Suborbital Flight Testing of a Deployable Reflector

Next Generation Suborbital Researchers Conference February 18, 2010

Laura Stiles

Graduate Student, Aerospace Engineering Sciences University of Colorado at Boulder

Deployable Structures

"A deployable structure is an assembly of prefabricated members or elements that can be transformed from a closed compact or folded configuration to a predetermined expanded form of a complete stable structure capable of supporting loads."

Deployable Structures, Analysis and Design, C.J. Gantes

Deployable Reflectors

- Began with ground operations, then necessary for space
- Most radially compact only: not for CubeSats!
- Project: Design 1-meter reflector to deploy from CubeSat
 - Focus on kinematics of stowage
 - Avoid furlable designs: mesh, inflatable

Pictures from: "Shape Memory Materials" K. Otsuka & "Overview of Deployable Stuctures" T. Murphy

Design Concept Overview

Surface: Segmented carbon-fiber parabolic shellStowage: Gores wrapped around central hubDeployment: Simple, autonomous

Spiral Gore Pattern

- Avoid twisting deformation
- Optimize packing volume

Design Concept

- Interlocking 'Pantograph' perimeter
- Elastic folding is simpler than joints and mechanisms
- No complex joints, complicated pieces, or interference

Reflector Deployment

Model Deployment

Test Reflector Deployment

Suborbital Flight Test

- Purpose: Test deployment kinematics and structural dynamics of a deployable reflector
- Necessity: Complicated dynamics cannot be studied in 1-g

Experiment Setup

Meets mass, dimensional and power requirements

Data Collection and Analysis

- Quantitative: stereophotogrammetry for estimation of the three-dimensional coordinates of a large number of points on the reflector
- Qualitative: video footage

Conclusions

- Novel deployable reflector design with interlocking wrapping gores has been invented
- Microgravity environment is required for studying deployment and dynamics of a new reflector design
- Suborbital flight provides the necessary time frame to characterize the deployment kinematics, vibration modes, and damping

References

- T. Murphey. "Historical Perspective on the Development of Deployable Reflectors." AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. May 2009.
- Jenkins, C. H. M., editor. "Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications," Vol. 191 of Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics, 2001.
- Thomson, M. W., "The AstroMesh Deployable Reflector," International Symposium Digest Antennas and Propagations, vol. 3, 1999, pp. 1516
- Wade, W. D., Sinha, A., and Singh, R., "Study of Wrap-rib Antenna Design," Final Report Lockheed Martin and Space Co., Sunnyvale, CA. 1979.
- Greschik, G. "Deployment of Dishes with Surface Discontinuities," Journal of Spacecraft and Rockets, Vol. 33 No. 4, 1996, pp. 569-574.
- B. Tibbalds, S.D. Guest, S. Pellegrino. "Folding Concept for Flexible Surface Reflectors." AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. April 1998.
- http://news.softpedia.com/news/Introducing-the-92-Megapixels-Microsoft-Digital-Aerial-Photogrammetric-Camera-108923.shtml
- http://www.treehugger.com/earth-from-space-081003.jpg