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Hergarten et al. (1) present an alternative interpretation of 
the impact record on Earth and the Moon. Their argument 
requires that Earth’s cratons have been deeply eroded over 
the past 650 million years (Ma), removing many craters 
with diameters D ≥ 20 km. The existing crater inventory has 
been taken to imply substantial global erosion rates of ~59 
m Ma−1 (2), more than 20 times cratonic rates (3). 

Thermochronological data (3) provide consistent con-
straints on long-term cratonic erosion rates. Global mean 
erosion rates (2, 4) cannot be applied to cratonic regions 
because such estimates include the high erosion rates preva-
lent in tectonically active regions today. Long-term integrat-
ed estimates do not preclude short-lived pulses of 
exhumation (3). Therefore, the application of present-day 
erosion rates over 100-million-year time scales is tentative 
and uncertain (2). 

The global mean erosion rate (2) would imply 30 to 40 
km of erosion on the cratons over the past 650 Ma. Such 
losses are inconsistent with geologic constraints (5), includ-
ing the widespread cratonic occurrence of shallow (≤2 km) 
crustal features such as kimberlite pipes (6). Moreover, 85% 
of D ≥ 20 km terrestrial craters are located on stable cratons 
(6), which have remained largely intact since the Proterozo-
ic (3, 7). 

If the 20- to 30-km terrestrial craters have erosion life-
times of 35 to 47 Ma (2) and erode at an exponential rate, 
the fraction of craters surviving longer than 290 Ma should 
only be 0.02 to 0.2% of the initial population. Instead, near-
ly one-third (5 of 16) have ages between 290 and 650 Ma (3). 

We now address the alternative calibration of our lunar 
crater dating method (1). We argue that a goodness of fit 
based on R2 and residual root mean square (RMS) scatter is 
not sufficient for model selection given the available infor-
mation. 

Our Bayesian model selection framework (6) can self-

consistently accommodate uncertainty in the functional 
form proposed for the relationship between age and rock 
abundance, RA95/5. There are parameter sets for a power-law 
relationship that provide crater age distributions consistent 
with an impact rate uniform in time, as there are for Her-
garten et al.’s proposed exponential relationship. The issue 
is whether these parameter sets are likely given the ages of 
“index” craters, defined as D ≥ 20 km craters whose ages 
were derived by independent means. Our analysis indicated 
that they are not (6), instead favoring parameter sets that 
include a change in the impact rate. 

Using the same method (6), we performed a likelihood 
ratio test on the power-law and exponential models (Fig. 1). 
The relative likelihood of the exponential model to the pow-
er-law model is 0.004, disfavoring the former. 

We can additionally include the choice of the power-law 
versus exponential models as part of the approximate Bayes-
ian computation rejection (ABCr) analysis used to deter-
mine the Bayes factor for the broken impact rate versus the 
uniform impact rate (6). At the step of selecting parameters 
for the age-RA95/5 from the posterior probability density 
function (PDF), we modified our method to select which 
model we are using for this trial, and choose each model 
with a probability proportional to the relative likelihood of 
each model as determined by the likelihood ratio test (that 
is, 99.6% of the cases selected to be the power-law distribu-
tion, and 0.4% of the cases selected to be the exponential 
distribution). If the evidence presented by the craters them-
selves outweighed the strong evidence against the exponen-
tial model, this treatment would allow that evidence to 
speak for itself. 

Taking lunar craters alone, we still find a Bayes factor of 
6:1 in favor of the broken impact rate over the uniform rate. 
Marginalizing over both the model of the age-RA95/5 rela-
tionship and its parameters, we find evidence against a uni-
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form impact rate. Including terrestrial craters has the same 
effect as before (6), producing a Bayes factor of 100:1 in fa-
vor of the broken impact rate over the uniform rate. 

Finally, we examine whether a constant impact flux for 
large impactors is consistent with lunar data. Given that our 
age-RA95/5 relationship has been questioned (1), here we only 
use the index crater Copernicus, whose age of 800 Ma was 
directly derived from Apollo 12 samples (6, 8). We find that 
20 lunar craters with D ≥ 20 km have higher RA95/5 values 
than Copernicus. Accordingly, within reasonable error, all 
should be < 800 Ma. The terrestrial production rate of D ≥ 
20 km craters over the past ~100 Ma is ~2.5 to ~3.0 × 10−15 
km−2 year−1 [(9), used by (1, 2); see also (6)]. When translated 
to the Moon (6) and kept constant for 800 Ma, it would 
yield 50 to 60 lunar craters—2.5 to 3 times the number ob-
served. This high number of craters is also inconsistent with 
(i) the relative ages of large lunar craters as derived from 
optical maturity observations (6, 10), and (ii) superposed 
crater counts on large lunar craters [i.e., many D > 50 km 
craters once considered Copernican-era are instead much 
older (11)].  
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Fig. 1. Comparison of power-law and exponential age-RA95/5 relationships for lunar craters. 
Posterior PDFs for model parameters are derived using the same approach as Mazrouei et al. (6). The 
median (dark lines) and 95% range (light lines) are illustrated. If the exponential model is adopted 
(dashed red lines), the uncertainty inflation term c prefers a higher value than if the power-law model 
is adopted (solid blue lines), with a mean uncertainty scaling factor c ~ 0.5 versus the mean of c ~ 0.3 
found for the power-law model. 
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