

John F. Kennedy Space Center

External Payload Carrier (XPC) A Novel Platform for Suborbital Research

Next Generation Suborbital Researchers Conference 18-20 February 2010

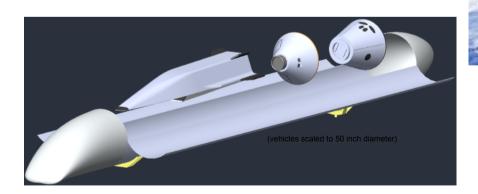
Boulder, CO

Paul Schallhorn, Ph.D. Curtis Groves Charles Tatro NASA Launch Services Program Kennedy Space Center, Florida

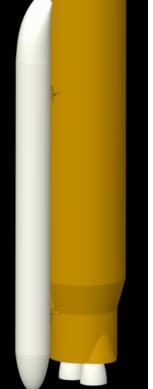
> Bernard Kutter Gerald Szatkowski United Launch Alliance Denver, CO

Tim Bulk Brian Pitchford Special Aerospace Services Boulder, CO

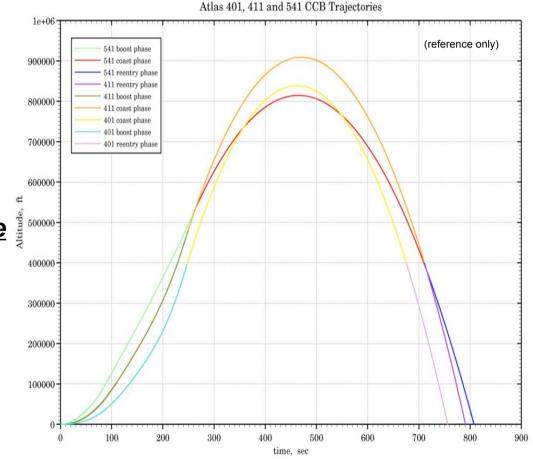
Overview


- External Payload Carrier (XPC) Concept
- Phase I Study
- Current Status
- Summary

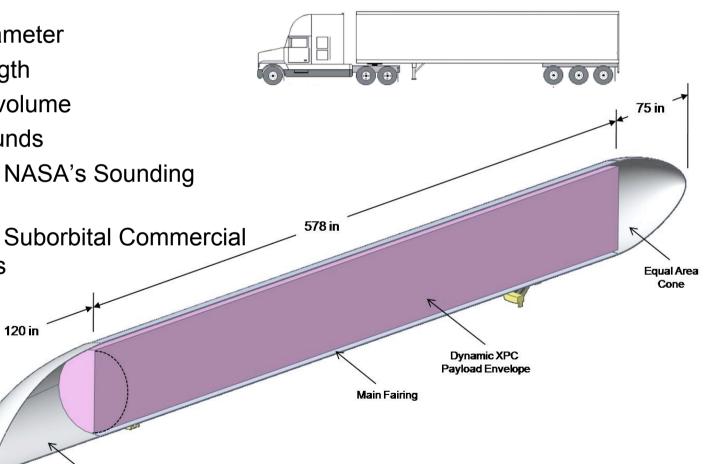
Overview of XPC Concept


 Potential Identified for "Suborbital Heavy Lift"

- Flies in SRB Location
- Anytime Excess Performance is Available
- Remains Attached or can be Jettisoned
- Unpressurized
- Disposable or Reusable
- Mimics Non-Propulsive SRB

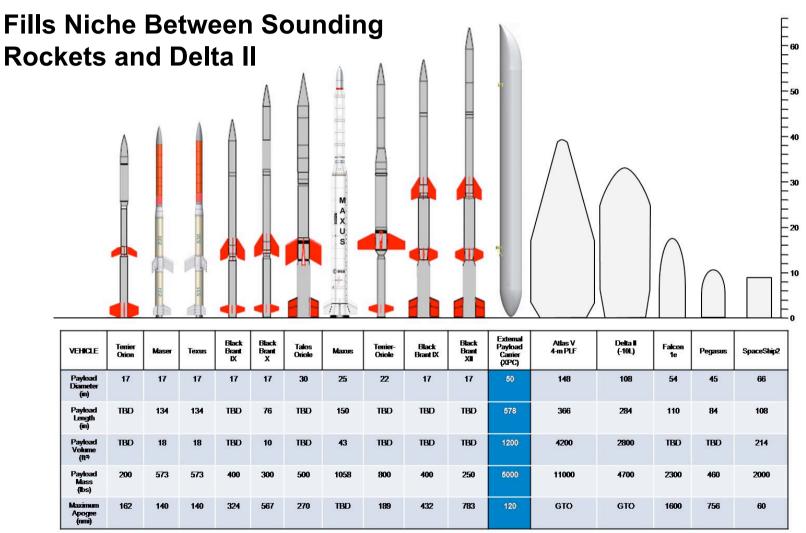


- Large Payloads to High Altitudes
 - Suborbital
 - Possible from Excess
 Performance
 - Result of Delta II payloads on EELVs
- Jettisonable Along <u>Entire</u> Stage 1 Trajectory
 - First Flight Remains Attached
 - Early Flights Jettisonable
 - During SRB separation
 - After Stage 1-Stage 2 separation



LAUNCH SERVICES PROGRAM

- Large Payload Volume and ٠ Mass
 - 60 in. diameter
 - 50 ft. length
 - 1200 ft³ volume
 - 5000 pounds
 - Exceeds NASA's Sounding **Rockets**
 - **Exceeds Suborbital Commercial** _ Providers


Nose cone

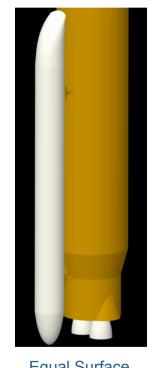
LAUNCH SERVICES PROGRAM

٠

LAUNCH SERVICES PROGRAM

• Mimics Atlas V SRB

- Ground Operations
 - Processing
 - Attachment (uses identical SRB hardware)
- Flight Operations
 - Aerodynamically equivalent to SRB
 - Negligible impact to launch vehicle or primary payload
 - Jettisonable along *entire* Stage 1 trajectory
 - Atlas V designed to carry expended SRB


XPC Concept – NASA LSP

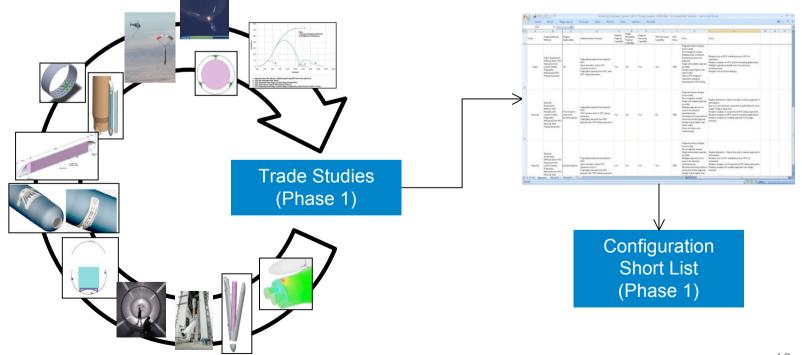
LAUNCH SERVICES PROGRAM

NASA LSP Internal Studies


- Aerodynamic Design Studies
 - Multiple considerations
 - Equal Surface Area Cone chosen
 - Neglible affect on launch vehicle

XPC Concept – SAS

• SAS IRAD and Strategic Assessment


- Investigating XPC Concepts
 - Worked with ULA and NASA LSP over past year on areas of interes
- Identified Multiple User Potential
- Growing Interest from NASA-Langley and AFRL
- Internally Funded Design Concepts for AFRL
 - Reusable Booster Technology
- Extremely Promising Test Bed
 - Military
 - Commercial
 - High Altitude, Hypersonic Aeronautics
 - Microgravity
 - Tropospheric \rightarrow Upper Atmospheric (Ionosphere) \rightarrow Exoatmospheric Research
 - Reentry Vehicle Research
 - Reusable technology (EELV Next Generation)
 - Point to Point Applications

Phase I Study

- ULA and SAS Tasked to Evaluate Feasibility
- Research and Trade Studies Conducted
- 57 Variations Considered
 - Configuration, Trajectory, Payload Attachment, Recoverability, etc

Overview of Findings

Pros and Cons Identified

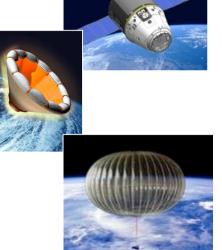
Most Ground Operations Appear Conducive

- Minimal Additional Hardware
- All Atmospheric/Exoatmospheric Regimes Attainable
 - Configuration Dependant
- Three Viable Configurations Selected
 - Strongback
 - Sabot
 - Gunwale
- Final Configuration in Phase II

Findings (cont.)

Design Baselines Identified

- Aluminum isogrid (heritage Atlas V)
- SRB attachment hardware
- SRB outer mold line
- Incremental flight capabilities
- Needed Subsystems Identified
- Preliminary Testing Requirements
 Identified
- Preliminary Modeling Complete
- Draft System Requirements Document (SRD) Complete
- Phase I Preliminary Feasibility Study Complete


Current Status

 NASA LSP has recently (1/10) agreed to fund XPC development through the Preliminary Design (Phase II)

- Expected outcome of the Preliminary D includes:
 - XPC Final Configuration
 - Post-jettison Stabilization
 - Payload Separation
 - Subsystem Design
- Currently Seeking Input From User Community
 - NASA Mission Directorates
 - DoD
 - Commercial Sector

Summary

- ULA, SAS, and NASA LSP are examining a new platform for suborbital research utilizing the Atlas V Launch Vehicle
- The new platform, XPC, fill a new niche within the suborbital realm – Large Heavy Lift (~1200 ft3, 5000 lb payload)
 - Will not compete with the commercial suborbital launch sector
- The XPC will utilize excess performance on Atlas V missions
- The Preliminary Design phase recently underway
- The XPC team is soliciting input from potential users