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In the Yarkovsky effect, the recoil from asymmetric, reradiated
thermal energy causes objects to undergo semimajor axis drift as a
function of their spin, orbit, and material properties. We consider
the role played by this mechanism in delivering meteoroids from
parent bodies in the main belt to chaotic resonance zones where
they can be transported to Earth-crossing orbits. Previous work has
approximated the dynamical evolution of meteoroids via Yarkovsky
forces, mostly through the use of the perturbations equation and
simplified dynamics (e.g., Monte Carlo codes). In this paper, we
calculate more precise solutions by formulating the seasonal and
diurnal variants of this radiation force and incorporating them into
an efficient N-body integrator capable of tracking test bodies for
tens of millions of years with all relevant planetary perturbations
included. Tests of our code against published benchmarks and the
perturbation equations verify its accuracy.

Results from long-term numerical integration of meter-sized bod-
ies started from likely meteoroid parent bodies (e.g., 4 Vesta) indi-
cate that dynamical evolution in the inner main belt can be complex.
Chaotic effects produced by weaker planetary resonances allow
many meteoroids to reach Mars-crossing orbits well before enter-
ing the 3 : 1 mean-motion resonance with Jupiter or the ν6 secular
resonance. Outward-evolving meteoroids sometimes become cap-
tured in these weaker resonances, increasing eand/or i while a stays
constant. Conversely, inward-evolving meteoroids frequently jump
across mean-motion resonances with Jupiter, bypassing potential
“escape hatches” from the main belt. Despite these effects, our sim-
ulations indicate that most stony meteoroids reach Earth-crossing
orbits via the 3 : 1 or ν6 resonance after tens of Myr of evolution
in the main belt. These time scales correspond well to the mea-
sured cosmic ray exposure ages of chondrites and achondrites. The
source of these meteorites, however, is less clear, since Yarkovsky

drift allows nearly any body in the main belt to add to the cumulate
meteoroid flux. Our results suggest that small parent bodies domi-
nate the meteoroid flux if the main belt size distribution at sub-km
sizes is in collisional equilibrium, while big parent bodies dominate
if observed population trends for km-sized bodies persist to smaller
sizes. c© 2000 Academic Press

Key Words: asteroids; asteroids, dynamics; celestial mechanics;
meteoroids; meteorites; resonances.

1. INTRODUCTION
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During the past several decades, the study of meteorites
opened an increasingly wide window on the nature of extra
restrial environments, especially conditions in the asteroid
and early solar nebula. Most meteorites are now believe
be fragments of asteroids that, following ejection in a cra
ing event on their parent body millions of years ago, wande
through space until they collided with Earth (Marti and Gr
1992). These objects therefore provide very detailed and us
information about asteroid properties and about condition
the asteroid belt over different epochs.

Unfortunately, we are still struggling to comprehend t
provenance, transport, and delivery time scale of meteorite
Earth. One of the most perplexing problems facing meteoritic
is to understand what specific asteroids and/or main belt reg
are being sampled via meteorites. Our previous paradigm,
a fragment was blasted off a parent body by a collision and
rectly injected into a resonance which brought it to Earth,
been recently complicated by the realization that the lifeti
0019-1035/00 $35.00
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of a body reaching the Earth-crossing (hereafter EC) region
chaotic resonances in the inner main belt is an order of ma
tude shorter than previously believed (i.e., roughly a few M
Gladmanet al. 1997). The short dynamical lifetime associat
with this delivery scenario is discordant with the longer cosm
ray exposure (CRE) ages of rocky and iron meteorites (
stones, 10–100 Myr; irons, several 100 Myr–1 Gyr; Caffeeet al.
1988; Marti and Graf 1992). The classical meteorite deliv
scenario also fails to explain why CRE ages for irons are
order of magnitude longer than those for stones.

A plausible way to fix the classical delivery scenario wou
be to alter the first step; meteoroids, rather than being dire
injected into resonances after a collision, would instead re
in the main belt for millions of years before reaching the cha
resonances which take them to Earth. The inclusion of a tr
portation mechanism would be needed here, one which c
move these objects slowly to resonance so that there w
be time for these bodies to collect the appropriate amoun
cosmic-ray damage.

We investigate whether this needed transportation mecha
might be Yarkovsky nongravitational forces, a radiation rec
which may cause 0.1- to 100-m objects to undergo semim
axis drift as a function of their spin, orbit, and material propert
Meteoroids ejected into orbits near the 3 : 1 orν6 resonances dur
ing cratering events should slowly spiral into those resonan
by Yarkovsky drag, giving those objects time to collect cosm
rays before reaching Earth. Recent numerical results ind
that meter-sized stones in the main belt may have drift rates
tween±0.01 and 0.001 AU Myr−1, fast enough to allow man
parent asteroids to provide material to the 3 : 1 orν6 resonances
but slow enough to also explain meteorite CRE ages (Rubin
1998; Farinellaet al. 1998a). Irons, with longer collisional life
times, may evolve from greater distances, such that they
sample a great proportion of parent bodies in the main b
For these reasons, we believe an exploration of these the
forces can potentially allow us to clarify connections betwe
meteorites and their parent bodies in the main belt.

In this paper, we investigate Yarkovsky radiative forces
calculating analytical expressions for their acceleration and
corporating them into a well-tested orbitalN-body code (“swift-
rmvs3”; Levison and Duncan 1994) capable of simulating
evolution of test bodies anywhere in the inner Solar Syst
This method allows us, for the first time, to track the evolut
of meteoroids all the way from their source bodies to EC
bits (or, with the appropriate parameters, Earth) with all cha
resonance phenomena included. Our goals for this paper
(i) to provide the theoretical underpinning for others to inclu
Yarkovsky thermal forces into their own numerical integrat
codes; (ii) to demonstrate that our Yarkovsky code yields ac
rate results using direct numerical integration, (iii) to show h
the Yarkovsky forces change the orbit of a spinning sphere,
(iv) to apply our code to a problem of interest, specifically

evolution of meteoroids from various parent bodies in the inn
main belt.
AM, AND BURNS
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We have structured the paper as follows. Section 2 discu
the nature of Yarkovsky thermal forces and the previous w
that has been accomplished to understand their effect on
teoroids. Section 3 includes our formulation of the diurnal a
seasonal Yarkovsky forces. In Section 4, we test our Yarkovs
Swift model against several benchmarks, those provided by
results of other Yarkovsky simulations and ones coming fr
the perturbation equations. The dynamical behavior of indiv
ual bodies is also discussed here. In Section 5, we show
results for direct, long-term integrations of meteoroids evolv
from various parent bodies of interest in the main belt to
orbits. Transport time scales, dynamical evolution behavior,
phenomena like resonance-jumping and capture are explo
Finally, in Section 6, we discuss the implications of this wo
while highlighting issues that need to be pursued in the futu

2. YARKOVSKY THERMAL FORCES

2.1. Introduction to the Diurnal and Seasonal Yarkovsky
Force Variants

Bodies orbiting the Sun absorb sunlight, mainly in visib
wavelengths, and reradiate the energy primarily in infra
wavelengths. When these infrared photons depart, they c
momentum with them, causing the object to recoil slightly. B
cause thermal inertia delays this kick and the body rotates
small net force produced by this effect can modify the obje
orbit, particularly its semimajor axis. This orbital change
called the Yarkovsky effect, and it is particularly effective amo
bodies 0.01–100 m in diameter. We refer the reader to Hartm
et al. (1999) for a description of how the “Yarkovsky effect” g
its name, as well as a summary of several references on this
ject (e.g., Peterson 1976; Burnset al. 1979; Afonsoet al. 1995).
Note that these forces have been empirically verified in an ex
nation of the orbital motion of the LAGEOS satellite (Rubinca
1987; Rubincam 1988; Farinellaet al. 1996; Vokrouhlick´y and
Farinella 1997).

There are two variants of the Yarkovsky effect that work
multaneously (cf. Spitale and Greenberg 1999), a “diurnal” v
sion, which depends on the body’s spin rate and longitud
temperature distribution, and a “seasonal” version, which
pends on the body’s mean motion around the Sun and its la
dinal temperature distribution. To make this easier to underst
think of the temperature distribution on the Earth. The “diurn
temperature distribution makes it slightly warmer in the aft
noon than at high noon, while the “seasonal” distribution ma
the warmest and coldest months come after the summer
winter solstices (e.g., in the Northern Hemisphere, July–Aug
is the hottest period, not June, while January–February is
coldest period, not December).

The diurnal variant is greatest when the spin axis is perpen
ular to the orbital plane, and it causes the body to spiral outw

erfor prograde rotations but inward for retrograde rotations. A
schematic of force components for an object on a circular orbit
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FIG. 1. The diurnal Yarkovsky effect is shown for a rotating body at vario
places along its circular orbit. The asteroid spin axis is perpendicular to the o
plane. A fraction of the solar insolation is absorbed only to be later radiated a
yielding a net thermal force in the direction of the wide arrows. Since the the
reradiation in this prograde-rotation example is concentrated at about 2PM on
the spinning asteroid, the radiation recoil force is always oriented at aboutAM.
In this case, the along-track component causes the object to spiral out
Retrograde rotation causes the orbit to shrink.

with a prograde rotation is shown in Fig. 1. As will be shown,
effectiveness of the diurnal component varies with the obje
rotation rate, such that optimum rotation rates do exist.

The seasonal variant always causes the body to spiral inw
and it is maximum when the object’s spin axis lies in the orb
plane. Figure 2 shows a schematic of the forces on an ob
with its spin pole in the orbital plane. The bottom-most obj
receives the most asymmetric distribution of solar energy s
its spin pole is pointing directly at the Sun. Energy is reradia
here, causing a kick in the anti-Sun direction, but, becaus
thermal inertia, the maximum reradiation does not occur u
later in the orbit. Thus, as Fig. 2 shows, the seasonal Yarko
force averaged over the orbit opposes the orbital motion and
work. The net effect is to cause the orbit to shrink in size,
gardless of the rotation speed of the object. Thus, we get the
drag for all spin axis orientations.

2.2. Previous Work

Several recent papers (e.g., Rubincam 1995; 1998; Fari
et al. 1998a; Vokrouhlick´y 1998a; Vokrouhlick´y 1999) have ex-
amined how the Yarkovsky effect modifies the orbit of a sph
ical solid body. Using complementary (linear) formulations
the temperature distribution for a rotating body illuminated
the Sun, they calculated average drift rates for various meteo

sizes and properties which agree with one another. We use
results as benchmarks for the Yarkovsky formulation presen

net
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below. Related work exploring the effects of nonlinear therm
models (Vokrouhlick´y and Farinella 1998a) and nonspheric
meteoroids (Vokrouhlick´y 1998b) indicate that the above formu
lations yield satisfactory results for most problems of intere
Numerical finite-element models (Spitale and Greenberg 19
demonstrate that the Yarkovsky effect cannot be decompo
for diurnal and seasonal variants at high eccentricity.

The next progressive step in producing a realistic simulatio
to incorporate Yarkovsky forces in conjunction with resonantN-
body dynamics. The cumulate gravitational effects of the jov
and terrestrial inner planets make the orbital paths of meteoro
strongly chaotic, with the inner Solar System crisscrossed
mean-motion and secular resonances. When main-belt-aste
fragments become trapped in resonant locations like the
mean-motion resonance with Jupiter or theν6 secular resonance
their orbits become strongly perturbed and can be driven to h
eccentricities and inclinations (Gladmanet al. 1997). Indeed,
these objects frequently reach EC orbits or even Sun-graz
orbits (Farinellaet al. 1994).

These effects are impossible to fully reproduce analytica
but approximate methods can yield suggestive results. To
end, Vokrouhlick´y and Farinella (1998b) combined the season
Yarkovsky drift rate with a semianalytic method for estimatin

FIG. 2. The seasonal Yarkovsky effect at various points along a circu
orbit for an asteroid whose spin axis lies in the orbital plane as shown at
top of the figure. Seasonal heating and cooling of the “northern” and “southe
hemispheres give rise to a thermal force which lies along the spin axis.
strength of the reradiation force varies along the orbit as a result of ther
inertia; the maximum resultant radiative forces are applied to the body somew
after their most asymmetric (N vs S) energy absorption has occurred. The

tedeffect over one revolution always causes the object to spiral inward.
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the average gravitational perturbing function for a main-belt m
teoroid, allowing them to numerically integrate its correspo
ing system of Lagrange’s equations. Their goal was to track
orbital paths of bodies started on circular orbits between 2.1
2.3 AU to theν6 secular resonance. They found that 5- to 10
objects with basaltic surface properties drift into theν6 reso-
nance after several tens of Myr of evolution (on average).
inclusion of secular perturbations in their model was found
induce small oscillations in eccentricity as the meteoroid mo
inward. They observed few inclination changes en route, tho
they claimed this was probably a consequence of some sim
fying assumptions. Once their objects entered theν6 resonance
the es andi s were pumped up to maximum values of 0.6–
and 10◦–15◦, respectively. These upper limits were by-produ
of their semianalytic method. They noted that the Yarkov
seasonal drag did not seriously affect the object once it ent
theν6 resonance.

The model we describe below is a continuation of the prog
these groups have made in realistically modeling meteoroid
lution. The next section shows how we calculate the diurnal
seasonal Yarkovsky forces at any given point in a meteoro
orbit, while the following sections describe the many diagno
tests we used to verify that our model was working correctl

3. NUMERICALLY MODELING THE YARKOVSKY EFFECT

To model the evolution of meteoroids accurately, we first f
mulated the diurnal and seasonal Yarkovsky drag accelerat
which are functions of many parameters, the object’s size,
rate, spin axis orientation, material properties, and its dista
from the Sun (Section 3.1). Next, we included these acce
tions into a numerical orbital integration routine (Section 3
After testing, we introduced a few related modifications (e
collisions) into the code to make the meteoroid evolution sim
lations more realistic (Section 4.5).

3.1. Formulation of Diurnal and Seasonal
Yarkovsky Accelerations

3.1.1. Magnitude of the force.In order to establish nota
tion, correct minor previous errors, and tell a coherent story
have rederived useful parts of the Yarkovsky formalism belo

Assuming Lambert’s law (e.g., Peterson 1976), the force f
any given surface elementd A on a thermally radiating body is

dp

dt
=
(

2εσ

3c

)
T4 d A, (1)

where p is momentum,ε is the emissivity,σ is the Stefan–
Boltzmann constant,T is the temperature, andc is the speed
of light. The direction of the force ˆn is normal to the surfac
element, i.e., parallel tod A, which for a sphere is

n̂ = (sinθ cosλ)x̂ + (sinθ sinλ)ŷ+ (cosθ )ẑ, (2)
whereθ is the colatitude measured on the body from its sp
AM, AND BURNS
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axis orientation̂b (which also defines thez axis),λ is the east
longitude measured on the body from an arbitrarily orientex
axis, andx, y, z are fixed to the body. For these body-center
coordinates,x and y are in the body’s equatorial plane, wit
x, y, z defining a right-handed system.

Thedirectionof̂ncanalsobewritten in termsof theunnorma
ized spherical harmonicYlmn(θ, λ), wherel is the degree,m is the
order, andn is cosine (n= 1) or sine (n= 2) spherical harmon-
ics. Thus,Ylm1(θ, λ)= Plm(cosθ ) cos(mλ), while Ylm2(θ, λ)=
Plm(cosθ ) sin(mλ), wherePml(cosθ ) is the associated Legen
dre polynomial. For first-degree terms,Y111(θ, λ)= sinθ cosλ,
Y112(θ, λ)= sinθ sinλ, and Y101(θ, λ)= cosθ . These defini-
tions will be used below.

Expanding the temperature in a Taylor series as

T4 ≈ T4
0

(
1+ 41T

T0

)
= T4

0 + 4T3
01T (3)

yields for the varying point of the acceleration

dp

dt
≈ 8εσ

3c
T3

01T d A. (4)

HereT0 is a constant throughout the asteroid, and it is relate
the body’s average insolation by (Rubincam 1998)

T0 =
{

(1− A)

4
√

1− e2εσ
F⊕

(
1 AU

a

)2}1/4

, (5)

wherea is the body’s semimajor axis,e is the orbit’s eccentricity,
A is albedo, and the insolationF⊕ = 1378 W m−2. If we expand
1T as a sum of spherical harmonics,

1T =
∑
m,n

1T1mnY1mn(θ, λ), (6)

keeping only the first-degree terms,

1T = 1T111Y111(θ, λ)+1T112Y112(θ, λ)+1T101Y101(θ, λ)

(7)

with1T111,1T112, and1T101 as time-dependent numerical co
efficients, and we assume the body is a sphere, we can inte
the “force” over the body’s surface in each direction. The fir
degree acceleration components can then be written

x accel. =
(

8εσT3
0

3cρR

)
1T111 (8)

y accel. =
(

8εσT3
0

3cρR

)
1T112 (9)

z accel. =
(

8εσT3
0

3cρR

)
1T101, (10)
inwhereR andρ are the body’s radius and density.
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3.1.2. Temperature variation over the body.To estimate the
first-degree temperature variation1T , we use a linearized ther
mal model (with spherical Bessel functions) to solve the h
conduction equation whenr = R (Rubincam 1998),

K
∂1T

∂r
+ 4εσT3

01T = (1− A)1F, (11)

where1F is the first-degree insolation,

1F = 1

2
F⊕

(
1 AU

rs

)2

[n̂ · (−r̂s)], (12)

where−r s is the vector from the body to the Sun defined
heliocentric–ecliptic coordinates:

−r s = −rs[(sinθs cosλs)x̂s + (sinθs sinλs)ŷs + (cosθs)ẑs].

(13)

Here,x̂s is the direction of the vernal equinox,ẑs is the direction
normal to the ecliptic plane, and̂ys is chosen to form a right-
handed set of coordinates;θs andλs are the colatitude and eas
longitude of the Sun in thexs, ys, zs system.

We can rewrite1F as a sum of spherical harmonics (in bod
and heliocentric–ecliptic coordinates),

1F =
∑
m,n

1F1mnY1mn(θ, λ), (14)

and

1F = 1

2
F⊕

(
1 AU

rs

)2

[Y111(θs, λs)Y111(θ, λ)

+Y112(θs, λs)Y112(θ, λ)+ Y101(θs, λs)Y101(θ, λ)]. (15)

The time dependence is contained implicitly inθs andλs.
We will assume each insolation coefficient1F1mn has the

general form

1F1mn = 1F0
1mne

i νt , (16)

whereν=ω, the spin frequency appropriate for the diurnal e
fect, orν= n, the orbital frequency appropriate for the season
effect,t is the time, and1F0

1mn is time-independent. In the cas
of a circular orbit,ν always combines the rotation and revolu
tion frequencies (e.g., (ω± n); Vokrouhlický 1999). Similarly,
we can express the temperature coefficients1T1mn as

1T1mn = τ 0
1mn j1(kr )ei νt , (17)

whereτ 0
1mn is a constant,r is the radial distance from the cente

of the asteroid, andj1(kr ) is the spherical Bessel function,
j1(kr ) = sin(kr )

(kr )2
− cos(kr )

kr
, (18)
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k =
(−i νρCp

K

)1/2

. (19)

Substituting (18) and (19) into (17), we can solve forτ 0
1mn,

τ 0
1mn =

(1− A)1F1mnR

K

[
z2

c1zcosz− c1 sinz+ z2 sinz

]
(20)

with

z = k R= x(1− i ) (21)

x = R

(
νρCp

2K

)1/2

, (22)

and

c1 = 2

(
1− 2εσT3

0 R

K

)
. (23)

The real and imaginary parts of the complex numbers of (2
when multiplied byj1(z), can be written as (Rubincam 1998)

z2 j1(z)

c1zcosz− c1 sinz+ z2 sinz
= C1− iC2

C3
, (24)

where

C1 = 2x(c1+ x2) sinh 2x + 2x(c1− x2) sin 2x

− c1(1+ 2x2) cosh 2x + c1(1− 2x2) cos 2x (25)

C2 = 2x2(x sinh 2x + x sin 2x + cos 2x − cosh 2x) (26)

C3 =
[
c2

1(1+ 2x2)+ 4x4
]

cosh 2x + [c2
1(−1+ 2x2)

− 4x4
]

cos 2x − 2c1x(c1+ 2x2) sinh 2x

− 2c1x(c1− 2x2) sin 2x. (27)

We will expressτ 0
1mn j1(z) in the complex form “magnitude”×

exp(−i × “lag angle”), which makes the surface temperature

1T1mn = 1T0
1mne

i (νt−δ) (28)

with 1T0
1mn being the time-independent amplitude,

1T1mn = (1− A)1F1mnR

K

(
C2

1 + C2
2

C2
3

)1/2

, (29)

andδ being the lag angle,

δ = arcsin

 C2√
 . (30)
C2
1 + C2

2
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FIG. 3. Geometry for the Yarkovsky effect. Here,−r̂s is the unit vector
pointing toward the Sun whilêb is the body’s spin axis orientation. Using bod
centered coordinates,ẑ is defined to be in thêb direction, whilex̂ and ŷ are
defined to form a right-handed set of coordinates in the body’s equatorial p
Also, θr is the colatitude for−r̂s, λr is the east longitude measured betwe
x̂ and the projection of−r̂s in the x, y plane, andεdiur is the lag angle for the
diurnal force. The diurnal force acts in the opposite direction from the das
vector projected fromεdiur. The seasonal force acts alongb̂.

3.1.3. Diurnal Yarkovsky acceleration.Using (28), we can
substitute back into (8)–(10) to get the Yarkovsky acceleratio
Here we consider the diurnal Yarkovsky acceleration, whic
a function of the longitudinal temperature distribution.

To find the diurnal acceleration, it is useful to define−r s in
body-centered coordinates (i.e.,b̂ defines thez axis):

−r s = −rs[(sinθr cosλr )x̂+ (sinθr sinλr )ŷ+ (cosθr )ẑ]. (31)

This equation is similar to Eq. (2) exceptθr andλr are referenced
to−r̂ s rather than̂n. The geometry is shown in Fig. 3.

The time dependence of the diurnal force will come from
longitudeλr as seen from the meteoroid (i.e.,λr =−ωt , whereω
is the meteoroid’s rotation rate). It rotates in the positive se
as seen from inertial space. As seen from an observer on
meteoroid, the Sun rotates in the negative sense, accou
for the minus sign. Thus, the force in the body-centeredx, y
directions will lag the Sun,

Y111(θr , λr )|lagged→ sinθr cos(λr + εdiur) (32)

Y112(θr , λr )|lagged→ sinθr sin(λr + εdiur), (33)

where the lag angle for the diurnal forceδ= εdiur. Note thatεdiur

is a positive angle, and we writeλr + εdiur rather thanλr − εdiur

to get the proper sign of the lag (i.e.,λr =−ωt). This assumes
thatωÀ n, thus decoupling the rotation from the position of t

meteoroid in its orbit so that colatitudeθr and distance to the
Sun,rs, are not lagged in the force equation below.
AM, AND BURNS
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To get the force direction, we create a right-handed coordi
system referenced to the these body-centered coordinates
the newx-axis (̂x f ) defined by−r̂s× b̂ and the newy-axis (̂yf )
defined bŷb× (−r̂ s× b̂), which is the projection of−r̂s in the
x, y plane (Fig. 3). This coordinate system was chosen to k
theŷ f axis pointing (more or less) at the Sun, withεdiur measured
in the counterclockwise direction.

From geometry, the diurnal Yarkovsky force can then
written

r̈diur = CdiurF⊕

(
1 AU

rs

)2

[sinεdiur(b̂× r̂s)

+ cosεdiur(b̂× (r̂s × b̂))] (34)

with Cdiur being the amplitude appropriate for the diurnal eff
(i.e., we useν=ω when solving forC1,C2,C3).

Cdiur = 4(1− A)εσT3
0 R

3Kcρ

(
C2

1 + C2
2

C2
3

)1/2

(35)

From this point on,̂b and r̂s will be expressed in heliocentric
ecliptic coordinates rather than body-centered coordinates

Note that Eq. (34) uses the average equilibrium tempera
(T0) of the meteoroid over one revolution rather than the lo
equilibrium temperature defined at each point along the o
The former value is valid for low eccentricity orbits, while the la
ter value is more general (e.g., Vokrouhlick´y 1998a, Rubincam
1998). Since the numerical tests described in Sections 4
5 concentrate on low-e meteoroids, our approximation yield
accurate results.

3.1.4. Seasonal Yarkovsky acceleration.The seasona
Yarkovsky force is similar to the diurnal Yarkovsky force, exce
it is a function of the latitudinal temperature distribution

r̈ sea= CseaF⊕(1 AU)2

[
(b̂ · r̂s)

r 2
s

]
lag

b̂, (36)

whereCseais the same asCdiur except that the orbital frequenc
ν= n is now used when solving forC1,C2,C3. “Lag” means this
quantity at some earlier time, the time interval between now
then being fixed. The seasonal force, however, operates a
the present spin axis.

The time delay between the “lagged” force and the me
oroid’s current position is

tlag ≈ εsea

n
, (37)

wheren is the body’s mean-motion. We can findεseafrom (30)
usingω= n. Note that this method is most accurate for lowe
orbits, where a single orbit-averagedtlag value can approximat

the change in seasonal acceleration as the meteoroid passes be-
tween perihelion and aphelion.
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3.2. Inclusion of Yarkovsky Accelerations into Orbital
Evolution Code

We incorporated the Yarkovsky accelerations into the “sw
rmvs3” numerical integrator designed by Levison a
Duncan (1994) and based on the symplectic formulation
posed by Wisdom and Holman (1991). This is possible beca
the drift accelerations above are not velocity-dependent, al
ing us to preserve the attributes of the symplectic integra
technique. Note that even though swift-rmvs3 is not technic
symplectic (i.e., it lowers the integration time step when tre
ing planetary close encounters), it does handle highly ec
tric orbits efficiently enough to make it much faster than a
other numerical integration code publicly available. Addition
information on the statistical accuracy of this code is availa
from Michel and Valsecchi (1996) and Duncan and Lissa
(1997).

The Yarkovsky acceleration components are calculate
each integration time step, which is always a small fraction of
test body’s orbital period. The seasonal acceleration, howe
is complicated to calculate, since the magnitude of the force
pends on distance and spin axis parameters from previous
steps (i.e., through1T , which is a function of the incident sola
flux) and not, like the usual drag forces, on the instantane
position and/or velocity. To deal with this, position paramet
are stored in an array at each time step for later use. By esti
ing tlag, we can interpolate between saved positions to estim
the lag values ofr s. A more accurate method would involv
solving Kepler’s equation at each time step, but the comp
tional time penalty would be prohibitive. We have found th
linear interpolation schemes using Cartesian and polar co
nates yield similar results, though the latter are more approp
for elliptical orbits.

4. TESTING THE YARKOVSKY-SWIFT-RMVS3 (YS) CODE

4.1. Effect of Yarkovsky Forces on Semimajor Axis

To verify that our code was running correctly, we perform
validity tests against the benchmarkda/dt drift rate results pro-
duced by Rubincam (1995, 1998) and Farinellaet al. (1998a).
We focus on the Farinellaet al. benchmark tests below, since t
method discussed in Section 3 is closely related to Rubin
(1995, 1998). Test bodies in the “Yarkovsky-swift-rmvs3” (Y
code were given the following thermal and material prop
ties: thermal conductivityK = 2.65 W m−1 K−1, specific heat
Cp= 680 J kg−1 K−1, bulk densityρ= 3500 kg m−3, emissivity
ε= 1.00, and albedoA= 0.0. The spin periods were either set
P= 5 h, corresponding to the median value of small astero
(Harris 1996), orP= 5 h× (2R/1 km), corresponding to th
spin rates of fragments measured in laboratory impacts ex
ments (e.g., Farinellaet al. 1998a), which were extrapolated
larger sizes. Given that 1998 KY26, a 30-m EC asteroid, h

spin period of∼10 min (Ostroet al. 1999), we believe the latte
estimate is more likely to apply to meteoroids.
F MAIN BELT ASTEROIDS 307
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FIG. 4. Maximum diurnal and seasonal mean drift rates (i.e., avera
over one revolution) for variously sized meteoroids on initially circular or
with semimajor axesa= 2 AU. For the diurnal runs, the spin axis orient
tions of the bodies (b̂) were set to (0.0, 0.0,−1.0) in heliocentric–ecliptic co
ordinates. Their rotation periodsP are indicated. The seasonal runs hadb̂=
(0.0, 1.0, 0.0). Other parameters used for these runs include thermal co
tivity K = 2.65 W m−1 K−1, specific heatCp= 680 J kg−1 K−1, densityρ=
3500 kg m−3, emissivityε= 1.00, and albedoA= 0.0. These runs agree wit
Farinellaet al. (1998a), provided a neglected factor of 2 multiplies their seas
rates (Farinellaet al. 1998b).

Figure 4 shows the maximum diurnal and seasonalda/dt drift
rates (averaged over one revolution) for variously sized m
oroids on initially circular orbits with semimajor axesa= 2 AU.
No planets were included in these runs. The integration time
was 30 days. To get the maximum diurnal drift rate, the s
axis was oriented perpendicular to the orbital plane (i.e., u
heliocentric–ecliptic coordinates,b̂= 0.0, 0.0,−1.0). Similarly,
the maximized seasonal drift rate,b̂, was placed in the orbit plan
(b̂= 0.0, 1.0, 0.0). The drift rate was found by integrating th
bodies for 1 Myr and subtracting the initial and finala values.

Our results match Fig. 1 of Farinellaet al. (1998a) once an
erroneous factor of 1/2 is removed from the their seasonal dr
rates (Farinellaet al. 1998b). Small meteoroids have the fast
diurnalda/dt rates, though the magnitudes of these values
crease with increasing spin rate. Seasonalda/dt rates peak nea
R= 10 m (da/dt∼−0.004 AU Myr−1). The magnitudes of th
seasonal and diurnalda/dt rates forR∼ 1 m bodies are roughl
the same;̂b determines whether these effects constructivel
destructively interfere. (Note that we turn off the seasonal e
for R< 20 cm bodies to avoid computational round-off err
in our coded version of Section 3.1.2. Since the dynamical
lution of such small bodies is beyond the scope of this pape
ignore this minor problem at this time).
r Figure 5 shows the maximum seasonalda/dt rates for me-
teoroids on circular orbits with semimajor axesa= 1, 2, and
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FIG. 5. Seasonal Yarkovsky drift rates for variously sized meteoroids
initially circular orbits with semimajor axesa= 1, 2, 3 AU. The b̂values were set
to (0.0, 1.0, 0.0), which provides maximum seasonal drift rates. Other param
are given in the caption to Fig. 4. These results agree with Farinellaet al. (1998a),
provided their seasonal rates are multiplied by a neglected factor of 2.

3 AU. Once again, our plot matches Fig. 2 of Farinellaet al.
(1998a) after a factor of 1/2 is removed from their results. W
find that seasonal drag rates forR> 20 m bodies nearly converg
for a= 1, 2, and 3 AU. This behavior is similar to that seen
Fig. 5 of Rubincam (1998); basaltic objects withR= 10 m have
nearly constantda/dt rates between 0.4 and 3.0 AU.

We can explain this result using proportionality relationshi
Assuming our large meteoroids travel on circular orbits,da/dt∝
S/n, whereS is the along-track acceleration (with thermal la
terms included). SinceS is proportional to solar flux, which
changes like∝a−2, andn∝a−3/2, da/dt∝a−1/2, a fairly slow
rate. (Note that we are ignoringda/dt’s dependence on mete
oroid size at this time.) When factors like asteroid rotation (a
thermal lag) are included, we get a nearly constantda/dt rate for
nearly any distance between Mercury and the main belt. Ano
way of describing this effect is that, for large bodies, the th
mal wave produced by absorbed sunlight largely fails to re
the other side of the meteoroid. Accordingly, we can treat th
bodies like infinite half-spaces, such that their thermal prop
ties are independent ofR (Burnset al. 1979, Rubincam 1995)
This approximation yields anR−1 force dependence (i.e., th
area of the meteoroid exposed to sunlight,∝R2, divided by its
mass,∝R3), explaining the straight lines seen on the right s
of our Fig. 5.

4.2. Effect of Yarkovsky Forces on Eccentricity and Inclinat

4.2.1. Results from numerical simulations.We now exam-
ine how a meteoroid’s eccentricity and inclination are modifi
by Yarkovsky accelerations. Our intuition on how meteoro

should evolve is limited by the complexity of the system (p
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rametersa, e, i ; spin axis orientationbx, by, bz; and both sea
sonal and diurnal Yarkovsky accelerations). For this reason
have chosen to investigate a series of simple test cases b
addressing more complicated behavior. Unusual results wi
discussed in Section 4.3.

The test meteoroid was anR= 1 m body with the same ma
terial and thermal properties described previously. The len
of our integrations was 1 Myr. Seasonal and diurnal Yarkov
accelerations were tested separately, and orbital changes c
solely by diurnal accelerations (1adiur,1ediur,1idiur) and sea-
sonal accelerations (1asea,1esea,1isea) are indicated in Table I
For the runs shown there,b̂ was placed in a variety of direc
tions; some in the orbital plane (bz= 0), some normal to the
orbital plane (bx, by= 0), and some at a 45◦ angle to the orbita
plane.

The first 14 test cases have the test body on a circular
in the ecliptic plane (a= 2 AU, e= 0.0, andi = 0◦). Recall that
no planets are included in these runs. For the first 6 runs (
axis orientation̂b=±x̂s,±ŷs, and±ẑs), we see noe changes.
Small i changes (±0.0055◦) were caused by the diurnal effe
when b̂ was in thexs, ys plane. The next 8 cases (b̂ at a 45◦

angle to thexs, ys plane) show1adiur and1aseawith nearly the
same magnitude. Accordingly, the sign ofb̂ determines whethe
da/dt doubles or nearly cancels out. Node/dt changes are
seen, but, surprisingly,1isea is found to be nearly 1◦ per Myr,
large enough to drive inner main belt stony meteoroids to h
inclinations (and into theν6 resonance) within their expecte
disruption lifetimes. This high rate will be examined in clos
detail in the next section, particularly when more realistic orb
behavior (e.g., orbital precession of the apsides and nodes c
by secular perturbations) is included.

The second 14 cases used a meteoroid on an initially ecce
orbit (i.e.,a= 2 AU, e= 0.3, andi = 0◦). The increased mag
nitude of the Yarkovsky accelerations when the object is clo
to the Sun (near perihelion) is balanced to some degree b
greater amount of time the object spends far from the Sun (
aphelion). Accordingly, the magnitude of1a and1i increases
slightly for the second 14 cases compared to the comparable
14 cases. Note that the seasonal accelerations tend to circu
the orbit, and that1esea is the most negative when̂b is in the
orbital plane.

We have also examined the effect of inclination changes,
without planetary perturbations, they produce the same1a,1e,
and1i results as when̂b is directed out of the orbital plane. Fo
example, a circular orbit withi = 90◦ andb̂z= 1.0 is equivalent
to i = 0◦ and b̂z= 0.0. This makes sense, since thermal for
are dependent on the specific characteristics of the mete
and its distance from the Sun, not how far it lies above or
low an arbitrarily defined plane. Hence, the salient param
is b̂’s orientation (obliquity) relative to the meteoroid’s orbit
plane.

A final inspection of Table I shows that the diurnal accele
tion noticeably modifiesa andi while the seasonal acceleratio
modifiesa, e, i . Diurnal changes toi and seasonal changes toe
a-occur so slowly, however, that they are unimportant for questions
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TABLE I
Orbital Changes to an R= 1 m Meteoroid via the Yarkovsky Effect

a i 1adiur 1ediur 1idiur 1asea 1esea 1isea

(AU) e (deg) b̂x b̂y b̂z (10−3 AU) (10−3) (10−3 deg) (10−3 AU) (10−3) (10−3 deg)

2.0 0.0 0.0 1.0 0.0 0.0 0.00 0.00 5.5 −0.94 0.0 0.0
−1.0 0.0 0.0 0.00 0.00 5.5 −0.94 0.0 0.0

0.0 1.0 0.0 0.00 0.00 5.5 −1.0 0.0 0.0
0.0 −1.0 0.0 0.00 0.00 5.5 −1.0 0.0 0.0
0.0 0.0 1.0 0.77 0.00 0.0 0.0 0.0 0.0
0.0 0.0 −1.0 −0.77 0.00 0.0 0.0 0.0 0.0

0.7 0.0 0.7 0.54 0.00 0.48 −0.47 0.0 930.0
−0.7 0.0 0.7 0.54 0.00 0.48 −0.47 0.0 930.0

0.7 0.0 −0.7 −0.54 0.00 0.48 −0.47 0.0 930.0
−0.7 0.0 −0.7 −0.54 0.00 0.48 −0.47 0.0 930.0

0.0 0.7 0.7 0.54 0.00 0.48 −0.52 0.0 930.0
0.0 −0.7 0.7 0.54 0.00 0.48 −0.52 0.0 930.0
0.0 0.7 −0.7 −0.54 0.00 0.48 −0.52 0.0 930.0
0.0 −0.7 −0.7 −0.54 0.00 0.48 −0.52 0.0 930.0

2.0 0.3 0.0 1.0 0.0 0.0 0.00 0.00 5.9 −1.3 −0.15 0.0
−1.0 0.0 0.0 0.00 0.00 5.9 −1.3 −0.15 0.0

0.0 1.0 0.0 0.00 0.00 6.2 −1.3 −0.09 0.0
0.0 −1.0 0.0 0.00 0.00 6.2 −1.3 −0.09 0.0
0.0 0.0 1.0 0.88 0.00 0.0 0.0 0.0 0.0
0.0 0.0 −1.0 −0.88 0.00 0.0 0.0 0.0 0.0

0.7 0.0 0.7 0.62 0.00 5.1 −0.66 0.0 1000.0
−0.7 0.0 0.7 0.62 0.00 5.1 −0.66 0.0 1000.0

0.7 0.0 −0.7 −0.62 0.00 5.1 −0.66 0.0 1000.0
−0.7 0.0 −0.7 −0.62 0.00 5.1 −0.66 0.0 1000.0

0.0 0.7 0.7 0.62 0.00 5.1 −0.65 0.0 970.0
0.0 −0.7 0.7 0.62 0.00 5.1 −0.65 0.0 970.0
0.0 0.7 −0.7 −0.62 0.00 5.3 −0.65 0.0 970.0
0.0 −0.7 −0.7 −0.62 0.00 5.3 −0.65 0.0 970.0

Note.The first three columns list the starting orbit, while the next three columns show the meteoroid’s spin axis orientation in heliocentric–ecliptic coordinates.

The last six columns describe orbital variations caused by the diurnal (d) and seasonal (s) accelerations over 1 Myr. Thermal conductivity is for bare basalt
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(K = 2.65 W m K ). Other meteoroid properties are described in the tex

of meteoroid delivery. Seasonali changes, though, are interes
ing enough to merit additional study.

4.2.2. Discussion of inclination changes produced by s
sonal Yarkovsky acceleration.Table I shows that the season
Yarkovsky acceleration causes nonnegligiblei changes to me-
teoroid orbits when their spin axes are neither parallel nor p
pendicular to their orbit plane. To explore this result further,
testedda/dt anddi/dt rate changes for differently sized met
oroids when̂bwas pointing at a 45◦ angle out of the orbital plane
b̂= (0.707, 0.0, 0.707). The meteoroids were assumed to ha
orbital parametersa= 2.0 AU, e= 0.0, andi = 0◦ and the same
physical and thermal properties as the test meteoroids desc
above. No planets were included in our integrations.

Theda/dt results for our new test cases are a factor of 2 low
in magnitude than the seasonal acceleration results show
Fig. 4, though they keep the same maximum (i.e., nearR∼ 10 m)
and parabolic shape. Surprisingly, though,di/dt values do not
follow this parabolic trend; rather, they increase asR decreases
(Fig. 6). Note thatdi/dt is nearly flat forR< 0.1 m but drops

off linearly for R> 10 m. Noda/dt-like turnover is seen near
t.
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R∼ 10 m. These results suggest that the seasonal Yarko
effect could potentially force sub-m meteoroids to highi values.

To verify the accuracy of these results, we calculated
seasonal Yarkovsky accelerations for three representative
ies (i.e., R= 1, 10, and 100 m) at each integration time st
(1t = 30 days) and then calculated the net1a and1i changes
over 1 Myr using Gauss’s perturbation equations (Burns 19

da

dt
= 2a3/2

(µ(1− e2))1/2
[Rpesin f + Tp(1+ ecos f )] (38)

and

di

dt
= r Np cos(ν + f )

H
. (39)

Here,µ=GM¯, r is the distance from the Sun,f is the true
anomaly,ν is the argument of pericenter,H is the angular mo-
mentum, andRp, Tp, Np are components of the instantaneo
perturbing force on the body in the radial, transverse, and nor
directions. Substituting in the relevant values and integrat

we found no significant changes between these results and those
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FIG. 6. Seasonal meandi/dt changes, averaged over one revolution,
various meteoroid sizes whenb̂= (0.707, 0.0, 0.707). The test meteoroids hav
the same starting conditions and material properties as the objects descri
Fig. 4. No planetary perturbations are included. Note thatdi/dt values increase
as R decreases, in contrast to theda/dt results which are similar in shape t
the seasonalda/dt results seen in Fig. 4. These highdi/dt values are sharply
curtailed once planetary perturbations are included.

found by our YS code. Thus, we have some confidence tha
YS code is yielding correct values.

To gain intuition about theda/dt and di/dt vs R trends,
we plotted the seasonal Yarkovsky acceleration compon
(x, y, z) over selected time steps forR= 1, 10, and 100 m bodie
making a single revolution around the Sun (Fig. 7). Recall t
the seasonal force always points along the spin axis direc
(b̂). The acceleration vectors have been scaled by an arbi
factor so they are easier to see. We have also drawn a line
tween the maximum acceleration vectors on each plot to
a sense of the thermal lag angle associated with the sea
effect. If there were no thermal lag, the acceleration vector
the xy plots would be mirror images of one another across
x= 0 line, such that a horizontal line would extend between
maximum vectors pointing in the+x and−x directions. Thexz
plot would also have a point instead of a line.

Examining theR= 1 m case, we find that the lag angle show
in thexy plot is small even though the acceleration vectors
large. Small lag angles imply that the largest seasonal “kic
in the orbital plane are applied in a direction nearly radial to
Sun, while the smallest kicks are applied in the nearly transv
direction. It is clear from the perturbation equations (Eq. (3
that this can only lead to minor changes ina. The situation is
reversed for the out-of-plane forces (xzandyzplots), however,
with the largest “kicks” coming when cos(ν+ f ) is near±1.

Since the acceleration vectors conveniently change signs on
ther side of the Sun, andr and H are essentially constant,Np
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values can add on one another, leading to largedi/dt changes
(Eq. (39)).

The R= 10 m case shows a much larger lag angle than
R= 1 m case, so the maximum in-plane acceleration vector
a substantial transverse component. This can lead to signifi
da/dt changes provided the acceleration magnitude is large
our chosen thermal parameters, aR= 10 m body provides jus
the right mix of lag angle and thermal acceleration to maxim
da/dt. The larger lag angle also decreases the magnitud
di/dt to some degree, though the more important effect is
factor of 5 decrease in acceleration magnitude over theR= 1 m
case. This explains thedi/dt drop-off for larger bodies seen i
Fig. 6.

The R= 100 m case shows a larger lag angle than bef
though it is coupled with significant decrease in thermal ac
eration. The combination leads to even smaller though non
ligible da/dt anddi/dt rates. Figure 5 shows that an event

FIG. 7. Seasonal Yarkovsky acceleration vector components (x, y, z) over
selected time steps forR= 1, 10, and 100 m bodies making a single revolut
around the Sun. Starting conditions, spin axis orientation, and material prop
are the same as in Fig. 6. The acceleration vectors have been scaled by ar
factors for each meteoroid size to make them visible; theR= 1 m test case ha
a maximum acceleration vector nearly 5 times as long as the maximum v
on theR= 10 m test case, and nearly 50 times as long as the maximum v
on the R= 100 m test case. A line has been drawn between the maxim
acceleration vectors on each plot to make the thermal lag angle easier t
Here, R= 1 m has the smallest lag angle but the largest acceleration vec
yielding smallda/dt and largedi/dt rates;R= 100 m has a large lag angle b
tiny acceleration vectors, yielding small (but considerable for its size)da/dt and

ei-smalldi/dt rates;R= 10 m strikes a balance between these two cases, yielding

highda/dt and moderatedi/dt rates.
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equilibrium is reached at largerR between these two factor
such that the body is no longer so dependent on its dist
from the Sun. (See the end of Section 4.1 for more explanat

To summarize, these plots verify that the seasonal Yarkov
effect can produce large inclination changes in small meteor
when their spin axis is out of the orbital plane. The question
what happens toda/dt anddi/dt when planetary perturbation
are included will be addressed in the next section.

4.3. Effects of Secular Perturbations on the Yarkovsky Effe

So far, we have only investigated the relatively simple c
of how the Yarkovsky effect modifies the orbital motion of m
teoroids around the Sun when no other perturbing forces
present. In this section, we treat the more realistic case of m
oroids evolving in a system where their motions are perturbe
the gravitational forces of planets Venus through Neptune. Is
that now become important (and more difficult to treat ana
ically) are: (i) precession (regression) of a meteoroid’s aps
(nodes), (ii) secular perturbations inducing a forced eccentr
and inclination component into a meteoroid’s osculatinge, i val-
ues, and (iii) mean-motion and secular resonance phenom
which can produce rapid and chaotic changes in a meteor
osculatinge, i values. In addition, we must also become co
cerned with the long-term behavior of the meteoroid’s spin a
which can precess under the influence of solar torques. As
axes and orbital motions slowly evolve, the magnitude and
rection of the Yarkovsky thermal forces must change as w
The important effect of meteoroid collisions will be discuss
in Section 4.4.

4.3.1. Spin axis and orbit normal precession rates.The
long-term behavior of the spin axis depends to a large de
on whether its precession rate is slower or faster than that o
orbit’s plane. Ward (1992) discusses two limiting cases of in
est, (a) if the normal to the meteoroid’s orbital plane preces
much faster than the motion of the spin axis, then the latter
cesses around the mean direction of the orbital normal, whi
normal to the invariable plane, and (b) if the motion of the s
axis is much faster than the motion of the orbit normal, then
spin axis can maintain a nearly constant obliquity as it prece
around the orbit normal. To determine which case is applica
for meteoroids, we need to first find the spin axis precession
scale and the precession time scale of the orbital node.

The spin axis precession time scale induced by solar tor
on an axially symmetric object orbiting the Sun has been e
mated by Burns and Tedesco (1979) to be

τspin= T2

P1
, (40)

whereT is the orbital period,P is the spin period, and1=
(C− A)/C, the relative difference in the meteoroid’s mome
of inertiaC andA. If we apply some reasonable parameters

an R= 1 m body (e.g.,1∼ 0.1, P= 0.01 h, anda= 2 AU), we
find thatτspin= 70 Myr. Assuming that most objects have sp
F MAIN BELT ASTEROIDS 311
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periods which scale withR (as described above), we conclu
thatτspin>∼ 0.1 Myr for sub-km objects.

The nodal precession rate in the main belt is 26 in yr−1 at
2 AU (A. Morbidelli 1998, personal communication), whic
corresponds to a precession time scale ofτnode∼ 0.05 Myr. Since
τspinÀ τnode for meteoroids, we can assume that the spin a
precesses around the normal to the invariant plane. In fac
R< 10 m, it is reasonable to assume in the code that meteo
have fixed̂b orientations relative to inertial space. Section 4.
and Vokrouhlický and Farinella (1998a) also treat this proble

Note that an updated version of Eq. (40) includes a fa
of 2/(3 cosξ ), where ξ is the meteoroid’s obliquity (D
Vokrouhlický 2000, personal communication). While the 2/3
factor reduces the forced precession period, the 1/cosξ term, on
average, increases it significantly, which strengthens the con
sion thatτspinÀ τnode. The updated equation is sometimes cal
the Hipparcos precession formula.

4.3.2. Estimated change in orbital elements from the per
bation equations. An estimate of how a meteoroid’sa and i
values change with time under the influence of the Yarkov
effect and secular planetary perturbations can be gained by
stituting the Yarkovsky accelerations (diurnal and seasonal)
the perturbation equations. Since the algebra is long and ted
we only describe the procedure and results here. Interested
ers can find additional detail in Rubincam (1995).

We first need to find the radial, transverse, and normal di
tions of the Yarkovsky accelerations. The rotation matrix to m
this time-dependent transformation can be constructed from
set of Euler angles

M = [θ ]z [i ]x [Ä]z, (41)

where the third, second, and first rotation angles (in brackets
rotated about the third, second, and first rotation axes (in
scripts) (i.e., for [θ ]z, you rotate about thezaxis by an amountθ );
θ is the angle in the plane of the orbit between the ascending
and the radius vector to the meteoroid, andÄ is the longitude
of the ascending node. Multiplying the seasonal accelerat
by M and substituting the radial and transverse expressions
get a complex expression forda/dt which can be simplified
by assuming that the meteoroid is on a circular orbit and
apsides and nodes circulate uniformly, a reasonable assum
for meteoroids acting under the influence of secular plane
perturbations. Averaging over an orbital period allows us to d
the fast periodic terms, leading to a seasonal rate of chang
the semimajor axis of

da

dt
= −1

n

[
CseaF⊕

(
1 AU

a

)2

sinεsea

](
1− b2

z

)
, (42)

wherebz is the component of the unit spin vector normal to
invariable plane (Rubincam 1998). The maximum magnitud
|da/dt| for the diurnal effect can be found using same expr
in
sion, as long as we replaceCseawith Cdiur, sinεseawith sinεdiur,
and drop the quantity (1− b2

z).
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Inserting values into this expression, we can readily duplic
the maximum seasonal and diurnal results shown in Fig. 3. T
secular planetary perturbations do not change the Yarkov
da/dt rate in any significant way.

We can solve for the seasonal rate of change in inclinatio
the same manner, yielding

di

dt
= CseaF⊕

8na

(
1 AU

a

)2

sin 2i sinεsea
(
1− 3b2

z

)
. (43)

Note that this equation replaces Eq. (31) in Rubincam (19
which should have a sin 2i term instead of a cosi term.

From inspection, we see thati = 0◦ orbits yield di/dt= 0
values, regardless of the choice ofbz. This contradicts our pre
vious results which showed large inclination changes for s
axes oriented at a 45◦ angle to the orbital plane. The explan
tion is that orbital precession allows the seasonal accelera
to increasei at a particular nodal value and decrease it ag
180◦ later, yielding periodic terms but a secular zero. Since
forceb̂ to keep a constant obliquity relative to the inertialz axis,
the seasonal force terms cancel out over a revolution. Ifi is
nonzero, however, the meteoroid’s obliquity varies as the n
swings around. Since the seasonal force depends on obliq
we do not get a complete cancellation 180◦ later, leaving a sec
ular rate. Still, the resultant rate is much diminished over
no-precession case described previously.

The maximum seculardi/dt rate occurs wheni = 45◦ and
b2

z= 1. With the thermal parameters described in Section
the maximumdi/dt rates forR= 1, 10, and 100 m bodies a
a= 2 AU are 0.007◦, 0.03◦, and 0.004◦ Myr−1, much reduced
from those presented in Table I. Frequent collisions capabl
modifying the orientation of̂b would reduce these rates eve
more. Rubincam (1995) approximated this effect by ass
ing all b̂ orientations were possible over a meteoroid’s lifetim
(i.e., 〈b2

z〉=1/3). Substituting this value into Eq. (43), we fin
thatdi/dt changes go to zero. Thus, we conclude that seas
Yarkovsky effect produces small-to-insignificanti changes over
the lifetimes of most meteoroids, provided their nodes circu
uniformly.

4.3.3. Changes in orbital elements from direct integratio
Checking seasonal and diurnalda/dt, de/dt, anddi/dt rates
using the YS code is nontrivial, since the inclusion of planets
Jupiter and Saturn introduces effects (e.g., chaotic resona
forcedeandi terms) that can be orders of magnitude more e
cient at changing osculatinges andi s than the Yarkovsky effect
For example, our test meteoroid from before (a= 2 AU; e= 0.0,
i = 0◦) lies near theν6 andν16 secular resonances and the 4
mean-motion resonance with Jupiter; together they are powe
enough to pump up a meteoroid’se andi to large values in less
than 1 Myr. Ase and i change, so must the magnitude of t
Yarkovsky accelerations and the orientation of the orbit pla
These “feedback loops” can be difficult to model except throu

numerical integration, making drift rates ultimately difficult t
predict.
AM, AND BURNS
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To demonstrate this, we integrated variously sized meteor
on (a= 2 AU; e= 0.0, i = 0◦) orbits using the YS code. Our go
was to look for secular trends inda/dt. We integrated for 1,000
years and 10,000 years and included the planets Venus–Nep
We hoped that the short integration times would help minim
the effects of resonant pumping ofe andi , andb̂ was placed in
the orbit plane (̂b= 1.0, 0.0, 0.0) to get the maximum season
drift rate.

To obtain a control, we turned off the Yarkovsky effect a
integrated a test body in the YS code for our selected ti
We found that planetary perturbations alone were enough t
troduce significant changes in the osculating orbit, (a=
2.000033 AU,e= 0.00324,i = 0.17574◦) after 1,000 years o
integration, and (a= 1.999720 AU,e= 0.03141,i = 1.58542◦)
after 10,000 years of integration. Next, we integrated our sui
meteoroids for the same integration times (with the Yarkov
effect on) and subtracted our controla (with the Yarkovsky ef-
fect off) from the newa values. Our results are shown in Fig.
Results from Fig. 4 (i.e., no planetary perturbations include
the integration) have been included as a second control.

We see that after 1,000 years, ourda/dt results are lower by
roughly a factor of 1.4 vs the “no-planets” control. A compa
son after 10,000 years, however, is dramatically different; bo
nearR= 10 m now have a fasterda/dt rate than the “no-planets
control, while objects nearR= 2 and 30 m have much slowe
rates than the “no-planets” control. This variance is cause
part, by the meteoroid’s nodal precession rate (dÄ/dt), which

FIG. 8. Dynamical evolution of test meteoroids under the seaso
Yarkovsky effect. Orbital and material properties are the same as in Fi
Here, b̂= (1.0, 0.0, 0.0) (i.e., in the orbit plane). The control was integrat
without planetary perturbations included. For the other test cases, planets V
Neptune were included. Integration time scales lasted 1,000 and 10,000
The variance between the curves is caused, in part, by the nodal precessi
oof the meteoroids (dÄ/dt), which is influenced by both planetary perturbations
and the Yarkovsky accelerations.
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is influenced by both planetary perturbations and the Yarkov
accelerations. Since resonance phenomena generate a sm
clination in each meteoroid’s orbit, the seasonal “kick” along
spin axis (i.e.,̂x direction in inertial space) is no longer entire
in the orbit plane. From the perturbation equations, we kn
that normal forces causeÄ to precess, changing the orientati
of the orbit plane and thus the direction of the orbital “kic
relative to that plane. Depending on the precession rate, t
forces undergo constructive or destructive interference, in
increasing or decreasinga relative to the control.

The same method cannot be used to estimatede/dt rates,
since small changes in orbital energy modify the object’s “dep
in the resonance and the degree ofe pumping. For example
the maximumde/dt rates, found forR∼ 10 m after 1,000
and 10,000 years of integration time, are−6.8× 10−4 and
−0.025 Myr−1 (!), respectively. The latter result is far too hig
because no appropriate control value could be used.

Similarly, di/dt rates are difficult to calculate, though exp
rience suggests that secular resonances like theν6 are not nearly
as effective at pumping upi values as at pumping upe values.
Our results match these expectations; the maximumdi/dt rates,
found for R∼ 10 m after 1,000 and 10,000 years of integrat
time, are 0.002◦ and 0.008◦ Myr−1, respectively. Based on thes
low di/dt values, which may be enhanced by planetary per
bations, we conclude that significant seculari changes in our
long-term meteoroid evolution results are unlikely.

Our final test was to examine the long-term integration res
of R= 1 m meteoroids started in a number of positions in
inner main belt. As expected, no evidence was found for
portante and i trends unless a resonance was involved. Th
results will be discussed in much greater detail in Section 5

To summarize, we conclude thatda/dt predictions using the
perturbation equations do yield insights into the behavior of
namically evolving meteoroids over long time scales, parti
larly when these meteoroids are far from mean-motion or sec
resonances. The only way to get accurate drift rates in the vic
of resonances, however, is through direct numerical integra
Meteoroidde/dt anddi/dt rates caused by Yarkovsky therm
forces tend to be small when planetary perturbations are pre
Precession rates ofÄ are needed to determine the magnitude
da/dt, de/dt, anddi/dt.

4.4. Effect of Collisions on Meteoroids

Meteoroids residing in the inner Solar System frequently
dergo collisions with other small bodies. These events can d
age or destroy the meteoroid, and they also transmit ang
momentum to the meteoroid. As a result, the meteoroid’s
axis is reoriented, potentially altering the sign of the diurnal d
rate and the magnitude of both the seasonal and the diurnal
rates. For this reason, we have included collisions in our
code.
Using the method described in Farinellaet al. (1998a), we
assume the mean interval between spin axis reorientation ev
F MAIN BELT ASTEROIDS 313
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for a target of radiusR can be expressed as

τrot = 1

Pi R2N(r rot)
(44)

with Pi the intrinsic collision probability of the target body wit
other main belt asteroids (Bottkeet al. 1994a),r rot the projectile
size needed to “flip” the meteoroid’s spin axis, andN(r rot) the
cumulative number of main belt asteroids withR> r rot. Farinella
et al. estimatedr rot to be

r rot =
(

23/2ρtωR

5ρpV

)1/3

R (45)

withρt andω the target’s density and spin rate,ρp the projectile’s
density, andV the impact velocity. ThePi andV values, which
depend on the target’sa, e, i location, were mapped in Bottk
et al. (1996); we have slightly updated the map for the YS co

The cumulative size-frequency distribution of small main b
asteroids needed to findN(r rot) was estimated by Farinellaet al.
(1998a) to be

N(r ) = 3.5× 105

(
r

1 km

)−5/2

. (46)

Note that there is considerable uncertainty in this estimate.
servational evidence suggests that the main-belt size distrib
for asteroids smaller than a few km in diameter may have a m
shallow slope than that used in Eq. (46) (Jedicke and Metc
1998). If so, collisions will be less frequent than predicted.

The YS code uses a random deviate to determine wheth
spin reorientation event has taken place. Checks are made
10,000 years of computation time, andτrot is assumed to be
“half-life” parameter. When a critical collision occurs, the Y
code assigns a new random orientation for the test body be
continuing the integration.

A similar procedure is also available in the YS code to tr
catastrophic disruption events. However, since testing la
numbers of particles for tens of Myr is computationally exp
sive (e.g., Vokrouhlick´y and Farinella 2000), we have turne
off the disruption function for this paper. These events are
recorded, though, so we can easily include them afterward u
post-processing. As we gain more intuition on how small bod
evolve in the main belt, our simulations grow in complexity
account for these effects.

5. RESULTS

With the YS code tested, we are now ready to apply it
meteoroid-delivery issues. Our use of the code in this paper, h
ever, is constrained by computational expediency; we choo
examine specific dynamical issues which are difficult to exp
using analytical methods (i.e., effects of chaotic resonan
ents
planetary close encounters). Our goal is to characterize the or-
bital evolution of meteoroids well enough to apply these results
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to fast Monte Carlo codes, which may be better suited to
vestigate the evolution of numerous bodies with varying s
frequency distributions, thermal properties, and spin rates.

To accommodate the small number of particles used in
runs, we have traded some realism for diagnostic purposes
example, meteoroids ejected from their parent asteroids
trajectories and velocities that are not well constrained or
derstood. Rather than try to study all parts of this vast param
space with a limited number of bodies, we instead start our
teoroids at the parent asteroid in the same orbit. This way
can follow what happens to the meteoroids without worry
about how launch conditions have biased the result. It is
portant to keep in mind, however, that ejection events can
probably do throw meteoroids to the vicinity of chaotic res
nances, shortening their travel time considerably . We have
eliminated meteoroid disruption events, since they diminish
limited statistics. We justify this by noting that the typical i
tegration time used in this paper (50 Myr) is comparable to
CRE ages of some stony meteorites (Marti and Graf 1992)

The proper semimajor axes and inclinations (i.e., effect
planetary perturbations have been removed) of the parent
ies tested in Section 5 are plotted in Fig. 9. Starting oscula
orbital elements and outcome statistics for the same bodie
displayed in Table II.

5.1. Meteoroids from 6 Hebe

We start our investigation by tracking the delivery of me
oroids from the asteroid 6 Hebe, a 200 km diameter S-type a
oid with osculating orbital elementsa= 2.425 AU, e= 0.169,
andi = 15.05◦. Precise orbital elements for this body (and
other parent bodies discussed in this paper) were found usin
Horizons On-Line Ephemeris (Chamberlinet al. 1997). Hebe’s
high inclination places it near the 3 : 1 andν6 resonances; we
expect these “escape hatches” to be the main routes take
Hebe meteoroids on their way to EC orbits. Hebe also hap

to be one of the largest asteroids located near both resonances,able for perihelion distances (q) larger than 1 AU. We caution,

issed
making it a big target for impactors. Since an asteroid’s colli-

TABLE II
Summary of Meteoroid Evolution Outcomes

a i 1st MC 1st EC 〈TMC〉 〈TEC〉
Parent (AU) e (deg) (Myr) (Myr) (Myr) (Myr) % MC % EC

1 Ceres 2.770 0.077 10.58 6.81 6.82 23.0± 11.2 24.5± 11.6 44 34
4 Vesta 2.361 0.090 7.14 14.34 15.35 29.6± 10.1 31.7± 9.0 42 36
6 Hebe 2.425 0.202 14.77 5.53 10.88 15.4± 10.2 27.0± 12.1 88 68
8 Flora 2.202 0.156 5.89 1.36 6.82 8.1± 11.4 17.8± 10.4 94 54
13 Egeria 2.575 0.087 16.53 5.68 6.23 19.0± 10.2 22.9± 11.8 74 70
15 Eunomia 2.643 0.187 11.76 12.97 14.56 31.0± 9.6 31.4± 9.2 54 42
19 Fortuna 2.443 0.159 1.57 4.57 4.69 23.0± 12.2 22.1± 13.2 48 26
44 Nysa 2.423 0.150 3.70 9.79 10.33 32.6± 13.3 25.3± 13.4 26 14
46 Hestia 2.524 0.173 2.34 1.14 1.15 9.9± 12.0 12.0± 13.3 70 64
170 Maria 2.554 0.064 14.42 4.57 4.81 15.8± 12.0 19.0± 13.5 64 64

however, that a few close encounters with Mars may be m
304 Olga 2.404 0.220 15.82 1.31
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FIG. 9. Propera andi values for the parent bodies examined in Section
The approximate positions of the 3 : 1, 5 : 2, andν6 resonances are also show
Note that proper orbital elements are slightly different than the starting condit
shown in Table II, which use osculating orbital elements.

sion rate is a function of its geometrical cross section, Hebe
produce a far greater share of fragments than smaller indivi
parent bodies at comparable locations. If true, it is plausibl
assume that a substantial fraction of all S-type asteroid m
orites are from Hebe (e.g., Farinellaet al. 1993). Support for
this hypothesis comes from conspicuous similarities betw
Hebe’s spectral signature and the composition of H-type o
nary chondrites (Gaffey and Gilbert 1998). Several reports h
even suggested that Hebe is the primary source of the ordi
chondrites meteorites (Miglioriniet al. 1997a).

For our YS runs, we tracked two sets of stony meteoro
on Hebe-like orbits, varying only the thermal conductivityK
parameter, which influences the drift rate. Each set conta
50 R= 1 m bodies, and each of these bodies was started
a random spin axis orientation̂b. The meteoroid swarms wer
tracked for 50 Myr of integration time. Venus–Neptune we
included in the integrations. Orbital parameters were output
ery 10,000 years. The integration time step was 30 days, rea
4.49 11.0± 10.4 17.8± 10.9 98 92
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when/if the bodies reach Mars-crossing (hereafter MC) or
For this reason, future dynamical evolution studies in the
regime should use smaller time steps. To avoid anomalou
sults with this time step, bodies withq< 1.0 AU were removed
from the run. Thermal and material properties were chosen
consistent with S class asteroids:Cp= 680 J kg−1 K−1, ε= 0.9
(Lebofsky and Spencer 1989), andA= 0.08 (Helfensteinet al.
1996). Other relevant parameters include bulk density (ρ=
3500 kg m−3) and spin period (P= 0.01 h).

5.1.1. Hebe meteoroids: Slow drift rate.A basaltic-like
thermal conductivity was chosen for the first set of meteor
(K = 2.65 W m−1 K−1). This value produces maximum seaso
and diurnalda/dt rates of∼−5× 10−4 and∼±4× 10−4 AU
Myr−1, respectively (found with planetary perturbations o
We estimate the distances between 6 Hebe and the 3 : 1,ν6 reso-
nances to be1a∼ 0.057 AU, −0.084 AU, respectively
(Morbidelli and Gladman 1998). For reference, well-aimed
well-timed meteoroids ejected from Hebe would needv∞ ve-
locities (the velocity after escape has occurred) in exces
∼200 m s−1 to reach either resonance. Since meteoroids m
ing at the maximumda/dt rates listed above would still tak
over 100 Myr to reach the either resonance (much longer
our 50 Myr integration time or the assumed collisional disrup
time scale), we use this run to gauge general particle beh
in the YS code.

Our results show that the maximum distance traversed
any single meteoroid in this run over 50 Myr is−0.037 AU
(from 2.425 to 2.388 AU), while the mean distance traver
by all 50 bodies is−0.019± 0.01 AU. The substantial spread
distance is caused by positive drift rates generated by the di
effect. Similarly, the mean drift rate〈da/dt〉 is∼(−3.8± 2.0)×
10−4 AU Myr−1, not very different from the maximum value
described above. The mean number ofb̂ reorientation events in
the particle swarm was 11.5± 4.0; one body saw only 4̂b “flips”
while another saw 21.

Secular planetary perturbations produced periodic cha
in the eccentricities and inclinations of the bodies, makin
difficult to distill out secular trends. In general,e for the 50
bodies varied between∼0.04 and∼0.28. Minore oscillations,
with an amplitude of∼0.02 and a period of∼50,000 years, ride
on largere oscillations with an amplitude of 0.11 and a period
of ∼0.4 Myr. The amplitude of the large-scalee oscillations
appears to grow as the meteoroids move inward. Oscillatio
i do not appear to have a discernible pattern with 10,000-
time steps, though the period appears to be roughly 30,
40,000 years with an amplitude near 3◦. The min/max values ar
11.5◦ and 17.7◦, respectively. No secular trends are observe

5.1.2. Hebe meteoroids: Fast drift rate.For our second run
we choseK = 0.0015 W m−1 K−1, appropriate if our mete
oroids are porous or if they have a fine dusty surface (Rubin
1998, Farinellaet al. 1998a). The maximum seasonal and

urnal da/dt rates for thisK value (no planetary perturbation
included) are∼−1× 10−3 and∼±2× 10−2 AU Myr−1, much
F MAIN BELT ASTEROIDS 315
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higher than those forK = 2.65 W m−1 K−1. With these drift
rates, meteoroids should reach theν6 resonance well within
50 Myr. Note that a recent improved treatment of the seas
effect for regolith-covered asteroids (Vokrouhlick´y and Brož
1999) suggests that seasonal mobility may be reduced b
much as a factor of 10 than our estimated value. In this regi
however, the diurnal drift rate dominates to such a degree
our results remain accurate.

Since the maximum diurnal drift rate is much larger th
the maximum seasonal drift rate, particles will move both
ward and outward ina, depending on spin direction. Collision
however, produce multiplêb changes, causing diurnalda/dt
to frequently change sign and magnitude. This diurnal rand
walk allows the seasonal effect to push〈a〉 inward with time. For
example, after 9 Myr of integration (i.e., just before some pa
cles begin to enter theν6 resonance),〈a〉=2.401± 0.03 AU, a
〈da/dt〉 drift rate of (−2.7± 3.4)× 10−3 AU Myr−1.

Figure 10 shows the orbital elements of a representative m
oroid evolving under the combined influence of the seasonal
diurnal Yarkovsky effects, collisions, distant perturbations, a
planetary close encounters. The open circles show the nine
axis reorientation events produced over 42.32 Myr. The star
bz value is−0.790, causing the object to initially evolve inwa

FIG. 10. Dynamical evolution of anR= 1 m Hebe-like meteoroid. Sea
sonal and diurnal forces are included, as are perturbations from planets Ve
Neptune. The orbit starts ata= 2.425 AU, e= 0.169, andi = 15.05◦, with
b̂= (0.581, 0.196,−0.790). Thermal and material properties were chosen
be consistent with S-class asteroids:Cp= 680 J kg−1 K−1, ε= 0.9, A= 0.08,
ρ= 3500 kg m−3, and P= 0.01 h. Thermal conductivity was set low enoug
(K = 0.0015 W m−1 K−1) to allow a fastda/dt drift rate. The open circles show
the nine collision/spin axis reorientation events produced over 42.32 Myr. L
sjumps ina are caused by encounters with the (mJ, nS, k)= (9,−6,−2) mean-
motion resonance between Jupiter–Saturn–asteroid, located neara= 2.35 AU.
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under the predominant influence of the diurnal Yarkovsky
fect. The first spin axis change modifiesbx andby, but leavesbz

strongly negative, allowing the evolution to continue inward.
the object draws closer to theν6 resonance, distant perturbatio
grow in strength, increasing the amplitude of the forcedecompo-
nent. Then, at 12.20 Myr, the meteoroid encounters a three-
mean-motion resonance (Jupiter, Saturn, meteoroid) (Miglio
et al. 1998, Murrayet al. 1998, Nesvorn´y and Morbidelli 1998,
Morbidelli and Nesvorn´y 1999). Note the regular but steady i
crease in amplitude seen among osculatinge at this position,
the increase ina, and the comparable behavior for similara
values at∼40 Myr. (The increase in the oscillation period
e is probably related to the meteoroid’s proximity to theν6

resonance.) Three-body resonances correspond to the eq
mJλ̇J+ nSλ̇S+ kλ̇= 0, wherėλJ, λ̇S, λ̇ are the mean-motions o
Jupiter, Saturn, and the asteroid, andmJ, nS, k are integers. This
particular resonance, the (mJ, nS, k)= (9, −6, −2), splits into
three resonances between 2.34 and 2.36 AU (Morbidelli
Nesvorný 1999). Each one influences the evolution of this p
ticular meteoroid over its lifetime. A discussion of how driftin
meteoroids and mean-motion resonances interact (and ch
the subsequent dynamical evolution of meteoroids) can be fo
in Section 5.1.3.

Resonance encounters, however, do not changeb̂, such that the
meteoroid’s inward drift continues at the same rate for ano
0.33 Myr after the resonance encounter. Then, at 12.53 Myr
other spin-axis reorientation event occurs, givingbz a positive
value (0.868). This causes the meteoroid to reverse direc
and slowly spiral outward under the diurnal Yarkovsky effe
Enduring a few more resonance encounters (anda kicks), the
body evolves away from theν6 resonance, reducing the force
e amplitude all the way back to its starting value. Finally,
25.74 Myr, another collision gets the meteoroid moving inw
again. Several more spin axis flips occur, but they result inbz

values which are either strongly negative (diurnal drag do
nates) or near zero (seasonal drag dominates). Eventually,
resonance encounters near∼40 Myr, the object drifts deeply
into theν6 resonance, causinge values to get pumped up to a
EC value. At this point, the code records the exit data and e
the run.

We can use Fig. 10 to make some observations. First o
theν6 resonance does not appear to have a sharp boundary
ticles spiraling inward see their forcede amplitudes increas
to MC values (e.g., near perihelionq∼ 1.66 AU) well before
they cross the nominalν6 boundary estimated numerically b
Morbidelli and Gladman (1998). This behavior was first d
covered by Wetherill and Williams (1979) during their sea
for the sources of differentiated meteorites. Second, meteo
often encounter weak resonances well before they enter thν6

resonance; these effects can delay the inward evolution o
meteoroid by a few Myr. Third, we find that the largee jumps
commonly associated with theν6 resonance (e.g., Morbidel

et al. 1994) only occur when our test bodies are deep inside
resonance; objects near the periphery may have their evolu
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FIG. 11. Snapshots from the orbital evolution of 50 Hebe-like meteoro
Starting orbit, integration parameters, meteoroid sizes, and material prop
are the same as in Fig. 9. Approximate positions of the 3 : 1 andν6 resonances
and perihelion values (q) needed to reach Mars- and Earth-crossing orbits
shown. Meteoroids reaching Earth-crossing orbits are removed from the
The meteoroid swarm is shown after 1, 2, 5, 10, 20, and 50 Myr of integra
The dynamical range of osculatinge increases as the objects approach theν6

resonance. Most meteoroids reach Mars-crossing orbits well before enterin
ν6 resonance.

modified by libration amplitude increases or weak resonant
havior. Finally, the amplitude of the forcedi oscillations (not
shown) do not appear to significantly change until the obje
well inside theν6 resonance (i.e., outside the resonance,i stays
between 12◦ and 16.5◦).

Snapshots of the orbital evolution of our Hebe-like meteor
distribution are shown in Fig. 11. Solid lines show the appr
imate values needed to reach MC orbits, EC orbits, the
resonance, and theν6 resonance, the latter assuming the me
oroids have a meani between∼14◦ and 15◦. The first two frames
show the meteoroids after 1 and 2 Myr of evolution. Note h
the Yarkovsky effect causes the bodies to spread inward
outward ina, while secular planetary perturbations cause

the
tion
cillations in osculatinge. After 5 Myr of evolution, the bodies
cover a large section of the inner main belt. After 10 Myr, one
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object has entered theν6 resonance. Despite this, at this time
the integration, 15 bodies (30%) have achieved MC orbits (e
note the object seen beyond the MC orbit boundary in the
ure). After 20 Myr of evolution, objects can be seen in the 3
resonance, theν6 resonance, and on MC orbits. Nine partic
have reached EC orbits and have been removed from the
The last frame shows the meteoroid distribution at the end o
integration (50 Myr). Only 16 particles remain, with two mo
working their way deeper into theν6 resonance.

In terms of overall statistics, we found that 44 (88%) of the m
teoroids reached MC orbits over 50 Myr, while 34 (68%) reac
EC orbits. The shortest intervals needed for particles to re
crossing orbits with Mars and Earth were 5.53 and 10.88 M
respectively. The median planet-crossing times for meteor
with Mars and Earth were 11.92 and 23.33 Myr, respectiv
Note that most particles become MC before well before t
cross the derived “boundary” for theν6 resonance, implying
the boundary itself can be difficult to measure. A related tre
though not apparent from Fig. 11, is that the meteoroids’ for
e amplitude grows as the distribution nears theν6 resonance
This gives the overall distribution a roughly triangular sha
on the (a, e) plot, with the tapered end of the triangle near t
3 : 1 resonance and the base near theν6 resonance. The shap
is related to the dense distribution of Mars and three-body r
nances in the inner main belt, making orbital behavior there m
chaotic (Miglioriniet al. 1998, Morbidelli and Nesvorn´y 1999).
Finally, some bodies appear to reach MC orbits well away fr
the 3 : 1 orν6 resonances. For inward-drifting bodies, this o
come is caused by an increase in libration amplitude near thν6

resonance (Wetherill and Williams 1979). For outward-evolv
bodies, this outcome is caused by the (mJ, nS, k)= (4,−2,−1)
three-body mean-motion resonance ata= 2.397 AU (Morbidelli
and Nesvorn´y 1999).

To help interpret the meteoroid evolution tracks presente
this paper, we now present a more thorough discussion of
resonances and drift forces interact and influence the dynam
evolution of meteoroids.

5.1.3. Resonance capture and jumps at mean-motion r
nances. As Fig. 10 demonstrates, meteoroids frequently
counter weak mean-motion resonances as their orbits ev
inward or outward. Such mean-motion resonances are se
alter the dynamical evolution of drifting bodies in two ways, re
onance trapping and resonance jumping. Both features have
known previously for (i) satellite gravitational resonances (
namically similar to our situation), where the evolution usua
occurs through tidal forces (Goldreich 1965, Greenberg 19
Peale 1986, cf. Weidenschilling and Jackson 1993), (ii) pla
tary gravitational resonances (Hamilton 1994), and (iii) Lore
resonances on electrically charged dust (Schaffer and B
1992, Hamilton 1994), where Poynting–Robertson drag or o
nongravitational forces cause the evolution. Since reson

zones tend to be narrow, drags are often taken to be cons
across them (cf. Hamilton 1994). If this assumption is val
F MAIN BELT ASTEROIDS 317
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the dynamical effects of crossing a resonance should be
sensitive to the cause of the orbital drift. That is to say, re
nant dynamics driven by Yarkovsky drag should be identica
those previously studied, with one major exception: the diur
Yarkovsky effect allows particles to drift through resonanc
in either direction with, as we will describe below, differe
consequences. This section briefly reviews the orbital beh
ior of point masses as they drift through isolated resonan
and its application to our numerical simulations. We cauti
however, that no one has yet analytically explored resonant
namics in regions where resonances overlap or near three-
resonances. It is not yet clear whether drift through these
gions is equivalent to evolution through isolated two-body r
onances. In particular, since orbits are known to be cha
throughout much of the asteroid belt, due to overlapping
onances, it is likely that simple analytical models are, at b
suggestive.

Previous studies (Peale 1986, Malhotra 1991) of isola
mean-motion resonances have derived a pendulum
Hamiltonian (or energy integral) to follow the dynamics ne
the resonance. As the orbit evolves, the Hamiltonian chan
accordingly. In such a formulation the level curves of t
Hamiltonian display either of two morphologies: (i) the res
nant variable circulates (apsides or nodes cycle freely) or (i
librates (apsides or nodes oscillate around an equilibrium c
figuration). Depending upon the direction that the resonanc
approached, circulation may or may not evolve into a stable
bration (trapping is possible although not guaranteed or cap
is not possible). For capture into isolated mean-motion re
nances, the body must drift toward the planet creating the m
motion resonance. Such a straightforward criterion for cap
is not yet available for three-body resonances. If capture fa
the body will “jump” the resonance. Accordingly, for captu
into jovian mean-motion resonances,da/dt must be outward,
whereas, for capture into martian resonances, it must be inw

Resonant capture takes place when orbital drift due to d
balances resonant perturbations (i.e., [da/dt]drift + [da/dt]res=
0), meaning that the orbital period remains commensurate
the forcing period. The trapping probability depends on the
ative strengths of the drift force and resonance involved; str
drift forces or weak resonances make capture much less lik
Numerical integrations of trapping events using the YS co
(where the Yarkovsky effect accounts for the drift) show thaa
stays more-or-less constant whilee increases with time. Once
some limiting value ofe is attained, the meteoroid is releas
from the resonance. Note that failed trapping events will g
erally cause jumps (plus or minus) ine and/ori . Jumps occur
at gravitational resonances when the meteoroid is moving a
from the planet that is involved in the resonance or when i
moving toward the planet but with a drift rate that is too high
trapping to occur. Here, the transition between circulation
libration is unstable, such that resonant perturbations overpo

tant

id,
the drift force. Accordingly, just like a pendulum flipping 180◦,
the body quickly crosses the resonant zone. Once across, the
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resonant perturbations diminish in strength, allowing the d
force to dominate.

In our numerical integrations, meteoroids crossing a re
nance boundary are seen to undergo rapid±a changes, allowing
these bodies to quickly advance to the opposite side of the
onance zone. Figure 10 shows several “jumps” associated
the three (mJ, nS, k)= (9,−6,−2) Jupiter–Saturn–asteroid re
onances between 2.34 and 2.36 AU. In these cases, jumps
regardless of whether the meteoroid is moving toward or a
from Jupiter; presumably the evolution rate is swift enough t
capture into such narrow resonances is not possible. These j
are often accompanied by an increase ine.

Secular resonances, such as theν6, produce somewhat dif
ferent phenomena. By definition, [da/dt]res is zero for a secu-
lar resonance. Thus, as long as[da/dt]drift is present, capture
can not occur. Only jumps are possible. A numerical simulat
(Vokrouhlický and Farinella 1998b), based on the perturbat
equations, has found that theν6 secular resonance is ineffectiv
for very high drift rates.

5.2. Meteoroids from 8 Flora

For our next set of Yarkovsky runs, we investigated deb
from 8 Flora, a 140 km diameter S-type asteroid with os
lating orbital elementsa= 2.202 AU, e= 0.156, andi = 5.89◦

(Chamberlinet al. 1997). Asteroid 8 Flora is the largest memb
of the Flora family, a group of asteroids with similar spect
features, proper eccentricities, and proper inclinations, poss
derived from a common precursor via a catastrophic collis
(Zappalàet al. 1995). Since Flora family members dominate t
population of objects between 2.1 and 2.3 AU (Cellinoet al.
1991), and 8 Flora (and its family) is located within∼0.04 AU
of theν6 resonance (Morbidelli and Gladman 1998), it is pla
sible that a significant fraction of terrestrial meteorites can
traced back to this family.

Starting our test bodies at the same site at 8 Flora, we a
investigated the dynamical evolution of two sets of stony me
oroids, one havingK = 2.65 W m−1 K−1, the other withK =
0.0015 W m−1 K−1. Other integration and meteoroid properti
remained the same as those described for the 6 Hebe runs, e
that A was increased slightly to 0.11 to remain consistent w
8 Flora (Chamberlinet al. 1997).

5.2.1. Flora meteoroids: Slow drift rate.In the slower evo-
lution case (i.e.,K = 2.65 W m−1 K−1), the maximum seasona
and diurnalda/dt rates are∼−8× 10−4 AU Myr−1 and∼±5×
10−4 AU Myr−1, respectively (no planetary perturbations). No
that these rates are faster than comparable Hebe-like meteo
since the particles start closer to the Sun. Turning planetary
turbations and collisions on, we find〈da/dt〉 after 10 Myr is
∼(−5.6± 3.0)× 10−4 AU Myr−1, too slow to expect many me
teoroids to enter theν6 resonance in 50 Myr.

Nearly all of the meteoroids reached MC orbits (i.e., 46 pa

cles, or 92%) during the run, the mean time to reach such an o
being 24.0± 8.5 Myr, while the mean position where they ge
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these orbits is〈a〉=2.1883± 0.0049 AU. Since the approximat
position of theν6 resonance for Flora meteoroids is 2.16 AU, w
suspect the Yarkovsky effect has dragged our meteoroids
other nearby resonances. Morbidelli and Nesvorn´y (1999) report
that the 9 : 11 and 7 : 12 mean-motion resonances with Mars
in this region. Combined with the proximity of theν6 resonance
(and perhaps a background of other high-order resonances)
make this region just chaotic enough to pump upe oscillations
to MC orbits. Thus, Yarkovsky thermal forces and weak me
motion resonances work together to deliver material to the
region.

Once bodies have orbits that cross the orbital path of M
their evolution becomes characterized by abrupt changesa
owing to close encounters with Mars. Some of thesea changes
can deposit meteoroids deep into theν6 resonance; 4 of the 50
meteoroids reached EC orbits in this fashion. Most of the jum
however, moved the objects away from the resonance.
trend, though perhaps not statistically significant, shows it
in the changing〈da/dt〉 rate as we move from non-MC to MC
epochs:〈da/dt〉 goes from−5.6× 10−4 AU Myr−1 (0–10 Myr)
to −5.3× 10−4 AU Myr−1 (10–20 Myr) to−4.8× 10−4 AU
Myr−1 (20–50 Myr). Recall that collisions are constantly chan
ing the spin axes of the meteoroids, so preferential remova
fast-moving objects is unlikely to cause this trend.

5.2.2. Flora meteoroids: Fast drift rate.In the fast-drift
case (i.e.,K = 0.0015 W m−1 K−1), the maximum seasona
and diurnalda/dt rates are∼−2× 10−3 and∼±2× 10−2 AU
Myr−1, respectively (no planetary perturbations). Including
planets and collisions,〈da/dt〉 for the meteoroid swarm afte
5 Myr of evolution is∼(−3.8± 6.8)× 10−3 AU Myr−1. Thus,
the ν6 resonance is within easy reach of most particles dur
the integration. The low mean but large spread in〈da/dt〉 is
caused by diurnal drift, which allows bodies to move inward a
outward at rates exceeding the seasonal component. Note
collision events, which randomize meteoroid spin axes, ca
the statistical mean value ofda/dt for an ensemble of bodie
to decrease. In systems where collisions are frequent, a
teoroid’s movement via the diurnal effect is transformed in
a random walk, such that seasonal drag can sometimes d
nateda/dt (regardless of the meteoroid’s thermal conductiv
K ). The dispersion of the ensemble ina, however, may still be
controlled by the diurnal effect. If the dispersion is large, a
the mean change ina from the seasonal effect is small (e.g
the bodies are covered by regolith), the disperison will be
most important effect. If the dispersion ina is comparable to
the distance to resonances like the 3 : 1 orν6, the diurnal effect
will dominate the Yarkovsky leakage of bodies from the ma
belt.

A representative meteoroid evolution is shown in Fig. 12.
see that five spin axis reorientation events, represented by
circles, occur before the body enters theν6 resonance. Like the
Hebe cases,e oscillations grow in amplitude as the meteoro

rbit
t
approaches theν6 resonance. A minor resonance-jumping event
at 2.8 Myr (corresponding to the 7 : 12 mean-motion resonance
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FIG. 12. Dynamical evolution of anR= 1 m Flora-like meteoroid. Start
ing orbit hasa= 2.202 AU, e= 0.156, andi = 5.89◦. Starting b̂= (0.307,
−0.404, 0.862). Meteoroid properties are the same as in Fig. 9, exceptA= 0.11.
Jumps ina are caused by encounters with various Mars and three-body m
motion resonances. The longer-periodeoscillations seen after 15 Myr are caus
by the object’s proximity to theν6 resonance.

with Mars) does not have much effect. The meteoroid is captu
by the 10 : 17 mean-motion resonance with Mars at∼4 Myr
shortly after a collision event; note the steady increase in
amplitude ofe over∼1.5 Myr as the body is prevented from
approaching theν6 resonance. At 5.5 Myr, the body escapes a
immediately moves outward. A second encounter with the 1
Mars resonance produces a small jump but no major chang
a or e. Eventually, a collision at 15 Myr reverses the directi
of the meteoroid’s evolution, allowing it to approach the 10 :
mean-motion resonance from the other direction. As it cros
this resonance,a increases and then decreases a short time l
producing a square-wave-like shape on the plot. As the b
continues its inward evolution past this resonance, perturba
from theν6 resonance increase the period and magnitude of te
oscillations. Finally, a sequence of jumps, produced by a ho
closely spaced three-body and Mars mean-motion resona
with a<∼ 2.15 AU, combine with Yarkovsky drift to place th
object deeply into theν6 resonance. From here, chaotice vari-
ations from theν6 resonance quickly make the meteoroid
Earth-crosser. The elapsed time from start to finish is 22.49 M

The evolution of all 50 Flora-like meteoroids in (a, e) space is
shown in Fig. 13. Theν6 resonance is positioned to correspo
to meteoroids with a meani between∼5◦ and 6◦. After 1 and
2 Myr of evolution, secular perturbations and the Yarkovs

effect cause the objects to spread ina and e, moving many
of them closer to MC orbits and theν6 resonance. The 6-Myr
F MAIN BELT ASTEROIDS 319
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snapshot shows many objects in those regions, while the 7-
snapshot captures several objects en route to the EC zo
have already reached it, and 4 more will reach it by 8 Myr). T
last two frames show the distribution after 20 and 50 Myr. O
28 are left after 20 Myr, while just 16 remain after 50 Myr.
is clear that Flora meteoroids are well positioned to escape
main belt.

Forty-seven of the Flora clones became Mars-crossers (9
while twenty-seven became Earth-crossers (54%). The s
est intervals needed for a particle to reach crossing orbits
Mars and Earth were 1.36 and 6.82 Myr, respectively. The
dian planet-crossing times for meteoroids with Mars and E
were 2.87 and 16.18 Myr, while the mean crossing times w
8.1± 11.4 and 17.8± 10.4 Myr, respectively. Interestingly, th
Earth times are not so different from the CRE ages
H-chondrites (Marti and Graf 1992, Graf and Marti 1995); s
Discussion.

FIG. 13. Snapshots from the orbital evolution of 50 Flora-like meteoro
Integration parameters, meteoroid sizes, and material properties are the
as in Fig. 11. Resonances and planet-crossing perihelia (q) values are shown
Meteoroids reaching Earth-crossing orbits are removed from the run. The

teoroid swarm is shown after 1, 2, 6, 7, 20, and 50 Myr of integration. Note that
some objects reach Mars-crossing orbits before entering theν6 resonance.
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5.3. Meteoroids from 170 Maria

For our next set of Yarkovsky runs, we investigated deb
from 170 Maria, a 45-km diameter S-type asteroid with os
lating orbital elementsa= 2.554 AU,e= 0.064, andi = 14.42◦

(Chamberlinet al. 1997). Asteroid 170 Maria is the largest mem
ber of the Maria family, a group of S-class asteroids just outs
the 3 : 1 mean-motion resonance with Jupiter. The Maria fa
ily is smaller than several inner main belt families (e.g., Flo
Eunomia), but it is strategically located next to this main-b
“escape hatch,” making it a good candidate to supply meteor
and asteroids to the EC zone (e.g., Zappal`aet al. 1997).

As before, test meteoroids withK = 2.65 W m−1 K−1 and
K = 0.0015 W m−1 K−1 were studied. Other integration and m
teoroid properties were kept the same as before, except the
albedo which was set to Maria’s estimated value (A= 0.068)
(Chamberlinet al. 1997).

5.3.1. Maria meteoroids: Slow drift rate.The maximum
seasonal and diurnalda/dt rates, assuming no planetary pertu
bations, for theK = 2.65 W m−1 K−1 meteoroids were∼−5×
10−4 and∼±4× 10−4 AU Myr−1, respectively. Integrating thes
particles for 50 Myr, we determined〈da/dt〉 to be∼−3.4±
1.2× 10−4 AU Myr−1, half the speed needed to reach the 3
resonance (located1a= 0.036 AU away). Since we are mos
interested in what happens to meteoroids that reach the 3 : 1
nance, we leave this run to concentrate on theK = 0.0015 W m−1

K−1 results.

5.3.2. Maria meteoroids: Fast drift rate.For this lowerK
value, the maximum seasonal and diurnalda/dt rates are
∼−2× 10−3 and∼±2× 10−2 AU Myr−1, respectively (no plan-
etary perturbations). Including the planets and collisions, we
the resultant〈da/dt〉 rate for the particles after 3 Myr of evo
lution (i.e., before they enter the 3 : 1 resonance) is∼(−1.1±
6.5)× 10−3 AU Myr−1, fast enough for many particles to rea
the 3 : 1 resonance within meaningful integration time.

The dynamical behavior of inward-drifting meteoroids e
countering the 3 : 1 resonance was more unusual than we a
ipated. Based on resonance-jumping events seen for Hebe
Flora-like meteoroids in the inner main belt, we might have
pected Maria-like meteoroids to jump the 3 : 1 resonance. Ow
to the strongly chaotic dynamics that occur when the 3 : 1 re
nance overlaps theν6 secular resonance (Morbidelli and Moon
1995), numerical simulations are needed to follow meteor
behavior.

Figure 14 shows an example of a jump at the 3 : 1 resona
Shortly after this meteoroid crosses the outer 3 : 1 resona
boundary (near 2.52 AU), it starts to undergo largea oscillations.
The amplitude of one such oscillation is strong enough to m
the meteoroid all the way to the inner boundary of the resona
(near 2.49 AU). At this point, the meteoroid’s behavior is unpr
dictable; the wide separatrices of the 3 : 1 resonance mean
drifting bodies may or may not be able to complete the jump

leaping across the resonance’s inner boundary. Our meteor
though, can be observed to move across the 3 : 1’s inner bou
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FIG. 14. Dynamical evolution of anR= 1 m Maria-like meteoroid. Start
ing orbit hasa= 2.554 AU, e= 0.064, andi = 14.42◦. Startingb̂= (−0.922,
−0.044, 0.384). Meteoroid properties are the same as in Fig. 9, exceptA=
0.062. Note that the inward-moving meteoroid “jumps” across the 3 : 1 r
nance and reaches its inner boundary. After some additional chaotic beh
the object escapes. The long-periode oscillations seen after 6 Myr are caus
by the object’s proximity to theν6 resonance.

ary after∼0.5 Myr of chaotica, eoscillations. Here, it become
susceptible to long-periode oscillations from theν6 resonance
(i.e., after 6 Myr of evolution). Thus, Yarkovsky forces allo
some meteoroids to cross one of the strongest resonances
inner main belt.

The evolution of all our Maria-like meteoroids in (a, e) space
is shown in Fig. 15. Theν6 resonance is positioned to correspo
to meteoroids with a meani ∼ 15◦. The first frame shows th
meteoroids spreading after 1 Myr, while the second shows s
meteoroids approaching the cusp of the 3 : 1 resonance (3 M
The next frame shows the evolution 1 Myr later; note that
two lowermost objects have undergone a resonant jump
will eventually evolve out of the 3 : 1 resonance via Yarkovs
drag. All meteoroids entering the 3 : 1’s outer boundary unde
jumps to the proximity of the inner boundary, though only so
escape, typically those with the fastest inward drift rates
10 Myr, 10 particles have been removed from the system, a
particles have escaped through the 3 : 1 resonance, while se
others are preparing to jump or are in mid-jump. At 20 M
21 particles have been removed from the system. Bodies
survived passage across the 3 : 1 resonance are heading
ν6 resonance. Note that the single meteoroid lying on the i
boundary of the 3 : 1 resonance is actually an escaped body
the 10-Myr frame; a collision reoriented its drift direction fro

oid,
nd-
inward to outward. Since resonance-jumping events at the 3 : 1
resonance for outbound bodies are rare, this object now reaches
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FIG. 15. Snapshots from the orbital evolution of 50 Maria-like meteoroi
Starting orbit, integration parameters, meteoroid sizes, and material prop
are the same as in Fig. 13. Resonances and planet-crossing perihelia (q) values
are shown. Meteoroids reaching Earth-crossing orbits are removed from th
The meteoroid swarm is shown after 1, 3, 4, 10, 20, and 50 Myr of integra
Note the considerable number of objects that jump across the 3 : 1 resona

an EC orbit via the 3 : 1 resonance. Finally, the last frame sh
the simulation after 50 Myr. The meteoroids that do remain
of them) mostly stayed away from the 3 : 1 resonance.

We found that 32 meteoroids (64%) crossed the 3 : 1 re
nance’s outer boundary during 50 Myr. Each of these bo
experienced some form of resonant “jump” that moved th
to the proximity of the 3 : 1 resonance’s inner boundary. Fr
there, 12 bodies drifted out of resonance completely, and
other 20 lingered near the boundary long enough to get t
e’s pumped up to MC and EC orbits. Note that most of the
that drifted across the 3 : 1 resonance’s inner boundary en
theν6 resonance, where they had a second chance to esca
main belt. In terms of overall statistical results, the same num
of meteoroids that reached the 3 : 1 resonance also reache
and EC orbits (32, or 64%). The shortest intervals needed

particle to reach a crossing orbit with Mars and Earth were 4
and 4.81 Myr, respectively. The median planet-crossing tim
F MAIN BELT ASTEROIDS 321
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for meteoroids with Mars and Earth were 11.37 and 15.3 M
respectively.

5.4. Additional Runs

We also tracked the meteoroid evolution from several ot
parent bodies in the inner main belt (a< 2.8 AU). The proper
orbital elements for these sources are plotted in Fig. 9. No
ent bodies were investigated beyond 2.8 AU, mostly because
5 : 2 mean-motion resonance with Jupiter, located at 2.8 AU
very efficient at increasing the orbital eccentricities of test bo
ies to Jupiter-crossing values, where these bodies are us
ejected from the Solar System. Morbidelli and Gladman (19
have shown that only∼1% of test bodies started in the 5 : 2 re
onance reach orbits witha< 2 AU; most reach Jupiter-crossin
orbits and are ejected from the inner Solar System. Unles
can be shown that the flux of main-belt material entering
5 : 2 resonance is exceedingly high, we must conclude that m
meteorites do not come from the outer main belt. Note that th
may be other ways for outer main-belt material to reach Ea
(e.g., meteoroids injected intoa< 2.8 AU orbits, meteoroids
dynamically “jumping” the 5 : 2 resonance and drifting into th
3 : 1 resonance).

The three runs described above (Hebe, Flora, and Ma
broadly characterize meteoroid evolution in the inner main b
Meteoroids located between theν6 and 3 : 1 resonances behave
similarly to Flora-like meteoroids wheni was low, and similarly
to Hebe-like meteoroids wheni was high. Meteoroids located
between the 3 : 1 and 5 : 2 resonances behaved much like M
type meteoroids. For this reason, we do not describe the
of our runs in the same detail as before. Four test parent b
ies (e.g., 1 Ceres, 15 Eunomia, 44 Nysa, 4 Vesta) were cho
because they are the largest members of prominent inner m
belt asteroid families. We assert that meteoroid dynamical p
and time scales from these parent bodies are representati
evolution from other family members. The remaining pare
(e.g., 13 Egeria, 19 Fortuna, 46 Hestia, 304 Olga) were cho
because their size and/or location suggests they may stro
contribute to the expected meteoroid flux entering the 3 : 1 oν6

resonances (e.g., Farinellaet al. 1993).
All the results discussed below, presented in alphabetica

der, were obtained using fast drift rates (thermal conductiv
K = 0.0015 W m−1 K−1). AlbedoA values were chosen to cor
respond to the Bond albedo of each parent asteroid (Lebo
and Spencer 1989). Asteroid data were provided by the Horiz
On-line Ephemeris System v2.78 (Chamberlinet al. 1997). All
other parameters were kept the same as before. Starting o
parameters and outcome statistics are displayed in Table II

5.4.1. 1 Ceres. The 1 Ceres, a G-type asteroid, is the larg
asteroid in the main belt (D= 933 km), such that it is a big
target for impactors and a potentially good source for eje
Ceres’s orbital parameters (Table II), however, place it far fr
.57
es
the 3 : 1 resonance (∼0.25 AU); average integration drift rates of
〈da/dt〉= (−4.9± 1.3)× 10−2 AU Myr−1 are slow enough that
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meteoroids must be long-lived to escape that way. For exam
it takes 18 Myr in our run for the first Ceres-like meteoroid
reach the 3 : 1 resonance. In addition, those meteoroids th
make it are susceptible to jumping across the resonance.

A closer escape hatch is the 5 : 2 resonance, which only
∼0.05 AU away from Ceres. The proximity of this resonan
explains why one of our meteoroids reached MC and EC or
within 7 Myr (Table II), and why the average MC and EC tim
are only∼23–25 Myr. As discussed above, though, the 5
resonance is an unlikely meteoroid source.

The 8 : 3 mean-motion resonance with Jupiter, located in
Ceres’s orbit at 2.7 AU, may provide a third meteoroid esc
route out of the main belt. Though most tested meteoroids d
ing inward actually jump this high-order (and less powerf
resonance, our results show that three meteoroids had the
values pumped up by this resonance to barely MC orbits. At
point, the bodies lingered for several Myr before Mars pus
them to highere values and an EC orbit. Future tests will det
mine whether the flux of material escaping via the 8 : 3 resona
is significant, and whether this material is likely to hit the Ear

Overall, 44 and 34% of the meteoroids reached MC and
orbits, but few of these bodies reacheda< 2 AU orbits, not
surprising given the nature of the resonances between 2.5
2.8 AU.

5.4.2. 15 Eunomia.Asteroid 15 Eunomia is the largest mem
ber (D= 255 km) of the Eunomia family (Zappal`aet al. 1995),
an S-class body located approximately 0.11 AU from the 3
resonance and 0.16 AU from the 5 : 2 resonance. Meteor
evolving from this location have an integrated drift rate
〈da/dt〉= (−3.6± 13)× 10−3 AU Myr−1, placing them within
range of the 3 : 1, 8 : 3, and 5 : 2 resonances within 50 Myr.

Twenty-three meteoroids reached the 3 : 1 resonance du
50 Myr. Sixteen of the twenty-three (70%) crossed the 3 : 1
onance’s outer boundary and had theire’s pumped up to EC
values; the remaining seven (30%) jumped and exited the
resonance as they evolved inward. These values are compa
to the Maria outcomes described above. Two of the seven
escaped the resonance reversed direction after a collision
and reentered the 3 : 1 resonance across the inside boundar
onant pumping ofe allowed them to escape the main belt. Fo
meteoroids reached the 5 : 2 resonance before time elapsed
three escaping via that route.

The fourth Eunomia-like meteoroid to reach the 5 : 2 re
nance followed a very interesting dynamical path, displa
in Fig. 16. The orbital evolution can be characterized as
lows: (i) Meteoroid moves steadily outward. Collision even
5.7 Myr and passage across 8 : 3 resonance have no notic
effect. (ii) Collision event at 9.34 Myr reverses the meteoro
drift direction, allowing it to jump back across the 8 : 3 res
nance. (iii) Third collision event at 12.86 Myr again revers
the meteoroid’s drift direction, allowing it to encounter the 8
resonance yet again. (iv) At∼13.8 Myr, the fast moving me-

teoroid (bx =−0.595, by=−0.084, bz= 0.800) is trapped by
the 8 : 3 resonance. The duration of the capture is∼2 Myr. The
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FIG. 16. Dynamical evolution of anR= 1 m Eunomia-like meteoroid.
Starting orbit hasa= 2.643 AU, e= 0.187, and i = 11.76◦. Starting b̂=
(−0.101, 0.534, 0.839). Meteoroid properties are the same as in Fig. 9, exc
A= 0.094. Interesting features in this evolutionary track are (i) 8 : 3 resona
jumping event near 12 Myr, (ii) 8 : 3 resonance capture event near 13 M
(iii) two 5 : 2 resonance jumping events, one outward, one inward, after 30 M

body’s meane is moderately increased during this time. (v) Th
meteoroid escapes, jumps the (mJ, nS, k)= (3,−1,−1) Jupiter–
Saturn–asteroid resonance ata= 2.75 AU, and travels to the 5 : 2
resonance. (vi) The meteoroid undergoes an outward jump to
5 : 2 resonance’s outer boundary, though it fails to escape. (v
collision at 32.13 Myr reverses the drift direction. The bo
jumps back to the 5 : 2 resonance’s inner boundary. (viii) T
meteoroid adheres to the resonance boundary whilee is pumped
up to MC values. (ix) At∼38 Myr, the meteoroid is removed
from the 5 : 2 resonance via a close encounter with Mars. C
encounters and passage into chaotic resonance regions dom
the remaining integration time, causinga to random walk. The
conclusion we draw from this is that meteoroids often have
predictable paths, and that collisions play a very important r
in determining the ultimate outcomes for particular objects.

All of the Eunomia-like bodies that reached the 3 : 1 or 5
resonance became MC (27, or 54%), while a slightly sma
number became EC (21, or 42%). The mean MC and EC time
these bodies was∼31 Myr. In terms of dynamical evolution, the
biggest difference between this run and the Maria run appea
be Eunomia’s starting osculating inclination (i = 11.8◦), which
was low enough to prevent meteoroids from approaching thν6

resonance after they jumped the 3 : 1 resonance.

5.4.3. 13 Egeria. Asteroid 13 Egeria is a 298-km G-typ

(i.e., a subclass of C asteroids) with orbital parameters
comparable to those of 170 Maria (Table II). It is located
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approximately 0.057 AU from the 3 : 1 resonance, small eno
that it could be source of carbonaceous chondrites. We
mate that the mean drift rate for our Egeria-like meteoroid
〈da/dt〉= (−1.3± 12)× 10−3 AU Myr−1, less negative than
some other drift rates because of fortuitousb̂ starting orienta-
tions (i.e., the particle distribution spread more-or-less equ
inward and outward).

The overall evolution of the meteoroid swarm is very similar
that of the Maria-like meteoroids; after a few Myr of evolutio
several bodies enter and then jump the 3 : 1 resonance. T
unable to completely escape the 3 : 1 resonance reach MC
EC orbits; the rest drift inward until they enter theν6 resonance.
We found that the earliest MC and EC orbit times were 5.68
6.23 Myr, respectively, while the mean crossing times for
meteoroid distribution were 19.0 and 22.9 Myr, respective
The overall fraction of bodies attaining planet-crossing orb
was higher for Egeria-like bodies than for Maria-like bodi
(i.e., 74% became MC vs Maria’s 64%; 70% became EC
Maria’s 64%).

5.4.4. 19 Fortuna. Fortuna is a 200-km G asteroid locate
approximately 0.32 AU from theν6 resonance and 0.045 AU
from the inner boundary of the 3 : 1 resonance. For this rea
Fortuna, like Egeria, may be a good source of carbonace
chondrites. In this case, however, Fortuna is located closer to
sun than the 3 : 1 resonance, such that the negative mean dri
for our meteoroids (〈da/dt〉= (−3.0± 13)× 10−3 AU Myr−1)
moves the mean position of the swarm away from this esc
route. Thus, we expect, on average, roughly half of the pop
tion or less to enter the 3 : 1 resonance in 50 Myr of integrat
time.

The first meteoroid to escape the 3 : 1 resonance reaches
and EC orbits at 4.6 and 4.7 Myr, respectively. These cros
times are similar because the 3 : 1 resonance is very effecti
pumping upe values. The earliest inward-evolving meteoro
becomes MC, however, in 18 Myr. Like the Flora-like met
oroids, e-pumping prior to entering theν6 resonance allows
these bodies to reach MC orbits earlier than anticipated.
mean evolution times needed by the meteoroids to reach
and EC orbits were 23 and 22 Myr, respectively, the former
ing slightly larger because several MC meteoroids did not re
EC orbits (48% vs 26%).

As an interesting aside, we single out the evolution of one F
tuna meteoroid that reached an MC orbit at 21.25 Myr whil
was far from the 3 : 1 andν6 resonances (a= 2.40 AU) (Fig. 17).
After undergoing a collision near 3.8 Myr, this object evolv
outward until it reachesa∼ 2.3977, the location of the
(mJ, nS, k)= (4,−2,−1) Jupiter–Saturn–asteroid resonan
This resonance captures the meteoroid; noda/dt changes are
observed for nearly 16 Myr whilee increases. Collision event
taking place during the interim give the body a variety of n
obliquity values (e.g.,̂bz is 0.60 at 13.9 Myr,−0.09 at 15.9 Myr,
and 0.89 at 18.2 Myr), but none are capable of dislodging

body from the resonance. Apparently, the new drift rates
compensated by the resonant perturbations (i.e., the equ
F MAIN BELT ASTEROIDS 323
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FIG. 17. Dynamical evolution of anR= 1 m Fortuna-like meteoroid. Start
ing orbit hasa= 2.443 AU, e= 0.159, andi = 1.57◦. Startingb̂= (−0.619,
−0.214,−0.756). Meteoroid properties are the same as in Fig. 9, exc
A= 0.035. The interesting feature in this evolutionary track is a trapping
the (mJ, nS, k)= (4,−2,−1) Jupiter–Saturn–asteroid resonance (Nesvorn´y and
Morbidelli 1998, Murrayet al. 1998). The location of the resonance is
a∼ 2.3977 AU.

[da/dt]drift + [da/dt]res= 0 remains satisfied). In all likelihood
a stable libration would have continued until the limitingevalue
was reached. In this case, however, Mars close encounters
the object and Yarkovsky drift moves it to the 3 : 1 resonan
where it reaches an EC orbit. For more detail on capture
cesses, see Section 5.1.3.

Comparable captures have been noticed in other runs, th
never in great enough number to signify a particular trend.
believe that frequent captures by narrow Jupiter–Saturn r
nances are possible, though they will probably require sma
[da/dt]drift rates. Future work will explore how weak mea
motion resonances and the Yarkovsky effect work in tandem
deliver material to MC orbits.

5.4.5. 46 Hestia. Asteroid 46 Hestia is a 125-km P-class a
teroid lying on the 3 : 1 resonance’s outer boundary. Since
location guarantees minimal travel time for ejecta to reach
terrestrial-planet region, Hestia should be an excellent so
for meteorites to the Earth. It is also possible that Hestia is
largest member of an asteroid family (Zappal`a et al. 1995). In-
terestingly, no known meteorite type corresponds to P-type
teroid spectra. There are several plausible explanations for
discrepancy: (i) meteoroids from Hestia are too weak
survive passage through Earth’s atmosphere; (ii) we are misi
tifying the parent bodies of some meteorites; (iii) the contrib
are
ality
tion of Hestia ejecta to the overall flux of meteoroids reaching
Earth is insignificant, either because the background population
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is large or because very little debris is ejected at veloci
greater than Hestia’s escape velocity. Given that weak m
orites like carbonaceous chondrites survive to hit the Ea
and that extensive physical and chemical studies have been
ried out on all meteorite classes, we suspect (iii) is proba
true (or some combination of (i) and (iii)). Interestingly, ne
laboratory experiments indicate that hypervelocity project
shot into highly porous targets (40–60% bulk porosity) p
duce relatively few ejecta (Housenet al. 1999). This result
may explain why 253 Mathilde, a porous C-type asteroid,
several huge undisturbed craters situated next to one an
(Veverkaet al. 1997). If Hestia is analogous to Mathilde, it mig
explain why such a large asteroid on the cusp of a dynam
pathway to Earth plays a tiny role in providing material to Ear

The mean speed of our Hestia-like meteoroid after 1 M
is 〈da/dt〉=−6.3× 10−5± 7.4× 10−3 AU Myr−1. This value
indicates that roughly equal numbers of meteoroids are m
ing inward and outward. Given the close proximity of the 3
resonance, it is not surprising to find that the earliest MC
EC times are only 1.14 and 1.15 Myr, respectively (i.e.,
first meteoroid to enter the 3 : 1 resonance immediately hade
pumped up to EC values). Still, the mean MC and EC tim
for the meteoroid swarm are not much shorter than previ
runs (9.9 and 12.0 Myr, respectively). This unexpected resu
caused by meteoroids which first jump the 3 : 1 resonance
then return to reenter the resonance after a collision. Thirty-
of thirty-five (68%) bodies became MC as a result of inter
tions with the 3 : 1 resonance; the remaining particle became
via the (mJ, nS, k)= (4,−2,−1) mean-motion resonance wit
Jupiter and Saturn. Thirty-two of the bodies perturbed by
3 : 1 resonance also became EC (64%).

5.4.6. 44 Nysa. Asteroid 44 Nysa is a 70-km E-type and th
largest component of the Nysa asteroid family, which may
fact, be two independent overlapping families (Doressoundi
et al. 1998). Nysa’s semimajor axis (a= 2.423 AU) places it
moderately close to the 3 : 1 resonance (0.064 AU away),
its low inclination (i = 3.7◦) places it far from theν6 resonance
(0.29 AU away). These distances, and the fact that the mean
speed of the meteoroids is negative and low (〈da/dt〉= (−2.0±
4.2)× 10−3 AU Myr−1), imply that fewer bodies should reac
the 3 : 1 andν6 resonance within 50 Myr of integration time tha
in other runs discussed so far.

For example, only seven Nysa-like meteoroids reach the
resonance; they end up being the only bodies to achieve
orbits in this run. The mean time to become EC via this p
is 25.3 Myr, with the earliest time being 10.33 Myr. Six mo
Nysa-like meteoroids become MC after drifting inward near
inside 2.2 AU, where they are perturbed by the multiplicity
resonances in this region. The mean time for these six bo
to become Mars-crossers is 41.4 Myr, raising the overall m
MC time for the thirteen bodies to 32.6 Myr. In addition, w
find at least one Nysa meteoroid is temporarily captured

14 Myr by the Mars 1 : 2 mean-motion resonance. During t
first 10 Myr of capture, meane increased from 0.18 to 0.23
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Then, after a collision changed̂bz from 0.34 to 0.23, meane
began to decrease. Whene reached 0.20, roughly 4 Myr late
the meteoroid escaped the Mars 1 : 2 resonance.

5.4.7. 304 Olga. Asteroid 304 Olga is a 68-km C-class a
teroid adjacent to the nominal border of theν6 resonance an
within 0.08 AU of the 3 : 1 resonance. Its proximity to these t
strong resonances potentially makes Olga a very good so
of material to Earth. Numerical modeling bears this out;
find that 92% of all of Olga meteoroids reach EC orbits (m
crossing time of 17.8 Myr) while 98% reach MC orbits (me
crossing time of 11 Myr). The first object to reach an EC or
however, takes 4.49 Myr, comparable to values from other pa
asteroids. Note that the integrated drift speed for the distribu
after 3 Myr (〈da/dt〉= (−9.3± 88)× 10−4 AU Myr−1) is small
enough to indicate that Olga-like meteoroids travel inward
outward with similar numbers and speeds.

The closeness of Olga to theν6 resonance would seem
downplay the role of weaker resonance phenomena, but
here we find that the4 : 2 : 1 Jupiter–Saturn resonance (a=
2.3977) helps to pump upe values of five meteoroids to MC
values. This effect does not significantly change the overall
lution of these meteoroids, but it does show that bodies
Olga-like orbits have several effective ways of leaving the m
belt.

5.4.8. 4 Vesta. Asteroid 4 Vesta is a 510-km V-class ast
oid with singular spectral features linking it to the “Vestoid
a number of sub-10-km asteroids thought to be Vesta e
(Binzel and Xu 1993), and the howardite, eucrite, and
genites (HED) meteorites. It is located far from both theν6

resonance (0.18 AU) and the 3 : 1 resonance (0.13 AU),
that evolution times via the Yarkovsky effect may be leng
For our runs, the mean speed of the bodies after 10 My
〈da/dt〉∼ (−5.7± 54)× 10−4 AU Myr−1, slow enough to sug
gest that only the extremes of the particle distribution mak
to the major resonances before 50 Myr has elapsed. This
travel time, however, may be consistent with the observed C
ages of the HED meteorites. More will be said about this in
discussion section.

The earliest Vesta-like meteoroid to reach MC and EC
bits arrives within∼14 Myr (via the 3 : 1 resonance). We fin
that a few bodies become temporarily trapped in minor re
nances (e.g., (mJ, nS, k)= (4,−2,−1) Jupiter–Saturn–astero
resonance or Mars resonances inside 2.2 AU), but these ca
events do not appear to significantly change the mean MC
EC time scales (29.6 and 31.7 Myr, respectively). Only 36%
the meteoroids reach EC orbits within 50 Myr; the rest are
stretched between theν6 and 3 : 1 resonances.

6. DISCUSSION

6.1. Comparisons with Meteorite Cosmic-Ray Exposure A
he
.

Meteorite CRE ages are believed to measure the length of
time the body spends between its final reduction in size by
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FIG. 18. The number of meteorites vs cosmic-ray exposure age for L
and LL chondrites. Some minor clumping in the H and LL distributions is cau
by multiple falls. Figure from Morbidelli and Gladman (1998). Data provid
by T. Graf.

impact, which places its entire interior within a few meters of t
radiation environment, and delivery to Earth. Figure 18 sho
meteorite number vs CRE age for L, LL, and H chondrites. Fr
these data, the mean exposure ages of the L, LL, and H c
drites are 22, 20, and 14 Myr, respectively. Peaks are see
each data set,∼7–8 and∼33 Myr for H-chondrites,∼28 and
∼40 Myr for L-chondrites, and∼15 Myr for LL-chondrites. It
is hypothesized that each peak might represent material f
a large collision event. In fact, Marti and Graf (1992) arg
that the histograms are dominated by stochastic events ra
than a continuous meteoroid supply, such that the histogr
cannot be satisfactorily fit by bell-shaped curves. On the ot
hand, Fig. 18 may just represent a smooth continuum whic
poorly sampled. For example, the∼7–8 Myr H-chondrite peak
may be produced by two events, one involving H5 chondrit
and a second involving the H3/4/6 chondrites (e.g., Morbid
and Gladman 1998). Given this ambiguity, we will discuss t
implications of both possibilities below.

Figure 18 shows that few chondrites have short CRE ag
When this meteorite subset is studied (CRE ages<4 Myr), many

are found to have complex exposure histories, which occur wh
the CRE geometry changes (i.e., the meteorite is exposed
MAIN BELT ASTEROIDS 325
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radiation on its immediate precursor before being liberated i
impact event). Thus, meteorites with short CRE ages may, in
have transit times as long as other meteorites (Graf and M
1995, Herzoget al. 1997). For this reason, it is difficult to suppo
a scenario where many meteoroids are immediately injected
chaotic resonances with short terrestrial delivery times (e.g.,
resonance), since that would create a preponderance of
CRE ages (Gladmanet al. 1997). This result is a primary reaso
we chose to investigate the Yarkovsky effect in detail.

Interpretation of the features in the CRE-age histograms
be complicated, since we are only looking at a (biased) sn
shot of the CRE ages taken among “today’s” EC meteoro
For example, suppose 6 Hebe was hit by an asteroid 10
ago, and that impact created a swarm of new meteoroids. E
if these meteoroids started reaching Earth within a few Myr,
would only know about those which hit and were protected
the Antarctic ice over the last 104–106 years. Thus, like barom
eters, CRE-age histograms tell us current conditions but
how the “weather” is changing. Unless we discover a cach
fossil meteorites, we cannot specify trends in the flux of m
terial reaching Earth or constrain how the orbital distribut
of the meteoroid swarm changes with time. Another issue
dering interpretation of the CRE-age histograms is the fact
some EC meteoroids are more likely to hit the Earth than oth
Understanding how the orbital distribution of EC meteoro
from different parent bodies changes with time is critical to
ciphering CRE-age histograms. Finally, meteorite survivab
creates a strong bias in the meteorite record (e.g., the pauc
long-lived carbonaceous chondrites). Sticking to comparis
between similar meteorites appears to be the best way to
with this problem.

Given these issues, and the fact that our test meteoroids
started with zero ejection velocities, we compare our res
to CRE age data with some trepidation. Still, we can m
some useful comments once we better understand how m
oroid evolution in the inner Solar System works. The best st
of this issue to date is provided by Morbidelli and Gladm
(1998), who have used numerical simulations to estimate
the collision probability between the Earth and individual me
oroids started inν6 and 3 : 1 resonances will change with tim
Their results show that the meteoroids which go on to st
the Earth from these sources have a∼25% chance of doing s
within 3–4 Myr, a 50% chance of doing so within 9–10 My
and a 75% chance of doing so within 22–25 Myr. Thus, if
ordinary chondrite population in the inner Solar System is
steady state, direct injection of chondrites into theν6 and 3 : 1
resonances would produce too many short CRE ages to m
Fig. 18.

Even if a steady state exists at some level, it is possible
bursts of material produced by large main-belt impact eve
could intermittently flood the inner Solar System with meteor
(Zappalà et al. 1998). Potentially, these meteoroid swarms
they live long enough, could create some of the CRE-age sp

en
to

seen in Fig. 18. To determine how the CRE-age histograms
should be interpreted, we turn to “time-of-fall” statistics, which
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measure the time of day when a meteorite strikes the Ea
Time-of-fall statistics provide information about meteoroid o
bital trajectories and perihelion distances (q); meteorite falls
duringPM hours must come from bodies havingq∼ 1 AU, while
meteorite falls duringAM hours must come fromq< 1 AU. Nu-
merical simulations of test bodies evolving out of theν6 and
3 : 1 resonances indicate thatq∼ 1 AU values generally come
from dynamically young objects, whileq< 1 AU values come
from dynamically older objects that have had time to reach d
EC orbits (Morbidelli and Gladman 1998). Accordingly, sin
∼68% of ordinary chondrite falls have been observed in thePM

(Graf and Marti 1995), it is believed that the majority of o
dinary chondrites have only been on EC orbits for a few M
This makes the Yarkovsky effect rather than long-lived meteo
swarms the leading candidate to explain most CRE-age sp

If this chain of logic holds, the time scales shown in Table
may be surprisingly close to the time scales needed to b
meteoroids to Earth. For example, to estimate meteoroid d
ery time scales from main-belt parent bodies to Earth, we n
to modify our runs to account for (a) non-zero ejection velo
ities and (b) evolution in the inner Solar System. If the tim
reduction due to (a) is roughly equivalent to the additional ti
required by (b), Table II results should roughly approxim
the actual delivery times. For example, few of our fast-drifti
meteoroids reach EC orbits before∼5 Myr have elapsed, con
sistent with Fig. 18. In addition, meteoroids from prospect
chondritic parent bodies (e.g., 6 Hebe, 8 Flora) have mean
times (±1σ ) that overlap the major peaks of the H, L, and L
chondrites (Table II).

Comparable studies can be made using HED meteor
which are believed to come from the the Vestoids or direc
from Vesta itself. Weltenet al. (1997), using 11 howardites, 3
eucrites, and 20 diogenites, find the CRE-age histogram o
HED meteorites to be similar to that of the ordinary chondrit
median ages are∼20 Myr, maximum ages are∼80 Myr, and a
paucity of ages exist with<10 Myr. In addition, Weltenet al.
claim that these exposure ages are not randomly distribu
23 HEDs cluster between 21 and 25 Myr, 10 between 35
42 Myr, and 8 between∼12 and 13 Myr. For the first two groups
all three HED components are represented. For the last gr
the eucrites and diogenites are represented, though there a
enough members to consider this sample statistically signific
Still, these three age-clusters comprise 55% of the howard
59% of the eucrites, and 80% of the diogenites, and they
gest at least two major impact events occurring∼22 and 39 Myr
ago. Weltenet al. claim that 3–8 additional impact events in th
last 50 Myr could conceivably explain all the known HED me
orites on Earth. Other studies of this issue, however, sugges
the HEDs may only be marginally in disagreement with a c
tinuous meteoroid injection model which includes factors l
meteoroid disruption and/or the Yarkovsky effect (Migliori
et al. 1997b).
An examination of our Vesta results from Table II indicat
that our Vesta-like meteoroids have mean EC time scales wi
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1 σ of these peaks (i.e., 31.7± 9.0 Myr), though we caution
that our value may be biased by the length of our integrat
(50 Myr). Our earliest EC meteoroid, however, takes 15.35 M
longer than some of the younger HED meteorites. The prob
might be alleviated by invoking a reasonable ejection veloc
from Vesta or by assuming that Vestoids near a chaotic reson
provide a significant amount of material to EC orbits. We w
look into this issue in greater detail below.

In summary, we conclude that our suggested〈da/dt〉 rates
and the meteoroid delivery times listed in Table II provide
reasonable scenario for explaining the distributions of CRE a
for stony meteorites.

6.2. Meteorite Parent Bodies: Small or Large?

An important implication of the Yarkovsky scenario is th
high ejection velocities are no longer necessarily required
deliver meteoroids from nearly any parent body in the inn
main belt to the 3 : 1 orν6 resonances. (Note that we igno
the possibility of meteoroid delivery via Mars or three-bo
mean-motion resonances for now.) If fast Yarkovsky drift ra
are the rule, meteoroids can evolve directly from their par
bodies to resonant “escape hatches” before disrupting. If slo
Yarkovsky drift rates are common, meteoroids can ride a lo
way aboard larger precursors, which have faster seasonal
rates (e.g., Fig. 4) but also longer collisional lifetimes. When t
material is eventually exposed to cosmic rays, it presuma
will be within range of a chaotic resonance that can take
meteoroid to Earth within a few tens of Myr. The latter scena
is analogous to the classical “collisional cascade” mechan
suggested previously (e.g., Wetherill 1985), with residence
collisions now taking place in the main belt rather than in t
near-Earth region. Preliminary modeling of this scenario m
be of some use in explaining the observed CRE ages of s
meteorites (Vokrouhlick´y and Farinella 2000).

Since all asteroids are now potential meteoroid parent b
ies, we need to reexamine which asteroids are most likel
contribute meteorites to the Earth. Factors to consider are
impact rate on parent body; (2) mass and velocity distribut
of ejecta, which determines the escape fraction and the dist
between parent body and escape hatch (e.g., 3 : 1 reson
ν6 resonance, weak mean-motion resonance placing mat
on MC orbits from whence it is delivered, etc.); (3) Yarkovs
drift rate for ejecta; (4) ejecta disruption rate, (5) efficiency
transportation route in producing Earth-crossers; (6) dynam
lifetime of fragments; (7) terrestrial impact rate of meteoroids
various orbits; (8) meteoroid survivability issues (e.g., pass
through atmosphere, surface erosion); and (9) discovery bia

A key parameter affecting meteoroid flux (factors 1 and 2
asteroid size. Big objects, with large geometric cross sectio
are more frequently hit by other asteroids and thus may provi
greater flux of material than small asteroids. A possible coun
to this effect is that big objects also have substantial escape
es
thin
locities, such that they reaccumulate slow-moving ejecta. Small
objects, which are numerous and have tiny escape velocities,
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lose practically all their ejecta every time they are struck
an asteroid. To clarify which size produces more meteoro
we perform the following calculation similar to those found
Greenberg and Chapman (1983) and Farinellaet al. (1993).

The erosion rate of a target asteroid can be estimate
(Geissleret al. 1996)

dm

dt
= Pi R

2ρ

rmax∫
rmin

d N(r )

dr
V(r ) fescdr, (47)

wherePi is the intrinsic collision probability for the target (e.g
Bottkeet al. 1994; note thatPi includes the factorπ ), R2 is the
target radius squared,ρ is asteroid density,N (r ) is the number of
projectiles of radiusr , V (r ) is the volume of material excavate
by the projectile of radiusr , and fesc is the fraction of ejecta
escaping after impact by a projectile of radiusr .

We assume that the number of projectiles in the main be
radius ranger to r + dr is

d N(r ) = Kr−b dr (48)

with K a constant andb an exponent (e.g., Dobrovolskis an
Burns 1984). To getfesc, we turn to laboratory experiments
which suggest that ejecta fleeing an impact site always a
velocities greater than a cutoff value (vc), and that the proportion
of mass exiting a crater in excess of a given velocity is an inve
function of that velocity: (f ∼ v−k; k≈ 9/4) (e.g., Gaultet al.
1963, Stöffler et al. 1975, Greenberget al. 1978, Dobrovolskis
and Burns 1984). Now, as long as the target asteroid’s es
velocity vesc>vc, fesc∼ v−9/4

esc . Sincevesc∝ R, the fraction of
ejecta that escapes isfesc∝ R−9/4. If vesc<vc, as it might be
in the case of small targets,fesc= 1.0. Finally, we assume tha
crater volume is

V(r ) = hr3 (49)

for some constanth which depends on target material propert
and impact velocity.

Substituting these values, dropping constants and small te
and assuming that the largest projectilermax∝ R, we find that

dm

dt
∝ R3.75−b (50)

for large bodies (vesc>vc) and

dm

dt
∝ R6−b (51)

for small bodies (vesc<vc).
We will use these equations below to estimates the rela

contribution to the meteoroid flux from variously sized asteroi
First, though, we need to estimatevc, which will tell us at what
size we transition from “large” to “small” asteroids. The val
vc can be estimated from laboratory experiments:vc= 50 m s−1

−1
for “hard” basaltic targets whilevc= 1 m s for “soft” sand
targets (Gaultet al. 1963, St¨offler et al. 1975). To turn these
F MAIN BELT ASTEROIDS 327
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values into an asteroid size, we assumevc= vesc, and

vesc= 120 m s−1(R/100 km), (52)

corresponding toρ= 2500 kg m−3 (Farinellaet al. 1993). Sub-
stituting and solving forR, we find that the largest asteroid whic
can still lose all its ejecta is betweenR= 0.83 km (sand) and
42 km (basalt). Since images of Gaspra (R∼ 7 km; Beltonet al.
1994) show that it has retained substantial amounts of rego
and impacts in the gravity-scaling regime are more accura
modeled in the laboratory by weak sand targets, we believe
the lower end of the size range should be used.

To test our ideas, we apply our equations to the two poss
sources of the HED meteorites, 4 Vesta (R= 255 km) and the
observed Vestoids (e.g., Binzel and Xu 1993). For the la
43 main belt objects are now known to have V-type spec
with mean and median radiiR∼ 5 km. Assuming that the mai
belt asteroids are in collisional equilibrium (b= 3.5; Dohnanyi
1969) and that both Vesta and the Vestoids are in thevesc>vc

category, we estimate that Vesta produces 2.7 times more e
than a typical Vestoid. Since there are many more Vestoids
Vesta, many of which reside near the 3 : 1 orν6 resonances, thi
b value suggests that the Vestoids are a more important so
of HEDs than Vesta itself. Note that if the typical Vestoid we
in thevesc<vc regime while Vesta itself stayed in thevesc>vc

regime, a single Vestoid would produce 14 times more eje
than Vesta.

A more sophisticated treatment of the main-belt size dis
bution, however, yields a different result. Jedicke and Metc
(1998) have used debiased observational data from Spacew
to estimate the size distribution of main-belt asteroids lar
than 1 km. Their results showed that no single power-law ex
nent represents the main-belt size distribution. (Note that Ce
et al. (1991) arrived at the same conclusion using the IR
database.) Follow-up work by Durdaet al. (1998) showed there
are two broad “humps” in the main belt size distribution, o
between 3 to 30 km diameter bodies and another betwee
to 300 km diameter bodies. The transition region between
humps, however, has a shallow slope (b∼ 1.4). This “wave”
pattern is expected to repeat itself; Durdaet al. (1998), using a
sophisticated collisional model, showed that there should b
extended transition region at sub-km sizes after the 3- to 30
hump. If this sub-km region has a slope comparable to that o
transition region near 30 km, we predict that projectiles st
ing Vesta would produce (255 km/5 km)3.75−1.4∼ 10,000 times
more ejecta than a typical Vestoid for thevesc>vc regime. A
more conservative slope index value (b= 2.343), derived from
a weighted least-squares fit of Palomar–Leiden Survey
(Van Houtenet al. 1970, Durdaet al. 1998), suggests that Ves
may produce∼250 times more ejecta than a typical Vesto
Either way, unless there are a large number of undetected m
km Vestoids, these results indicate that the HED meteorite
may be dominated by material from Vesta itself.
There may be additional support for lowb values; prelimi-
nary work suggests that 1- to 10-m body disruption time scales,
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estimated using the sub-km size-frequency distribution predi
by Durdaet al. (1998), are too short to match meteorite CRE a
unless there are fewer projectiles than predicted by a Dohna
type collisional equilibrium (R. Greenberg 1999, personal co
munication). A high flux of material from Vesta would als
satisfy constraints provided by the HED meteorites, provi
these meteoroids are supplied by intermittent impact events
Weltenet al. 1997): (i) CRE-age peaks are more easily explai
by stochastic impacts on a single source, like 4 Vesta, tha
impacts on multiple Vestoids. For reference, Weltenet al. has
estimated that a 5- to 6-km Vestoid should be struck by a 2
body every 10 Myr, while Vesta itself should be struck by
∼2-km asteroid over the same time scale (note that both
lision rates assume a slope parameter ofb= 2.0). (ii) Individ-
ual Vestoids may not be composed of representative sam
of all three HED constituents. This would make it difficult f
them to reproduce the∼22- and∼38-Myr CRE age peaks with
stochastic impacts. (iii) Even if some Vestoids do have a mi
composition, it is unlikely that all three HED constituents
adjacent to one another on a 5- to 6-km body. Thus, a 2
projectile striking a typical Vestoid would be unable to eject
HED constituents simultaneously.

Based on these results, we believe that peaks seen in the
drite and HED meteorite CRE age histograms, if not produ
by incomplete sampling, are best explained by stochastic
pacts. We have shown that the Yarkovsky effect, in conjunc
with voluminous ejection events from large parent asteroids,
be used to explain such CRE peaks. We caution, however
long-lived meteoroid populations in the inner main belt co
also explain some peaks. Finally, we point out that the F
asteroid family, containing a good mix of large and small b
ies with S-class spectral properties, is on the periphery of
eral transportation routes to Earth (e.g.,ν6 resonance, multiple
Mars, and three-body mean-motion resonances). For this
son, the Flora family should provide a substantial contribu
of similar-looking meteorites to Earth. We suspect this sou
may partially explain why so many meteorite falls and finds
ordinary chondrites.

6.3. Future Work

So far, we have used the YS code to model the dynam
evolution of (mostly) fast-moving meteoroids. This was do
for practical considerations; meteoroids can take a long tim
reach interesting places if slow meteoroid drift rates are u
Computational limitations also prevent us from exploring
possible thermal and physical parameters. Still, using reason
parameters, we have demonstrated how planetary perturba
and Yarkovsky drag work together, and that our numerical
sults can satisfactorily match CRE-age data. In this section
highlight several problems of interest that we hope to exp
with the YS code in the future.

The meteoroids tested here sampled a range ofb̂ positions

and drift speeds. We found that resonance-jumping and trapp
mechanisms are affected by these drift rates; diagnostic tests
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be needed to determine which drift rates cause particular eff
Studies of Yarkovsky drift in conjunction with high-order res
nance phenomena should not only be useful to meteoroid d
ery scenarios but also to near-Earth asteroid production sce
ios. Recall that km-sized objects undergo small but signific
Yarkovsky drift rates. It is possible that these bodies beco
trapped in Mars and Jupiter–Saturn resonances long enou
reach MC and eventually EC orbits. Thus, the Yarkovsky eff
may be an important mechanism in resupplying the NEO pop
tion with km-sized material (Farinella and Vokrouhlick´y 1999).
Another potentially important effect is resonance-jumping
outer main-belt material. If the flux of material near the 5 : 2 r
onance is high enough, and meteoroids/immediate precu
can survive long enough, resonance-jumping may allow so
outer main-belt material to reach the inner main-belt esc
routes (possibly via a collisional cascade).

Because the intensity of Yarkovsky thermal forces depe
on heliocentric distance, we also intend to test how ther
forces alter dynamical evolution among small bodies in the
restrial planet region. For example, Mars ejecta, evolving un
the Yarkovsky effect, may more readily reach inner Solar S
tem resonances (and EC orbits) than previously estimated (
Gladman 1997, Rubincam 1998). Meteoroids, already ac
under the influence of close encounters and chaotic resona
will undergo additional changes from Yarkovsky thermal forc
The implication of this additional force is not clear; the sma
body population will become stirred to some unknown degr
with some objects being dragged into the Sun. Even km-s
asteroids approaching the Sun should undergo small but m
surablea changes (e.g., 1566 Icarus; D. Vokrouhlick´y 1999,
personal communication).

Other problems involving the Yarkovsky effect includ
(i) modeling the dynamical evolution of Trojan and Kuiper-b
bodies, (ii) determining whether Yarkovsky thermal forces
really responsible for an apparent “overabundance” of 10-m b
ies in the NEO region (Rabinowitzet al. 1993, Rabinowitz 1994
Bottke et al. 1996), (iii) modeling the main-belt “collisiona
cascade” together with planetary perturbations and Yarkov
drift forces, and (iv) modeling how the preferential remov
of small bodies creates a feedback loop that changes the
distribution of larger asteroids. Potential YS code improveme
include better descriptions of how collisions modify spin ax
and drift rates with time, more accurate estimates of meteo
thermal properties, and refinements to the theoretical des
tion of the Yarkovsky thermal forces to better account for hige
orbits.

7. SUMMARY OF RESULTS

We briefly summarize our results from this paper:

• We have formulated the seasonal and diurnal Yarkov

ing
will
thermal forces which modify the semimajor axes of bodies
smaller than 10 km.
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• These forces have been incorporated into the “swift-rmv
integrator. Tests verify that the hybrid “YS” code is workin
accurately, with benchmark meteoroid evolution runs from ot
groups exactly reproduced.
• Runs completed without planetary perturbations show

small meteoroids can undergo large inclination changes. In
sion of planetary perturbations eliminate these changes, pri
ily because nodal precession causes Yarkovsky forces to des
tively interfere over time.
• The evolutions of meteoroids (with different thermal pro

erties) were tracked from several inner main-belt asteroid
the way to EC orbits. Our results show that most meteoro
from these asteroids reach EC orbits via the 3 : 1 mean-mo
resonance with Jupiter or theν6 secular resonance after tens
Myr of evolution.
• Most meteoroids attain MC orbits well before entering

3 : 1 or ν6 resonance. Chaotic effects produced by weak re
nances (e.g., mean-motion resonances with Mars, three-
resonances) appear to be responsible.
• Meteoroids drifting away from a planet producing a me

motion resonance often jump the resonance. Meteoroids dri
toward the planet producing an isolated mean-motion reson
can be, with the right drift rate, trapped by that resonance. C
tures in weak mean-motion resonances in the inner main bel
lead to increasede values, possibly pushing these objects o
MC orbits. If capture fails, the meteoroid jumps the resonan
Jumping events allow objects witha> 2.5 AU to potentially
bypass the 3 : 1 resonance.
• The evolution time scales for the meteoroids tracked h

are consistent with the observed CRE ages of chondrites
HED meteorites (e.g., tens of Myr) as well as with the paucity
meteorites with CRE ages<10 Myr. Comparable tests indica
that the Yarkovsky effect can also explain very long CRE a
(0.1–1.0 Gyr) of iron meteorites, but disruption time scales
important.
• The contribution to the meteoroid flux from big and sm

parent bodies depends on the size-frequency distribution o
main belt. If the projectile population is in collisional equilib
rium at sub-km sizes (i.e., an incremental power-law expone
b= 3.5; Dohnanyi 1969), small asteroids are likely to provi
the dominant share of meteoroids to the inner Solar Sys
On the other hand, if the projectile population making la
craters on parent bodies has a shallow slope (Cellinoet al.
1991, Durdaet al. 1998), the largest main-belt asteroids (e
Vesta) will dominate the meteoroid flux. Spikes in the CR
data from the HED meteorites are more easily explained
impacts on Vesta than by multiple impacts on one or m
Vestoids.

ACKNOWLEDGMENTS

The authors thank P. Farinella, B. Gladman, P. Michel, A. Morbide
P. Nicholson, J.-M. Petit, and D. Vokrouhlick´y for their helpful comments and

suggestions on this project. We also thank B. Carcich, A. Harch, J. Joseph,
D. Rowlands for providing computational support. We received valuable and
F MAIN BELT ASTEROIDS 329

3”
g
er

hat
lu-
ar-

truc-

-
all

ids
tion
f

e
so-
ody

n-
ing
nce
ap-
can
to
ce.

ere
and
of

es
re

ll
the
-
t of
e
m.
e

.,
E
by
re

li,

tailed reviews from A. Cellino and D. Vokrouhlick´y. We gratefully acknowledge
H. Levison for providing a copy of his SWIFT code. Support was provided
NASA Grant NAGW-310.

REFERENCES

Afonso, G. B., R. S. Gomes, and M. A. Florczak 1995. Asteroid fragmen
Earth-crossing orbits.Planet. Space Sci.43, 787–795.

Belton, M. J. S., J. Veverka, P. Thomas, P. Helfenstein, D. Simon
C. Chapman, M. E. Davies, R. Greeley, R. Greenberg, and J. Head
Galileo encounter with 951 Gaspra—First pictures of an asteroid.Science
257, 1647–1652.

Binzel, R. P., and S. Xu 1993. Chips off of asteroid 4 Vesta—Evidence for
parent body of basaltic achondrite meteorites.Science260, 186–191.

Bottke, W. F., M. C. Nolan, R. Greenberg, and R. A. Kolvoord 1994a. Velo
distributions among colliding asteroids.Icarus107, 255–268.

Bottke, W. F., M. C. Nolan, R. Greenberg, and R. A. Kolvoord 1994b. Collisio
lifetimes and impact statistics of near-Earth asteroids. InHazards Due to
Comets and Asteroids(T. Gehrels and M. S. Matthews, Eds.), pp. 337–3
Univ. of Arizona Press, Tucson.

Bottke, W. F., M. C. Nolan, H. J. Melosh, A. M. Vickery, and R. Greenbe
1996. Origin of the Spacewatch small Earth-approaching asteroids.Icarus
122, 406–427.

Bottke, W. F., D. P. Rubincam, and J. A. Burns 1998. Consequences o
Yarkovsky effect on the orbital evolution of meteoroids: A prospectus.Proc.
Lunar Plant. Sci. Conf. 29th, 1424–1425.

Burns, J. A. 1976. Elementary derivation of the perturbation equations of c
tial mechanics.Am. J. Phys.44, 944–949.

Burns, J. A., and E. F. Tedesco 1979. Asteroid lightcurves—Results for rota
and shapes. InAsteroids(T. Gehrels, Ed.), pp. 494–527. Univ. of Arizon
Press, Tucson.

Burns, J. A., P. L. Lamy, and S. Soter 1979. Radiation forces on small par
in the Solar System.Icarus40, 1–48.

Caffee, M. W., R. C. Reedy, J. N. Goswami, C. M. Hohenberg, and K. M
1988. Irradiation records in meteorites. InMeteorites and the Early Sola
System(J. F. Kerridge and M. S. Matthews, Eds.), pp. 205–245. Univ
Arizona Press, Tucson.
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