

Design

Future Work

If given the opportunity to conduct an experiment in microgravity, WHAT WOULD WE DO?

Design

Future Work

The Problem and Proposed Solution

No current, acceptable solution exists to determine liquid volume in a tank exposed to microgravity, without some form of stratification, tank stirring or spacecraft acceleration

An optical mass gauge is a viable option

Microgravity

Design

Alternative Methods

Alternative Method	Basics	Requirement
Capacitive Sensor	Permittivity of the cryogenic fluid is related	Settling /
	the volume within the tank.	Stratification
Liquid-Level Diode	A strip of silicone diodes are brought to a	Settling /
Sensor	certain temperature. Time constants allow for	r Stratification
	fluid volume measurement.	
Multipin Plug	Supply line	Closeout cap
Vapor Diodes Optical mass gaug settlement or accele	Cryo-Liquid Temperature resor To fuel cell/ECS Pressure switch Relief valve Overt	Fan motor Thermostat Heater Insulation Fan motor Fan motor Closeout cap

Design

Future Work

CSU's Microgravity Experiment

Objective:

Design, fabricate, and successfully flight-test an optical mass gauge sensor capable of accurately determining liquid volumes contained within a tank exposed to any gravitational environment.

We are currently working in cooperation with NASA's Marshall Space Flight Center to produce a rugged and miniaturized optical mass gauging platform for launching on a sounding rocket.

21

Preliminary Testing

Design

Future Work

Basic Interferometry

The amount of space occupied by a fluid inside a tank is determined by measuring the index of refraction of a gas within the system. This is done by using an interferometer which operates by analyzing the interference pattern generated by two or more optical signals

Design

Future Work

Theory of Operation

At first, a piston pressurizes the gas cell, producing a reference fringe count Δm_1

Design

Theory of Operation

A tank is then exposed to the measurement system, and a second piston cycle produces corresponding fringe count Δm_2

Design

Future Work

Initial Mach-Zehnder Interferometer

Interferometer was constructed at the CSU Engineering Research Center (ERC) using a Helium-Neon Laser at 543.5 nm (Green Light)

Preliminary Testing

Design

Future Work

Demonstrative Fringe Shift

Design

Fringe Shift of Mach-Zehnder Interferometer

 $l\Delta n$ ΔØ ∂P $2RT\lambda$ Δm PV = nRT 2π 3Al дт For The Initial prototype setup: λ 543.5 nm 4.606 x 10⁻⁶ (m³/mol) = 33 fringes theoretical A 8.314 (J/K*mol) R 0.0762 m 1 Visually counted 36 5 fringes with lab setup Т 297 K

Good agreement between initial experiment and calculation

84 kPa

Ρ

Design

Future Work

Fiber-Optic System

h.

Concept Type	Weight	Size	Vibration Resistance	C.O.G. Conformity	Cost	Complexity	Manufacturing Ease	Total
Traditional Optics (Mirrors, Beam Splitters)	1	1	1	2	3	2	1	11
Fiber Optics	3	3	3	2	1	1	3	16

- Center Wavelengths from 632 nm to 1550 nm
- ▶ 50:50, 91:10, and 99:1 Coupling Ratios
- OCT Proven Couplers at 850 nm and 1310 nm

VV · KIN

Design

System Layout

Two tanks w/ different volumes of liquid are independently exposed to Gas Cell Amount of liquid in each can be determined The two tanks represent fuel/fluid levels at different periods during a mission

Preliminary Testing

Design

Future Work

Data Handling and Control

Design

Future Work

Solid Model of Flight-Ready Prototype

Preliminary Testing

Design

Future Work

Construction of Prototype

Design

Testing

- Comprehensive Leak Testing Pressurize the Tanks, Piston Chamber, Gas Cell, Lines to 40psi
- Vibration and Acceleration Testing (Sierra Nevada Corp.) 20 minute run with payload placed vibration table in all 3 axes.
- Full Mission Simulation Including Compete Data Collection and Analysis

AI

Design

Future Work

Summary

Introduced problems with measuring liquids in zero-g, alternative methods currently in use, theory of optical mass gauging

Team Status Nearing end of prototype manufacturing, beginning testing phase

Overall Goal Mature an existing technology for fuel measurement through a flight test

Design

Future Work

Acknowledgments

- Tim Schneider, Colorado State University (electronics)
- Dr. Valentine Korman, K-Science
- Dr. Kurt Polzin, NASA's Marshall Space Flight Center
- Jason Priebe and Lad Kurtis, Sierra Nevada Corp.
- Omnis Inc.
- Colorado Space Grant Consortium
- Colorado University RocketSat Program
- Colorado State University Senior Design

