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Analytic formulae for estimating planetary accretion rates have 
long been available for conditions where random motion of plane- 
tesimals controls velocities relative to a growing planet. Recent 
Monte Carlo studies have explored a wider range of conditions, 
but gave impact rates only for the specific conditions under which 
those numerical experiments were performed. Now analytical for- 
mulae, which are valid even when keplerian shear controls the 
approach velocity, and which accurately reproduce the Monte 
Carlo results, give accretion rates over a wide range of conditions 
relevant to the problem of planet formation. ,- 1991 Academic Press. Inc. 

1. I N T R O D U C T I O N  

The dynamics of encounters of planetesimals with 
growing planetary embryos have been traditionally mod- 
eled using a two-body approximation (Opik 1951, Safro- 
nov 1969). Greenberg et  al. (1978a,b) developed a numeri- 
cal simulation of a population of collisionally interacting 
planetesimals, which also used the two-body model to 
estimate impact probabilities and the results of close en- 
counters. That simulation used a "'particle-in-a-box" 
treatment, in which the system is followed in a frame 
moving around the Sun with keplerian circular velocity. 
In that algorithm, random velocities, corresponding to the 
eccentricities e and inclinations i of individual particles, 
were assumed to be great enough that mutual approaches 
arc primarily governed by the random motion, rather than 
by keplerian shear, which would dominate if e and i were 
sufficiently small. 

One result of the simulations by Greenberg et al . .  which 
contradicted earlier models, was that a few planetary em- 
bryos could quickly grow to nearly 1000 km in diameter 
while most of the mass of the system remained in much 
smaller bodies (near the size of the original planetesimals 

1 km). That mass distribution caused the random veloci- 
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ties of all the bodies to remain small. This result was 
consistent with Safronov's (1969) demonstration that ran- 
dom velocities would be comparable to the escape veloci- 
ties of the dominant bodies, except that Safronov had 
assumed that the largest bodies would always be domi- 
nant. With relative velocities remaining small, the results 
were quite different from Safronov's: The gravitational 
cross-sections of the largest bodies became quite large, 
setting the stage for accretional "runaway growth." This 
general character of evolution of the system through this 
stage has been confirmed by various more recent numeri- 
cal simulations (e.g., Wetherill and Stewart 1989). 

Greenberg et al.  (1978a,b)  noted, however, that the low 
relative velocities make their algorithm questionable as 
the size of the largest body (embryo) approaches -10fl0 
km. The reason for their caution was that, beyond that 
size, the gravitational cross-section is larger than the verti- 
cal and radial excursions due to the random (i and e) 
part of planetesimals' motion. In effect, the approach of 
planetesimals to the embryo is governed by keplerian 
shear (with e and i negligible), rather than by the random 
motion. Thus, although "incipient runaway growth" is 
underway at this point, the character of further evolution 
of the swarm remains a matter of speculation (see review 
by Greenberg 1989). 

Motivated in part by this difficulty, Wetherill and Cox 
(1984, 1985) performed a large number of numerical inte- 
grations of the motions of test particles approaching hypo- 
thetical planets. They found that when the ratio V / V  c 

(random velocity of test particle to escape velocity of 
planet) is less than -0.1,  the impact probability diverges 
from the prediction of the "particle-in-a-box" type of 
calculation. They suggested that the discrepancy involved 
some sort of breakdown of the two-body model at en- 
counter. 

However, from a detailed investigation of the behavior 
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of particles during such encounters, Greenberg et  al. 

(1988a) concluded that generally, aside from some statisti- 
cally unimportant pathological cases, behavior during 
close encounters follows hyperbolic two-body motion 
even in the low V / V  e regime where Wetherill and Cox 
suggested it broke down. Greenberg et  al. (1988a) ex- 
plained the transition at V / V  c ~ 0.1 by the change from 
(A) a regime in which random motion dominated approach 
toward close encounter to (B) a regime in which keplerian 
shear dominated. In other words, the transition noted by 
Wetherill and Cox was the same as the limit of validity 
predicted by Greenberg et  al. (1978a). 

The understanding that the two-body approximation 
was valid even in the regime of low V / V  e , where keplerian 
shear dominates, allowed Greenberg et  al. (1988b) to con- 
struct analytic formulae that agreed with and explained 
the impact rates found in the numerical experiments by 
Wetherill and Cox. In this paper, we show how those 
analytic formulae were derived and show the comparison 
with the numerical results of Wetherill and Cox. 

Moreover, two other research groups have recently 
performed numerical experiments similar to those of 
Wetherill and Cox. Some of those experiments include 
results in a third regime of extremely small values of V / V e .  

The analytic formulae derived here (Section 1I) include 
expressions for criteria for the transitions between the 
various regimes, and are in excellent agreement with the 
results of all these numerical experiments. The predictive 
success of our formulae indicates that we now have a 
reasonably good understanding of some of the fundamen- 
tal processes controlling impact rates. 

II. DERIVATION OF ACCRETION-RATE FORMULAE 

Protoplanet-planetesimai collision rates within the so- 
lar nebula can be categorized into three primary regimes. 
Conditions in which random motion is the dominant mech- 
anism for bringing material within the sphere of influence 
of the protoplanet is referred to here as Regime A. Condi- 
tions under which keplerian shear (i.e., bodies closer to 
the Sun move faster than ones further away) is the domi- 
nant mechanism for bringing material is referred to as 
Regime B. If keplerian shear dominates but the planetesi- 
mal swarm is nearly flat, the system is in Regime C. In 
Regime C the dynamics are essentially two-dimensional 
(in contrast to A and B where behavior requires a three- 
dimensional model) as the material enters the proto- 
planet's sphere of influence only from the plane of the 
disk. 

In accord with the results of Greenberg et  al.  (1988a) 
we derive formulae for accretion rates in these regimes 
by assuming that two-body behavior can give a good ap- 
proximation of encounters, even at low velocity, if one 
properly describes the approach trajectory. 

In the following sections we derive accretion rate for- 
mulae in a way that demonstrates the essential physics. 
We then compare the rates given by our formulae with 
the rates found in the various sets of results of numerical 
experiments now in the literature. This comparison is 
straightforward in principle, but requires considerable 
care to ensure that the various choices of scaling adopted 
in the literature are correctly taken into account. Although 
our objective was to derive order-of-magnitude expres- 
sions that reveal the important functional dependencies, 
we find that our analytic expressions closely match the 
numerical results, both in values of accretion rates and in 
the functional dependencies on the controlling param- 
eters. 

H . A  D o m i n a n c e  by  R a n d o m  M o t i o n  ( R e g i m e  A )  

As long as the random velocities V of planetesimals 
are sufficiently large, keplerian behavior is unimportant. 
Random velocity is the radial and vertical motion relative 
to circular, coplanar orbits, which corresponds to orbital 
eccentricity e and inclination i. Thus, traditionally the 
dynamics of approach and encounter are modeled by two- 
body behavior in a "gas"  of particles. The impact rate 
is roughly the product of the target protoplanet's cross- 
sectional area, and the flux of particles upon it. The flux 
is V times the density (number/volume) of the particles in 
the disk. The density is given by the surface density tr 
divided by the thickness of the swarm of small particles. 
The thickness is given roughly by 2ai ,  where a is the 
distance from the Sun and i is the orbital inclination. 

Thus, the number of particles per unit time hitting the 
protoplanet is 

Impact rate - zrR 2 ~ . (I) 

In (1) we have assumed that V is so large that, not only 
does it dominate over keplerian shear in controlling the 
approach, but it prevents the planet's gravity from en- 
hancing the target cross-section. The target area is thus 
taken to be A = zrR 2 in deriving (1). Also, 

V ~ h a v r e  2 + i 2, (2) 

where a is the distance from the Sun, n is the mean motion, 
and na is the planet's circular orbital velocity around the 
Sun. 

In the more general case (still in Regime A) where 
the cross-section is enhanced by the planet's gravity in 
accordance with two-body scattering: 

( A - - r r R  2 1 + V~ ] .  (3) 

Therefore, 



100 G R E E N B E R G  E T  A L .  

( Impact r a t e - z r R  2 I + V2/ ~a/ ' (4) 

where again V is given by (2). 
To the level of precision appropriate for many consider- 

ations of planet formation or of other problems in plane- 
tary collision dynamics, these approximate equations can 
be, and often have been, quite properly used without 
further refinement (e.g., Wetherill and Cox 1984, 1985). 

Moreover, these equations can be further simplified, 
because in most collisionally evolved systems e - 2i. This 
approximate relation was found in numerical simulations 
by Greenberg et al. (1978a,b) and by Wetherill (1980). 
Consequently Stewart and Wetherill (1988) assumed that 
it holds exactly and Wetherill and Cox (1984, 1985) re- 
stricted their studies to the case e = 2i. The e/i  ratio is 
controlled by energy partitioning, where e determines the 
random velocity in the two in-plane dimensions (not 
equally) and i controls the random velocity in the one 
normal-to-the-plane dimension. These relations only 
apply to average values ofe  and i; significant components 
of the population may in fact lie in other parts of e, i space. 
In a system where e - 2i, we would have i ~ V /na ,  so the 
impact-rate formulae are greatly simplified: V and i can 
be eliminated from (I), and i can be eliminated from (4). 

In this paper the analysis is not restricted to any specific 
ratio of e/ i ,  because our objective is to find more general 
formulae that can be compared with the results of Monte 
Carlo experiments, and thereby explain and generalize 
them. As in the Monte Carlo experiments, the swarm of 
planetesimais is assumed to be characterized by a single 
value of e and one of i. Investigation of the effect of 
various distributions of e and i is beyond our objective 
here. As demonstrated in Appendix A, the above equa- 
tions governing impact rates need only be modified 
slightly to become quite accurate. Accordingly, we adopt 
the form 

Impactrate = ~zrR- 1 + V2 } ~ , (5) 

where V is given by Safronov's (1969) expression 

•/5 , i2 V = n o  e - +  . (6) 

Equations (5) and (6) retain the same simple form and 
physical interpretation as the approximations (4) and (2). 
Note that these equations give the impact rate as a func- 
tion of the characteristic orbital eccentricities and inclina- 
tions of the planetesimais, e and i. In the following sec- 
tions we derive analogous expressions for conditions 
where the assumptions of Regime A are not valid. 

I I .B  D o m i n a n c e  by Kep ler ian  S h e a r  Mo t ion  
( R e g i m e  B) 

I. Transi t ion f r o m  R e g i m e  A to R e g i m e  B. For larger 
values of V¢/V, approach dynamics begin to be dominated 
by keplerian shear rather than random motion. If all plane- 
tesimals were on nearly circular and coplanar orbits (very 
small V), they would pass by the planet due to their 
differential keplerian velocities. As they passed, the plan- 
et's gravitational pull would stimulate eccentric motion, 
which might allow orbit crossing and, ultimately, impacts 
with the planet. Contrary to Regime A, this process is not 
controlled by the initial random motion. 

The keplerian feeding zone is the region over which 
particles even on initially nearly circular orbits are per- 
turbed onto planet-crossing orbits. Now suppose the plan- 
etesimals in this feeding zone have some initial random 
motion, with radial excursion ea.  If ea is significantly 
smaller than the range of the feeding zone Aa, then the 
bulk of the planetesimals reaching the planet's orbit do so 
despite their initially small eccentricities. Thus Aa -- ea 
defines the limit of validity of Regime A and the transition 
into Regime B. 

The half-width Aa of the feeding zone can be estimated 
in various ways. For example, consider a planetesimal on 
a circular orbit (radius a + Aa) going past a planet (orbital 
radius a). The dominant effect of the planet occurs while 
the planetesimal is within a longitudinal distance --Aa 
with respect to the planet. That condition lasts for a time 
- 2  Aa/~n Aa = 4/n according to Kepler's laws. The 
change in velocity required to put the planetesimal on a 
planet crossing orbit is about n Aa; the change due to the 
pull of the planet is the acceleration GMp/ (Aa)  2 times 
the duration 4/n.  Equating these two expressions for the 
change in velocity, and using Kepler's third law, yields 
the half-width of the feeding zone, 

(4_ M 
Aa~a \Mc=~/  = 2.3R H, (7) 

where R H is the radius of the Hill sphere derived from 
Hill's equations (Hill 1898), which is the approximate size 
of the planet's potential well in the rotating reference 
frame of the restricted three-body problem: 

( 
R a =- a \3M.::fl " (8) 

Numerical studies (e.g., Dermott and Murray 1981, 
Nishida 1983, Petit and Henon 1986, Burns et al. 1989) of 
swarms with test particles on circular orbits show maxi- 
mum feeding distances consistent with (7), although the 
agreement is more precise if we adopt 
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Aa = 2.5Rtt. (9) 

Equating this expression to ea gives the criterion for tran- 
sition from Regime A to B: 

e = 2.5 \3M~/  " (10) 

Equation (4) for impact rates in Regime A is a function 
of e and i; Eq. (I0) gives the boundary of its validity in 
(e, i) space. This transition is gradual and occurs over an 
order-of-magnitude in e values. For much larger values of 
e, a system is in the regime of random velocity control 
(Regime A); for much smaller values of e, a system is in 
the regime of keplerian shear dominance, or Regime B. 

If e - 2i, as in any real collisionally developed system, 
the left side of (10) is proportional to the random velocity 
V. The right side is proportional to the planet's escape 
velocity V~. Thus in this restricted part of (e, i) space, 
Eq. (10) could be expressed as a limiting value of V/V~, 
below which the impact-rate equations of Regime A are 
invalid. 

More specifically, consider the case e = 2i. With 
Kepler's third law and our adopted form of V, Eq. (10) 
yields 

['~e]A_to.a = 0"9G-I/6Pff I/6nl/3. (11) 

For a rocky planet (pp - 4 g cm- 3) in orbit about the Sun 
at I AU, the right side is about 0.1, which explains why 
the Monte Carlo results of Wetherill and Cox diverged 
from the impact-rate formulae in Section II.A for smaller 
V/Ve. Note that according to (11) the critical value of 
V/Ve is not necessarily near 0.1 for all cases. It would be 
different if M o, a, or pp were changed considerably, but 
the dependence on these parameters is quite weak. Sec- 
tion III contains further detailed quantitative comparisons 
between our analytic formulae and various Monte Carlo 
studies. 

2. Impact rate in Regime B. The impact rate in this 
regime depends in part on the flow rate of planetesimals 
into the vicinity of the planet, due to keplerian shear. This 
"feeding flow" depends on the width of the feeding zone, 
the shear velocity, and the surface number density. The 
full width of the feeding zone is 2 Aa (a distance Aa both 
inward and outward) as shown in Fig. 1, which shows 
the flow in a reference frame centered on the planet and 
rotating at the rate of the planet's orbital motion. 

Planetesimals on circular orbits very close to that of 
the planet have their orbital energies changed and their 
relative angular velocities reversed before they pass by 

~ a  I . . . . .  ~ ................... 8 

i 
FIG. 1. A planetary feeding zone, shown looking down on the plan- 

et 's orbit plane in a reference frame moving with the planet. Planetesi- 
mals with semimajor axes as far as Aa from that of the planet may be 
diverted onto orbits that cross the planet's orbit. Planetesimals from 
within the core of this zone have their orbital energy changed enough 
that their relative motion is reversed and they move away from the 
planet (horseshoe orbits). The other bodies approach the planet with an 
average velocity, due to keplerian shear, of In ~a. 

the planet, i.e., they are on "horseshoe orbits." This 
process prevents collisions by planetesimals on initial or- 
bits very close to the planet's. This critical range can 
readily be shown analytically to be about one Hill radius 
(e.g., Goldreich and Tremaine 1982). Thus in the following 
calculations we assume that the inner core (the part clos- 
est to the planet) of the feeding zone is a region of avoid- 
ance which extends half way from the orbit of the planet 
to the edges of the feeding zone (Fig. 1). In our approxima- 
tion, the total width of the remaining feeding flow is Aa. 

In fact numerical studies (e.g., Dermott and Murray 
1981, Nishida 1983, Petit and Henon 1986, Burns et al. 
1989) indicate that this avoidance zone extends to 1.75 
RH, or 0.7 of the full width of the feeding zone. Adopting 
the more precise width instead of 0.5 would change the 
impact rates derived below by only 15%, well within the 
uncertainty of the calculation. 

The flow speed in the rotating reference frame for parti- 
cles on circular orbits at either extreme edge of the feeding 
zone is ~n Aa, according to Kepler's third law, The aver- 
age feeding flow speed, without the inner core of horse- 
shoe orbits, is ~ as large, or ~n Aa. 

Thus the feeding flow (number of particles/time) ap- 
proaching the planet in this way is 

Flowrate = (~n  Aa) tr Aa. (12) 

Most of the planetesimals in this feeding flow not only 
have their trajectories bent toward the planet's orbit, but 
they also enter the Hill sphere (Fig. 2). This expectation 
is confirmed by the various numerical integrations (refer- 
enced above) of initially circular orbits. 

Moreover, nearly all of these bodies enter the Tisserand 
sphere of influence as well. The Tisserand sphere is de- 
fined as the region around a planet where the motion of 
small particles is better approximated by two-body motion 
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FIG. 2. Nearly all the material that approaches  the planet due to 
keplerian shear (excluding particles on horseshoe orbits),  is diverted 
into the Tisserand sphere and the larger Hill sphere around the planet,  
according to numerical  integration of originally circular orbits. Here we 
show schematically only one of the two approaching bands of flow from 
Fig. I. 

relative to the planet than by two-body motion relative to 
the Sun. The radius of  the Tisserand sphere (Roy 1988) is 

V- r ~ 0.58(2,tt n;~5 _ 1.27)~,_, Aa. (14) 

For /z  = 10 ~' 

V T ~ l . l n  Aa. (14a) 

To the level of  precision of  our  analysis, this result does 
not differ significantly for initial orbits elsewhere in the 
feeding zone, or for arrival at other  points on the Tisserand 
sphere. Similarly, although this velocity is in the rotating 
reference frame of  the restricted three-body problem, con- 
version to the inertial frame would involve an insignificant 
correction.  This result is fairly insensitive to the value of  
tz over  the range of values likely to be relevant in the 
planet formation problem. Thus,  we adopt (14a) as the 
typical speed of a body entering the Tisserand sphere. 

Given VT, the two-body gravitational cross-sectional 
area of the planet within the Tisserand sphere is 

(13) A(; = ~'R~3 = ~ ' R  2 l + . (15) 

Note that R v is about 90% of R H for Jupiter,  or 50% of RH 
for a Moon-sized planet. It is the same order of magnitude 
(albeit somewhat smaller) as R .  for most cases of  interest 
in planetary studies. 

For purposes of our  analytical estimate of impact rates, 
we assume that once a planetesimal gets close enough to 
the planet, its trajectory can be approximated by two- 
body motion governed by the planet. We adopt the Tisser- 
and sphere as the region in which this estimate is valid. 
(An anonymous  referee correct ly notes that the dynamics 
of  this problem scales with the size of  the Hill sphere. 
However ,  for invoking two-body behavior as an approxi- 
mation of part of the motion, the Tisserand sphere is the 
relevant boundary.  We could have adopted the Hill sphere 
with minimal quantitative consequences,  to the desired 
degree of precision.) 

In order  to invoke two-body motion within the Tisser- 
and sphere, we need to estimate the velocity at which 
particles enter that region. Roughly speaking, the velocity 
must be ~n  Aa, because that is the magnitude of the 
induced eccentric motion that brings the particles onto 
the planet approaching trajectories. 

We can refine that estimate by using the Jacobi integral 
of the restricted three-body problem (Danby 1988). Sup- 
pose a particle is initially on a circular orbit, 180 ° from the 
orbital position of  the planet, with orbital radius greater 
than the planet 's  by an amount ~] Aa (i.e., in the middle of 
one of the zones of  feeding flow). If we evaluate the Jacobi 
integral at that initial condition, and equate it to its value 
at a point entering the Tisserand sphere at a point R r from 
the planet in the direction opposite to the sun, we find 

As shown in Appendix B, unless the planet 's  orbit is 
nearly as small as the Sun or its density is much less than 
the Sun's,  

R <~ Re, <~ R T ~ RH. (16) 

Here in Regime B, we assume that the vertical thickness 
2ai of the swarm of planetesimals is greater  than the diam- 
eter 2RG of  the gravitational cross-section (as in Fig. 3), 
otherwise the system is in the very low i (essentially two- 
dimensional) Regime C, considered in the next section. 

Although ai > R~, it is usually less than the radius of  the 
Tisserand sphere R-r, as shown in Fig. 3 for the following 
reason: In a collisionally evolved system, e and i would 
be comparable in value. In Regime B, except  very near 

,~.~ --  ~ ~ 4 ~  T i s s e r a n d /  Sphere 

P l a n e t / - ~  ~ ",,,x 

~~ ~ ~-...-....'7..7--'::~.......'r ~r:~.:.-z ~.~.~..~.~.~.~:.:7. ~.~ T 
'"7::!~::~iiti! :'!::?~'.::-~":~'~"."i~.~.)i:i~!:i~'ii~" [ S w a r m  Thickness 

~]ii(iii:ii I (2 a i )  

"xx.,._ ~,,~"~""--- G r a v it at ion aI 
Cross-section 

FIG. 3. An "'edge-on'" view of the planetesimal swarm and the planet 
from the planet 's  orbital plane, showing for Regime B the relative scale 
of the swarm thickness,  the Tisserand sphere,  the physical size of the 
planet, and the gravitational cross-section.  For Regime C, the swarm is 
thinner than the Tisserand sphere.  
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the transition zone to Regime A, ea ~ RT, so we expect 
ai ~ R T as well. However, that assumption is not neces- 
sary in the following derivation. 

Once a planetesimal enters the Tisserand sphere, the 
probability of impacting the planet is the target cross- 
section A~ from (15) divided by the cross-sectional area 
of the flow (Fig. 3): 

Impact probability = 

~.R2 (1 V ~  
+ v U  

(2RT)(2ai) 
(17) 

Equation (19) represents a boundary in (e, i) space be- 
tween Regimes B and C,just as (10) represents a boundary 
between A and B. The transition between regimes is grad- 
ual across each boundary, rather than abrupt. 

The value of i at the B-to-C transition (19) is much 
smaller than the value of e at the A-to-B transition (10), 
according to the following comparison. Using (B6) from 
Appendix B, (19) yields 

[ R \1/2 RH (20) 
i : 0"9 kR--HH ) 

(The estimate may be slightly too low, because the parti- 
cles in the swarm encountering the Tisserand and Hill 
spheres tend to be moving more nearly perpendicular to 
the sphere than a random swarm, according to inspection 
of various published numerical integrations, e.g., Nishi- 
da's. It is plausible that this effect roughly offsets effects 
of other estimates above, but in any case they are negligi- 
ble to our targeted level of precision.) The impact rate is 
the flow rate (12) times the impact probability: 

at the B-to-C transition. In comparison, (I0) yields 

at the A-to-B transition. The ratio of (20) to (21) is < 
(R/RH) j/2 which is "~1 (Appendix B). 

In the interesting case e = 2i, (21) is equivalent to the 
critical value [V/Ve]A.t~R in (1 I). Similarly, 

( V~]{(trAa)(]nAa)] 
Impactrate = ~rR 2 I +  V~T/\-('2R----~a'~ / '  (18) [~ee]a-to-C = 0.6G-I/30~U3n2/3. (22) 

where Aa, RT, and V T are given by Eqs. (9), (13), and 
(14). Note that for a given planetary mass (relative to the 
Sun's) and radius (relative to a), the impact rate (I 8) varies 
inversely as i and is independent of e. In comparison, in 
Regime A, the impact rate (5) depends on e and i. 

S. Ida (private communication) notes that, in the ex- 
treme case where i -> e and i -> Aa, the above derivation 
of the impact rate for Regime B would not be valid for the 
following reason: the change in the in-plane velocity of a 
particle on an initially nearly circular orbit as it moves 
past the planet would be much reduced if the out-of- 
plane motion far exceeded Aa. Thus for i ~> 2.5RH/a, it 
is expected that accretion rates might be considerably 
smaller than given by (18). 

H.C Keplerian Shear Dominance in a Very Thin Disk 
(Regime C) 

1. Transition from Regime B to Regime C. In evaluat- 
ing the impact rate for Regime B, we assumed that the 
protoplanet's gravitational diameter R G [defined by Eq. 
(15)] was smaller than the vertical thickness 2ai of the 
planetesimal swarm (as in Fig. 3). This assumption doesn't 
always hold. If ai < R G, the system is effectively two- 
dimensional (Regime C). By this definition, the transition 
from Regime B to C occurs when 

ai~-RG.  (19) 

Thus, we confirm that this transition occurs at a much 
smaller value of V/Ve than the A-to-B transition. We also 
find the remarkable result 

V 2 
,23, 

independent of the choice of parameters. 
Note that even in Regime C, the approach of planetesi- 

mals to the planet is governed by keplerian shear, just as 
in Regime B. 

2. Impact rate in Regime C. In this regime the feeding 
flow rate is identical to Regime B. However, the impact 
probability now becomes the gravitational cross-section 
diameter divided by the width of the flow [cf. Eq. (17)]: 

Impact probability = 
2R(I 

+ v U  

2RT 
(24) 

As in Regime B, the impact rate is simply the feeding flow 
rate times the impact probability [cf. Eq. (17)] 

V2'~ "2 (tr Aa)(]n Aa) 
Impact rate = R I + V-~T] RT (25) 
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This expression is independent of  e and i, and thus of  V, 
as will be .evident in our compar ison with impact  ratcs 
f rom Monte Carlo numerical exper iments  (Section 1II). 

III. COMPARISON WITH MONTE CARLO 
NUMERICAL EXPERIMENTS 

Several studies of  impact  rates for small particles en- 
countering hypothetical  planets have been performed in 
recent years  using a Monte Carlo approach in which 
swarms of randomly selected particle orbits are numeri- 
cally integrated to develop impact  statistics. In Section 
IlI  we compare  the impact  rates given by our analytical 
theory with those various Monte Carlo results. 

III.A. Experiments by Wetherill and Cox 

Of the extensive exper iments  by Wetherill and Cox 
(1984, 1985), the set most relevant to planet growth is that 
where e = 2i (Fig. 9 of  their 1985 paper).  Their  other cases 
have i = 0 and are not directly relevant here. In that 
set of  exper iments  e is held constant  at 0.00447 and the 
planet ' s  density is fixed at 4.04 g cm-3.  Exper iments  were 
run for a variety of  assumed planetary radii ranging from 
about 800 to 8000 km. In Fig. 4 we reproduce their results. 

On the horizontal axis, Vw is the random velocity de- 
fined by the approximate  form adopted by Wetherill and 
Cox [our Eq. (2)] rather  than the more refined form of V 
that we adopt  in Eq. (6). The variation in VJV w on this 
axis is strictly due to changes in the planetary radius; V, 
is constant  throughout because  both e and i were fixed in 
these exper iments .  On the vertical scale, the "Grav i ta -  
tional Enhancement  Factor ,  Fg'" was defined as the ratio 
of  the impact  rate to the nongravitational impact  rate, 
which Wetherill and Cox determined by running their 
Monte Carlo exper iments  for a " s t a n d a r d "  reference case 
with V~/V~ so small that gravitational enhancement  over  
the geometrical  cross-sect ion is negligible. 

The solid line in Fig. 4 shows the accret ion rates given 
by our formulae for Regimes A and B, plotted on the same 
scaled axes. For purposes  of  illustration, the transition 
between regimes is shown by an abrupt discontinuity at 
the value of  VJV (scaled to the definition of VJV,,) given 
by (10). 

Note  the excellent agreement  between our theory and 
the experimental  results, which is even more striking 
when one recalls that our  theory actually predicts a grad- 
ual transition between regimes over  an order-of-magni-  
tude in VJV. Our analytical theory clearly reproduces  all 
the features noted by Wetherill and Cox,  including the 
extra enhancement  over  the extrapolated two-body for- 
mula for a limited range of VJVw values (Wetherili and 
Cox call this enhancement  "anomalous  gravitational fo- 
cusing") ,  and the change in slope for larger values of  
V~/V~. 

. I 
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FIG. 4. Results of Monte Carlo numerical experiments of Wetherill 
and Cox (1985, data points with error bars are from their Fig. 9), com- 
pared with our analytical results (solid curve) plotted on the same scale. 
k~ is the impact rate scaled to the case where random velocities are so 
large that geometric cross-section controls the rate. Vw [defined precisely 
in terms ofe and i by Eq. (2)] is the approximate random velocity adopted 
by Wetherill and Cox and was held constant in all the experiments 
represented here: Vc was varied to give change along the abscissa. 
Our theoretical transition from Regime A (random motion dominant) to 
Regime B (keplerian shear dominant) is shown by an abrupt discontinu- 
ity, although our model actually predicts a gradual transition over an 
order of magnitude in V</V,. Agreement between theory and experiment 
is excellent. 

III.B. Experiments by Greenzweig and Lissauer 

Greenzweig and Lissauer  ( 1 9 9 0 ) p e r f o r m e d  similar 
Monte Carlo exper iments .  Their  Fig. 8 shows results in a 
format  very similar to that introduced by Wetheriil and 
Cox (Fig. 10). Those  results are reproduced as the data 
points shown in our Fig. 5. The data are plotted with V -= 
Vc~l. [Eq. (A8)] which is the definition adopted by 
Greenzweig  and Lissauer;  recall however  that our 
adopted definition V -= Vsa r [Eqs. (6) or (AI0)] is equal to 
Vc; L within a few percent  as discussed in Appendix A. The 
Gravitat ional  Enhancement  Factor  is the accret ion rate 
scaled to the geometr ic  rate adopted by Greenzweig  and 
Lissauer,  which also is very nearly identical to the geo- 
metric rate that we have adopted [Eq. (AI2) in Appen- 
dix A]. 

In these exper iments ,  Vc/V was varied by changing V 
(through e and i), rather  than by changing Vc (through R) 
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FIG. 5. Results of Monte Carlo numerical experiments of Greenzweig and Lissauer (1990, their Fig. 8) showing agreement with our analytical 
theory (solid curves). Their results for V = 0 (off-scale in this format) is indicated by an arrow at the right. In the four cases (a-d), the ratios e/i 
and Mp/M~ are identical, but R/RH is different as labeled. Differences in R/R H are equivalent to changing distance from the Sun, or planetary 
density, or both. In the experiments represented here, the abscissa values were changed by varying V, not V¢. 

as Wetherill and Cox did. In all these cases  from 
Greenzweig  and Lissauer's  Fig. 8 (our Fig. 5), the mass  
o f  the planet is fixed at 10 -6 t imes the solar mass  and, as 
with Wetherill and Cox,  e = 2i. In each figure a particular 
planetary radius (expressed as a fraction o f  the Hill radius) 
was  selected and held constant .  Also ,  in each case  an 
experiment  was  performed with all particles on initially 
circular orbits (V = 0). The case  V = 0 is off-scale,  so 
we  s h o w  that result with an arrow just of f  the right edge.  

We also s h o w  the impact rates given by our analytical 
formulae as the solid curves  on these figures. Again the 
regime boundaries  are plotted as abrupt transitions, al- 
though gradual transition is expected  according to the 
theory.  Our theoretical  results match the Monte  Carlo 
experiments  quite well  in all regimes,  including excel lent  

agreement o f  our constant  rate in Regime C with the 
experimental  rate at V = 0. 

Other Monte  Carlo experiments  by Greenzwe ig  and 
Lissauer (their Table I1) are not readily comparable  with 
our analysis  because  they lie c lose  to the transition region 
be tween  random and keplerian control  [See Eq. (10)]. 
H o w e v e r ,  these additional results o f  Greenzwe ig  and Lis- 
sauer are discussed further in the next sect ion in compari-  
son with the results by Ida and N a k a z a w a .  

III.C. Experiments o f  lda and Nakazawa 

Ida and N a k a z a w a  (1989) performed a similar set o f  
numerical experiments .  They  s h o w  impact rates (rather 
than the scaled quantity Fg) as a funct ion o f  e and i, in the 
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FIG. 6. Impact  rates from Monte Carlo exper iments  of  Ida and 
Nakazawa  (1989) as a funct ion of e and i, shown by contours .  Scaling 
is defined in the text.  We super impose  points  indicating values of  e and 
i at which their exper iments  were actually performed,  which yielded the 
published contours .  The diagonal slices at fixed ratios e/i can be used to 
generate  displays (Fig. 7) in a format similar to Figs. 4 and 5. 

contour  plot in Fig. 6 (based on their Fig. 14). Here e and 
i are scaled to the size of  the Hill sphere: 

RH 
Scaled e = e - - ,  

(3 

Scaled i = i RH 
a 

(27) 

In other  words,  for example,  if the scaled e = 1, the radial 
oscillation is the same size as the Hill sphere. 

A couple of  caveats must be noted for interpreting these 
results. First, these contours represent interpolation (and 
extrapolation) among limited data points (which we show 
in Fig. 6) so caution is needed in any interpretation of 
detailed structure (or of  any structure in some regions). 
Second,  Greenzweig and Lissauer (1990) at tempted to 
reproduce these results with their own Monte Carlo tests 
and found as-yet-unexplained quantitative disagreement 
as great as 75% in certain parts of  (e, i) space. While 
the results in Fig. 6 must therefore be interpreted with 
appropriate caution, they probably represent qualitative 
trends reasonably well. 

Slices through (e, i) space along lines with constant e/i 
yield curves in the same format as Figs. 4 and 5. Ohtsuki 
and Ida (1990) show such curves (reproduced here as Fig. 

7) for tbur different values of  e/i, each of  which was 
apparently generated by manually transferring data from 
one of  the diagonal slices that we show in Fig. 6. The 
caveats regarding Ida and Nakazawa's  results, as well as 
additional concerns,  apply to Fig. 7: 

(l) Note that the "scaled ve loc i ty"  is defined as 
X/e'- + i2/(RH/a). The scaling to R H and their choice of  
units with a = n = I are perfectly rigorous. However ,  
this definition is equivalent to (2) rather than the more 
refined form (6). 

(2) Most of  these diagonal slices lie between the actual 
data points used to generate the contours  in Fig. 6, so any 
detailed structure in Fig. 7 is suspect. 

(3) From scaled velocity values of  - !  up to about - 2 ,  
the rates shown become increasingly too low relative to 
the reevaluation by Greenzweig and Lissauer. 

(4) The data points shown in Fig. 6 are extremely sparse 
for scaled e > 2, so the curves in Fig. 7 do not really 
represent results of  numerical experiments  tbr "scaled 
veloci ty"  greater than about 2. 

(5) We infer that the portions of  their curves to the right 
of  that value were generated from Ohtsuki and Ida's  (and 
Ida and Nakazawa's)  version of the analytic formula for 
impact rate in Regime A, with a hand-drawn transition 
between the experimental  results and the analytical re- 
suits. 

(6) Their  analytical results for Regime A are not precise, 
and are based on a hybrid formulation. While they do 
adopt the accurate form (A7) for the accretion rate (the 
same as Greenzweig and Lissauer), they use the approxi- 
mate expression for the velocity (A2) in the evaluation. 

132 . ,,+,+,, 
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FIG. 7. Impact rates plotted by Ohtsuki and Ida (1~)0), based on 
diagonal slices through the contours in Fig. 6. Scales arc defined in the 
text. For V ~> 2, results appear to be based on an approximate analytical 
theory, and not on numerical experiments. For V ~> 1, even the numerical 
results are suspect, according to Greenzweig and Lissauer (1990). 
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FIG. 8. Impact  rates from our  analytical theory for the cases  plotted 
by Ohtsuki  and Ida, to the same scale as Fig. 7. Our  results  are similar 
to the results  in Fig. 7 for V <-- I, but  they diverge for larger V. We are 
thus  in accord with Greenzweig  and L i ssauer ' s  exper imental  results  for 
the same case.  

Results generated from our analytical expressions are 
plotted in Fig. 8 to the same scale and for the same parame- 
ters as in Fig. 7. Our results are in excellent agreement 
with Ohtsuki and Ida's numerical experiments where their 
data are credible, i.e., for scaled velocity < I. From scaled 
velocity l to 2, our results become increasingly high rela- 
tive to theirs; thus we are in excellent agreement with 
Greenzweig and Lissauer 's  reevaluation over  this range. 
Further  to the right in these figures, the curves of Ohtsuki 
and Ida are not based on numerical experiments,  but 
rather on the relatively imprecise formulae they adopted 
for Regime A, so they are only qualitatively similar to our 
results. 

As a final means of comparison,  we have evaluated 
impact rates using our formulae over  the entire (e, i) space 
plotted by Ida and Nakazawa to produce an analytically 
derived version of Fig. 6. The various analytical regimes 
are shown in Fig. 9. In this case, based on (I0), scaled 
e < 2.3 means that keplerian shear rather than random 
motion dominates the impact statistics. In this region, (19) 
gives the value of  i that separates Regime B from the 
essentially two-dimensional Regime C, as shown in Fig. 9. 

Note however  that for e > 2.3 (random motion domi- 
nates) it is also possible to have essentially two-dimen- 
sional behavior  if e ~> i. This defines a fourth regime (D) 
that we have not discussed up to this point because it is 
unlikely to pertain to a real dynamical system, and be- 

cause construction of  analytic formulae is trivial once 
Regime A is understood.  However ,  it must be considered 
if we are to completely map the (e, i) space represented 
by Ida and Nakazawa. 

The boundary between Regimes A and D occurs  where 
the planet 's  gravitational diameter  2R G becomes compara- 
ble to the thickness of  the planetesimal swarm: 

( v y,: 
2R 1 +-V-S/ = 2ai. (28) 

This boundary is a curve in (e, i) space because V is given 
by (6). However ,  the expression can be simplified because 
it only applies where i .~ e, so V is simply V~nae. The 
impact rate in Regime D is the two-dimensional version 
of  (5) 

lmpact rate = (2R) 1 + V21 Vtr. (29) 

Evaluation of  the impact rate over  (e, i) space gives the 
results shown in Fig. 10, which reproduces  the results of  
Ida and Nakazawa to the extent  that the latter are valid. 
Diagonal slices through this space would give the same 
curves shown in Fig. 8. The only place where our  analyti- 
cal results significantly differ from the numerical results 
is in Regime B for scaled i > 2.5, where the analytical 
formulae overest imate impact rates, as expected ac- 
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FIG. 9. The  region of  (e, i) space mapped  by Ida and Nakazawa  (cf. 
Fig. 6), divided into the analytical regimes d i scussed  in the text.  
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FIG. 10. Impact rates from our analytical theory, displayed as con- 
tours over the same space as mapped by Ida and Nakazawa's  Monte 
Carlo work. (Compare with Fig. 6. ) The qualitative agreement is reason- 
able. especially taking into account the various caveats regarding the 
precision of Ida and Nakazawa's  results. 

cording to the explanation by Ida (last paragraph of Sec- 
tion ll.B.2). 

IV. C O N C L U S I O N S  

The excellent agreement between our analytical theory 
and the numerical Monte Carlo experiments of various 
researchers indicates that we now understand the basic 
physical processes that control impact rates for a swarm 
of planetesimals interacting with a growing planet on a 
circular orbit, or for any similar system with a finite or- 
biting body in a swarm of test particles. 

In the range of relatively large random motion that we 
call Regime A, impact rates are enhanced to some degree 
by the gravitational cross-section of the target planet. 
Further enhancement for smaller V/V~, which was noted 
in Monte Carlo experiments, is now explained in terms of 
the transition from a system dominated kinematically by 
random motion (larger V/V¢) to one dominated by kepler- 
ian shear. For still smaller V/V¢, the system becomes 
effectively two-dimensional and the enhancement levels 
of f .  

Understanding the random-to-keplerian transition is 
critical to the issue of "'intermediate-stage" evolution of 
the protoplanetary swarm. Greenberg et al.'s (1978) simu- 
lation of the earlier stage assumed that random motion 
was dominant. But once a state was reached with large 
embryos and low random velocities (low V/Ve), the simu- 

lation could not be reliably continued. The random-to- 
keplerian transition marks the beginning of the poorly 
understood intermediate stage of planet growth. 

Monte Carlo results gave some indication of the change 
in accretion rates for smaller V/Ve. Empirical parameter- 
ization of those results by including an "enhancement" 
factor in the impact rate can be incorporated into simula- 
tions of intermediate-stage evolution, but the generaliza- 
tion of experimental results from specific cases is always 
suspect. 

Our analytic derivation gives us a physical basis for 
extending the generality of the Monte Carlo results, and 
thus will be useful for further modeling of planet growth 
through the stages that are still only poorly understood. 
We note that the analytical results reported here depend 
heavily on the earlier numerical work in two ways. First, 
the deviation of formulae in the keplerian regimes (B and 
C) was based on general characteristics of the flow of 
initially circular orbits as they approach a planet, as dem- 
onstrated by numerical integration. Second, our analytical 
derivations were only designed to have order-of-magni- 
tude precision; the excellent agreement with Monte Carlo 
experiments gives us much greater confidence in their 
validity than we could have claimed without the experi- 
mental confirmation. We emphasize however that the ab- 
solute values of impact rates given by our formulae were 
expected to have uncertainties as great as factors of 2 or 
3. The close agreement suggests either that our adopted 
estimations at various stages were reasonable, or that 
the various uncertainties canceled one another out. More 
significant than absolute values is that the functional de- 
pendencies (including transitions between regimes) agree 
well with numerical experiments. 

Thus the combination of our analytic model with the 
Monte Carlo results provides us with understanding and 
tools for further study of the planet-formation process 
that are much stronger than either approach could have 
provided alone. 

A P P E N D I X  A 

The approximate equations { I ), (2), and 14) can be expressed in exact 
form by introducing correction coefficients. In the nongravitational case 
[equivalent to Eq. (1)] 

(w,) 
Impact rate = K i T r R  2 ~ a i  " (AI) 

In (AI) we can take V to be precisely 

V = n a v e  2 + i 2 (A2) 

with any necessary correction to the actual random velocity subsumed 
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into K~. Similarly, taking into account the gravitational cross-section, 
we have the equation [equivalent to Eq. (4)] 

/ V~\ [ Vcr\ Impact rate = K,~rR z [ I - + (A3) 

where again V is given by (A2). The correction coefficient Kz is different 
from Ki due to the different dependence on V. (Here the subscript 2 
serves as a reminder that the encounter assumes two-body dynamics). 

Because Eqs. (i), (2), and (4) were taken to be reasonably good order- 
of-magnitude estimates, we expect K I and Kz to be of the order of unity. 
In fact, as noted in Section II.A, K t and K2 are often assumed to be I 
in the literature. The problem of finding more precise forms of these 
equations is equivalent to evaluation of the correction coefficients. 

Evaluation of Correction Coefficients from Opik Theory 
A precise evaluation of the accretion rate in Regime A comes from 

the work of Opik (1951). This approach considers the full range of orbital 
elements for planetesimals with a given e and i that cross the orbit of 
the target planet. The fraction of orbits that pass within the target area 
of the planet in a given time increment yields impact-rate formulae 
similar to (I) and (4). We note some possible shortcomings to this 
approach: It does suffer from some assumptions that break down for 
nearly tangential orbits. Also, it involves combining the average encoun- 
ter velocity with the average encounter rate, rather than the more rigor- 
ous method of averaging after combination. Nevertheless, this approach 
gives the most well-justified analytical expressions available at present. 
Besides Opik's own applications of this approach, it has been used by 
Wetherill (1%7), Greenberg (1982), and Greenzweig and Lissauer (1990). 

Greenzweig and Lissauer (1990) used that approach to obtain the 
expression for the nongravitational case [equivalent to Eq. (AI)], 

2no'R z ~ + sin-' i _ 
Impact rate = - -  - .---- : E(k), 

71" Sin I 
(A4) 

where E is the Complete Elliptic Integral of the 2nd Kind and 

1 

.2  .4 6 .8  1 
e 

FIG. A1. Function Ki(e, i) from Eq. (A6). Contours are at incre- 
ments of 0.01. Maximum value of Kt in this range is 0.637 at the upper 
left; minimum value is 0.493 at lower right. 

Vc, L = n a v e "  + sinai /k--~,  (A8) 

and K(k) is the Complete Elliptic Integral of the Ist Kind. Note that 
although (A3) and (A7) describe the same rate, they use different expres- 
sions for the random velocity. VGL represents a rigorously derived value 
of the average relative velocity, while the expression (A2) for V is an 
approximation for which we account with K2 in (A3). 

1(2 is evaluated by dividing (A7) by (A3): 

W•e 
k 2~/~e 2 * sin-'/ (A5) 

(1 + V:e/nZa2(e 2 + sin2 i)(E(k)/K(k))] 
K2 KI \ + /" (A9) 

Note that Greenzweig and Lissauer chose units such that a = n = 1; 
here we display a and n in all equations so the dependencies are apparent. 
The correction coefficient K I is found by dividing (A4) by (AI): 

4 X/'~e"~-sin2i( i ] 
K] rr 2 ~ \sin---"i/E(k). (A6) 

The values of K I as a function of e and i are shown in Fig. A 1, which 
confirms that the factor is of order unity, within the narrow range 0.49 
to 0.64. 

For the case of gravitationally enhanced cross-section Greenzweig 
and Lissauer gave the expression [equivalent to Eq. (A3)] 

For V-> Vc, K z = K t. For V ~ V e, K 2 ~ 1, as plotted in Fig. A2. (The 
transitional case Ve - V is of limited interest here.) In Figs. A I and A2, 
the structure of both Kr and K 2 is fairly simple for e and i < 0.2. The 
more curvilinear structure for larger i is due to the use of sin i rather than 
iin Greenzweig and Lissauer's evaluation. In fact, in most applications, e 
and i are quite small, so the latter distinction is not important. 

Evaluation of Correction Coefficients 
f r o m  S a f r o n o v  T h e o r y  

Safronov (i%9), as part of his landmark work in planet-formation 
theory, derived from statistical mechanical principles a mean random 
relative velocity of 

2herR2 V"~ + sin2i / 
Impact rate [I + (A7) 

- ~r sin i E(k) V~L) . 

where VGL is the adopted expression, based on Opik theory, for the 
random velocity, 

•/i ' i~" Vsa  f = n o  e "  + (AIO) 

The coefficient ~ reflects the partition of energy among three dimensions; 
motion in both in-plane dimensions is controlled by e, with tangential 
motion half as fast as radial motion. Using this expression for V [instead 
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FIG. A2. Funct ion K,(e, i) from Eq. (A9), with V ~ V,.. Contours  
are at increments  of  0.01. M ax i mum value of K, in this range is 0.940 at 
the upper  right: min imum value is 0.640 on the left edge. 

of  Eq. (2)1 in (I), as is somet imes  done in the literature (e.g. Nishida,  
1983), is equivalent  to introducing a correction factor 

FIG. A4. Ratio of  mean  random velocity adopted by Greenzweig  
and Lissauer  (AS) to that adopted by Safronov (AI0). Contours  are at 
increments  of  0.01. Max imum value of  ratio in this range is 0.9997 at 
lower left; min imum value is 0.841 at upper  left. Note the excellent  
agreement  of  the two formulat ions,  especially for realistic (small) e 
and i. 

V'fte'- + i" 
K I = ~ , ,  ~- f -  (Al l )  

i <: 0.5 except  for a factor of  ~. This observat ion allows us to write the 
equation for the nongravitat ional  case in the very simple form 

This funct ion is plotted in Fig. A3. Compar i son  of Fig. A3 with Fig. AI 
shows  that these two funct ions for K I are practically identical for e and 

Impact rate = ~rrR"(Vs~("-r l  
\. 2ai ] 

(AI2) 

• ~ ,,' ,' / / / / P "  ,' / .  

i " / / / / / - /  / , /  / • ; ! ,,' / / / / / . . "  / .~ 

8 , .' : / z / / / ~ / ,..< 

' ! : r ,, / /  , / / d / ~ /  / / / / / / / / / X _ _ / . /  . / /  " ~ /  / 
, / / 7 /  , / / . _ 

, / ..." ,. , , . , , , / / / / / / / " / . - - ; . -  ........ - . . - :  

;2 4 6 B 1 

FIG. A3. Funct ion K](e. i) from Eq. (AI 1). Contours  are at incre- 
ments  of  0.01. Max im um value of K~ in this range is 1.000 at left; 
m in imum value is 0.791 tit lower right. 

to obtain an express ion very close (within I% over  the values  e < 0.5 
and i < 0.5) to the express ion adopted by Greenzweig  and Lissauer  (A4). 

The target ' s  gravitational cross-sect ion is taken into account ,  as be- 
tk)re, by multiplying by I - V~/V 2. In fact. Vs~ r is within a few percent  
of  Vu~ as shown in Fig. A4. Thus  we may adopt the general  equat ion 

Impact  rate ~ 8 ~'R~" ( I V~ t ( Vcr 
"~ V:/ \2ai]"  

(AI3) 

where V : Vs:,r. This  simple form is reasonably accurate  throughout  
Regime A and retains the same simple functional  form as derived by the 
" 'part icle-in-a-box." or "'gas-dynamical.'" physical  model [Eq. (4)1. 

A P P E N D I X  B 

R a t i o  o f  P l a n e t  R a d i u s  to Hil l  S p h e r e  R a d i u s  

. R l" ~(~o 7' R. (~-~7' ,7 , , ,~ ,  
a \ 3 M  ! 

(BI) 

Thus ,  unless  the orbit of  the planet is near the surface of the Sun,  or the 
planet is far lest, dense  than the Sun,  
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R ~ R  8 . 

As an example, for a rocky planet with p = 3 g cm -3 near I AU, R H 
200R. 

R e l a t i v e  S i z e  o f  G r a v i t a t i o n a l  R a d i u s  in R e g i m e  B 

V c \ - - - i f ' - /  \ M ~ f  

2na \ M e /  

Using Kepler's third law and the definition (8) of R H, 

From (15), the gravitational radius is 

Using (B2), Eq. (BS) becomes 

R~. = 0.8RR H. 

Thus 

R ~ R G '~ R H . 
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