Swedish Space Corporation

We are ready to make it happen...

we design, launch, test and operate air and space systems

PAYLOADS FOR SUBORBITAL FLIGHTS atmospheric physics and chemistry

Modern and historical examples as a guide to using Piloted Suborbital Vehicles **Sven Grahn** Swedish Space Corporation

The sounding rocket – a well-honed tool – how to match it with piloted suborbital vehicles ?

Mass spectrometer launched from Esrange in 1978

Suborbital atmospheric physics and chemistry research turns to optics

(instrument design: Institute of Meteorology of the Univ. Of Stockholm).

Suborbital atmospheric physics and chemistry use optics

PHOCUS – a modern suborbital probe of the mesosphere

- **Co-ordinated set of instruments** explore common scientific theme: Noctilucent clouds and the summer mesosphere. To be launched in 2011 from Esrange.
- Most (but not all) instruments interact optically with the surrounding atmosphere
- Tight control of outgassing from payload (motor is separated)

Instrument	Measurements				
on Probe	Electron and ion density			Parachuta	
araday rotation	Electron and ion density			Falachule	
Dust detector	Meteor smoke particles			Side-looking	
2 visible light photometers	NLC particles			photometer	
2 IR photometers	NLC particles			module	
2 Impact detectors	NLC particles			Neutral density &	
Microwave radiometer	Water vapour density			electron density	
Atomic oxygen probe	Atomic oxygen density			Separation	
Atomic hydrogen probe	Atomic hydrogen density			Motor adapter	
Side-looking photometer	NLC particles				
Microwave radiometers	Water vapour density			Viewing direction of	
2 Ion detectors	Ion density	aanaa mininininini (←	optical sensors	
'CONE"	Temperature, density			Science instruments	

PHOCUS Total mass 270 kg

Nosecone

Ballast

Particle module

Chemical module

PHOCUS Particle Module pointing in the direction of flight

Protecting sensors during ascent

Separation of the nose cone of the MAGIC sounding rocket (2005). The water vapour sensor is under the nose cone. No moisture must penetrate during ascent.

More PHOCUS characteristics

- Extremely high vertical resolution: 10 cm resolution on neutral atmosphere density leads to ≥ 1 Mbps data rate (telemeter or store on SD), up to 20 Mbps capability.
- Attitude determination $\leq 1^{\circ}$ in all axes using MEMS IMU.
- Maintain attitude within 5[°].
- GPS for trajectory data (apogee 110 km).
- Support from co-located ground instruments (lidar, VHF radar)
- Price 1.5 M\$ (excl. Instruments).

Nike-Orion

Synoptic atmospheric measurements – a lost capability that can be resurrected by piloted suborbital vehicles ?

In the past many sounding rocket ranges were active so synoptic measurements were possible. **Perhaps possible again with piloted suborbital vehicles?**

Co-ordinated rocket launches in sudden warming campaign Point Wallops Fort Januarv ESRANGE Hebrides 1969 Island Churchill Barrow 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Total # of Δ 2 2 3 5 rockets

Sound grenade payload for temperature and wind soundings prepared at Esrange in 1969.

Important requirements from atmospheric research payloads

- Launch on warning
- Launch at precise time (co-ordinate with satellite).
- Launch at any time of the day.
- Synoptic launches.
- Protect sensors at low altitude
- Tight control of outgassing
- Very high data rate
- Maintain attitude to within a few degrees
- Accurate attitude and trajectory determination
- Co-located ground instrumentation.

Science Services division

