~4UB5      
2020 08  13.26661  23 49 59.84   -45 41 41.7   21.1G 13SF106   X01  C~4UB5      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.02       0.00    -0.06
     2   0.0000      0.00    -0.02       0.00    -0.02
     3   0.0000      0.00    -0.04       0.00    -0.03
     4   0.0489      0.00    -0.02       0.00    -0.03
     5   0.0489      0.00    -0.10       0.00    -0.01
     6   0.0983      0.00     0.02       0.00    -0.02
     7   0.0983      0.00    -0.01       0.00     0.02
     8   0.0984      0.00     0.05       0.00     0.03
     9   0.0984      0.00    -0.01       0.00     0.00
    10   0.0986      0.00    -0.01       0.00     0.01
    11   0.0986      0.00     0.00       0.00    -0.01
    12   0.1035      0.00     0.10       0.00    -0.03
    13   0.1035      0.00     0.13       0.00    -0.02
    14   0.1748      0.00    -0.10       0.00     0.16
    15   0.1748      0.00    -0.14       0.00     0.17
    16   0.2077      0.00     0.04       0.00    -0.06
    17   0.2077      0.00     0.07       0.00     0.00
    18   0.2433      0.00    -0.02       0.00    -0.03
    19   0.2433      0.00    -0.01       0.00    -0.01
    20   0.2487      0.00     0.00       0.00     0.01
    21   0.2487      0.00     0.02       0.00     0.01
    22   0.2487      0.00    -0.04       0.00     0.00
    23   0.2487      0.00     0.02       0.00     0.01
    24   0.9473      0.00     0.12       0.00    -0.05
    25   0.9474      0.00     0.03       0.00    -0.03
    26   0.9474      0.00     0.02       0.00     0.02
    27   1.0156      0.00    -0.14       0.00     0.14
    28   1.9413      0.00     0.05       0.00    -0.01
    29   1.9413      0.00    -0.02       0.00     0.07
    30   1.9849      0.00    -0.02       0.00     0.11
    31   1.9849      0.00     0.03       0.00     0.07
    32   1.9877      0.00     0.07       0.00     0.01
    33   1.9877      0.00     0.04       0.00    -0.00
    34   2.0586      0.00     0.14       0.00     0.05
    35   2.0586      0.00     0.08       0.00     0.03
    36   3.0825      0.00     0.05       0.00     0.02
    37   3.0825      0.00     0.02       0.00    -0.02
    38   3.1617      0.00     0.10       0.00    -0.03
    39   3.1617      0.00     0.06       0.00    -0.03
    40   3.9563      0.00     0.01       0.00    -0.04
    41   3.9563      0.00    -0.02       0.00    -0.00
    42   3.9563      0.00     0.04       0.00    -0.07
    43   4.0163      0.00    -0.13       0.00    -0.04
    44   4.0654      0.00    -0.06       0.00    -0.11
    45   4.0959      0.00    -0.01       0.00    -0.02
    46   4.1778      0.00     0.07       0.00    -0.04
    47   4.1778      0.00     0.01       0.00    -0.07
    48   5.1687      0.00    -0.01       0.00    -0.08
    49   5.1687      0.00     0.00       0.00    -0.08
    50   6.9347      0.00    -0.00       0.00     0.39
    51   6.9351      0.00    -0.09       0.00    -0.16

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.

13SF106    quality flag:3

Type:       SCATNEAR  SCATNEAR  SCATNEAR

axisobj        75.936    75.936    75.936
ecceobj         0.427     0.427     0.427
incobj         39.881    39.881    39.881
qmin           42.750    42.746    42.753
qmax          110.338   110.300   110.376
amean          75.808    75.807    75.808
amin           74.737    74.722    74.753
amax           77.163    77.174    77.115
emean           0.410     0.409     0.410
emin            0.392     0.392     0.392
emax            0.434     0.434     0.435
imean          39.457    39.460    39.454
imin           38.736    38.735    38.736
imax           40.042    40.055    40.035
excite_mean     0.756     0.756     0.756
fracstop        1.000     1.000     1.000
cjmean          2.632     2.632     2.632

libcent 0      -180.0    -180.0    -180.0
libamp  0      -180.0    -180.0    -180.0
libcent 1      -180.0    -180.0    -180.0
libamp  1      -180.0    -180.0    -180.0
libcent 2      -180.0    -180.0    -180.0
libamp  2      -180.0    -180.0    -180.0
libcent 3      -180.0    -180.0    -180.0
libamp  3      -180.0    -180.0    -180.0
libcent 4      -180.0    -180.0    -180.0
libamp  4      -180.0    -180.0    -180.0

kozaimean       241.7     240.8     242.3
kozaiamp        180.0     180.0     180.0