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Fig. S1. The volumetric estimates of sedimentation on the continents compiled by Ronov and coauthors (1–15), as tabulated in Dataset S2. (a) Preserved sediment volumes
for each continent, plotted cumulatively, in km3 per year. (b) Volumetric flux, in km3 per year per km3 of continental surface area. All continents except Africa display a clear
increase in preserved sediment volume and area-normalized sediment flux at the end of the Proterozoic.
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Fig. S2. Comparison of Macrostrat with global records. (a) Comparison of Ronov and Macrostrat sedimentary rock volume estimates. Blue: Ronov’s (1) global record
compared to a global scaling of the North American macrostrat record; that is, the Macrostrat sediment volume estimate for North America multiplied by the area of all
continents divided by the area of North America (a factor of 6.1). Red: Ronov and coauthors’ (1–15) estimate for preserved sediment volume on North America alone
compared to the Macrostrat sediment volume estimate for North America. (b) The fraction of continental area covered by marine sediment, as estimated by Macrostrat and
three global records: one compiled by Ronov (16), and two compiled by Egyed (17) on the basis of independent paleogeographic atlases, one due to Strahov (18) and the
other to Termier & Termier (19).
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Fig. S3. Exposed surface area of sedimentary and metasedimentary rock as a function of depositional age, derived from the Geological Survey of Canada Generalized
Geological Map of the World (20). In comparison to the sedimentary volume record of e.g. Fig. S1, this exposure-area record is significantly biased towards young Tertiary
strata because it considers only the exposed uppermost strata of Earth’s sedimentary shell. Nonetheless, a major increase in exposed area per unit depositional time is
apparent at Proterozoic-Phanerozoic boundary.
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Fig. S4. Effects of continuous and discontinuous erosion in a model with constant 0.9 km3y sediment input prior to erosion. Following Gregor (21), erosion is assumed to
consume preexisting crust in proportion to its abundance. (a): Preserved sediment volume per unit time for several imposed continuous and discontinuous erosion scenarios.
(b): Mass of sediment eroded per event or per unit time, for the same scenarios as in (a). In the discontinuous erosion scenarios, erosion occurs during one or more discrete
erosional events, producing step functions in preserved sediment volume. The strength of a given discrete erosional event is specified in terms of a loss factor: L = 0.8
specifies an erosional event in which 80% of all accumulated sediment present at the time of the event is eroded. The erosion rate in continuous erosion models, meanwhile,
is determined by the decay constant λ, with units of 1/Myr. Discontinuous models with N equally-spaced events of identical L converge towards the exponential form of
continuous erosion as N becomes large. Note, for instance, the correspondence in preserved volume between the discrete model where 10% of the crust is lost every 100
Myr, and the continuous model with a λ = 0.001/Myr (i.e., 10%/100 Myr).
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Fig. S5. Geographic distribution (by continent) of zircon Hf and O isotope analyses as a function of zircon U-Pb crystallization age in 200 Myr bins from 0-4.4 Ga. While
relative abundances vary episodically in response to tectonic processes, no single continent dominates after 4 Ga.
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Fig. S6. All data points in the raw compiled zircon Hf and O (b) isotope datasets. The Hf isotope record (a) is constrained by the composition of the depleted mantle as a rough
upper bound and the composition of a hypothetical preserved 4.5 Ga lithology with Lu/Hf = 0 as a strict lower bound. The zircon O isotope record is drawn to supra-mantle
δ18O by assimilation of siliciclastic sediment or silicate rock that has undergone low-temperature aqueous alteration.
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Fig. S7. Zircon age distributions of the raw dataset (prior) and the bootstrap-resampled dataset (posterior). Sample weighting results in a visibly more even posterior
distribution.
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Fig. S8. The importance of sediment subduction to arc magma Hf isotope systematics is demonstrated by the clear variation in average zircon εHf as a function of present
day trench sediment thickness for arc zircons younger than 100 Ma within 5 arc degrees of a trench of known sediment thickness following the sediment thickness maps of
Heuret et al. (22) and the geospatially-resolved zircon Hf database of Bataille et al. (23). These data are resampled to accurately represent uncertainty in trench sediment
thickness and binned in 1 km intervals. Extreme zircon Hf isotope compositions below -25 εHf are excluded, though this does not visibly influence the resulting trend.
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Fig. S9. Determination of sediment subduction signatures. (a) The zircon εHf record detrended, inverted, and standardized to unit variance; larger values indicate more
recycling of old crust into new magmatic zircon. (b) The zircon δ18O record, detrended and standardized to unit variance; larger values indicate more recycling of surficially
altered crust. (c) The covariance between a and b. (d) The average slope of a and b. (e) The product of c and d, color coded blue at times of positive covariance and red at
times of negative covariance. As explained in the Methods, sediment subduction events should appear as pairwise excursions with a positive peak for initiation and negative
one for recovery.
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Fig. S10. Periodogram of the zircon Hf and O isotope records, highlighting substantial spectral power at 500-700 Myr periods consistent with tectonic cyclicity.
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Fig. S11. Illustration of the competition between local tectonic subsidence and regional isostatic uplift under the influence of regional erosion. 1: Accommodation space
is produced by local rifting. 2: Erosion removes regional uplands (horsts, in this case). 3: Regional isostatic rebound. 4: The tectonically-produced basin is now subject
to destruction by continued regional erosion. The basin will survive if the rate of tectonic subsidence meets or exceeds the rate of regional erosion. If the rate of tectonic
subsidence exactly matches the regional isostatic uplift from upland erosion, the basin will survive intact but with no new accumulation of sediments during the interval of
regional erosion. In reality, isostatic rebound will occur continuously in concert with erosion; the two are separated here only to illustrate the underlying principle.
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Fig. S12. Comparison of direct versus cumulative area normalizations of impact cratering rate. (a) Age distribution of continental bedrock exposed at the present day,
derived from the Geological Survey of Canada Generalized Geological Map of the World (20). (b) Normalized cumulative age distribution of continental bedrock, obtained by
integrating a from 4 Ga to time t. The cumulative total (1.0) is equal to the area of the continents, or 1.489 ∗ 108 km2 (c) Impact cratering rate normalized by raw bedrock
exposure from a; for sedimentary and volcanic bedrock, we know that this bedrock must have been exposed and susceptible for impact cratering at the time of deposition. (d)
Impact cratering rate normalized by cumulative bedrock exposure from b.
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Fig. S13. The effect of variable magnitudes of Neoproterozoic erosion in an isostatic global sea level and continental coverage model. Here, the magnitude of glacial
exhumation is varied between 1 and 9 km. Present-day sea level prior to the Neoproterozoic is reproduced with ∼4.5 km glacial erosion in the constant sedimentation model
(a), and ∼3.5 km in the variable sedimentation model (b).
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Fig. S14. Isostatic global sea level and continental coverage model, as in Fig. 4, but with glacial erosion equally distributed between the three glacial episodes. (a) Temporal
evolution in average continental freeboard driven by erosion, subsequent thermal subsidence, and sediment accumulation. (b) Corresponding continental coverage fraction.
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Fig. S15. Earth’s present-day hypsometric curve, calculated from the ETOPO1 1 Arc-Minute Global Relief Model (24). The contrast between more dense oceanic crust and
more buoyant continental crust is reflected in the clear bimodality in the distribution of elevations. (a) An estimate of Earth’s elevation distribution based on the elevation of
ETOPO1 grid cells. (b) Earth’s cumulative elevation distribution, obtained by integrating a from high to low elevation. A cumulative area of 1.0 corresponds to the total surface
area of the Earth.
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Fig. S16. Global correspondence between Precambrian basement exposures and Phanerozoic glaciation, as first noted by White (1972) (25). (a) Major exposures of
Precambrian basement from the Geological Survey of Canada Generalized geological map of the world (20) overlain with the maximum extent of Cenozoic glaciation as
compiled by Ehlers and Gibbard (26). (b) The extent of the Late Paleozoic Ice Age, modified with permission from ref. (27). Virtually all non-orogenic Precambrian basement
exposures not covered by Pleistocene glaciation are of Gondwanan affinity, and were likely glaciated during the Late Paleozoic Ice Age. The correspondence between
Gondwanan LPIA glaciation and basement exposure is less complete than that between Laurentide glaciation and the Canadian shield (Fig. 5), given that significant
proportions of the glaciated area have been covered by Mesozoic and Cenozoic sediment in the intervening ∼250 Myr.
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