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How can we:

Make sub-orbital flight more safe?
Make sub-orbital flight more enjoyable?

Benefit humans on Earth through
sub-orbital flight experiments?




Sensorimotor disruptions
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Goals

Sub-orbital
passengers

e Maximize enjoyment
(maximize corporate revenue
via customer referrals)

e Accomplish research
tasks

Sub-orbital pilots

« Safely pilot the aircratft
during both nominal and

emergency situations

Without interference from
sensorimotor disruption




Overcoming sensorimotor disruptions

Strategies Orbital  Sub-orbital Sub-orbital
flight  passengers pilots
Adaptation *rFHx* & &
Re-adaptation *x & akaiaiaie
Pre-adaptation rxx el e
Pharmaceutical *xx rxx ae

Cognitive training ~ ***** Fekdekk ek
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Recommendations

Operators

Use pre-adaptation in parabolic
flight for sub-orbital passengers

Emphasize recency of experience
for sub-orbital pilots

Develop and conduct a

neurological examination for sub-
orbital pilots

Consider screening of passengers
for latent and undiagnosed
neurovestibular problems before
sub-orbital flight

Researchers

Study the effectiveness of
parabolic flight as a tool to pre-
adapt sub-orbital passengers

Find sensorimotor symptoms
caused by the unique sub-orbital
flight trajectory, and ways to
mitigate them

Study the correlation between
sensorimotor disruption and pilot
performance and appropriate
countermeasures.







Adaptation

Adaptation

Seconds - Days




Research Goals

Sub-orbital passengers

Allow passengers to fully focus on the
flight experience without distraction of
sensorimotor disruption

Allow passengers to complete a set of
personal tasks within a short period of
time, such as movement in O g, flips,

looking out the window, and interacting
with other passengers

Allow scientist-passengers to complete
scientific tasks quickly and accurately
Consider any interactions between flight
phases specific to sub-orbital flight

Sub-orbital pilots

« Ensure that sensorimotor disruption
does not interfere with the ability to
pilot the aircraft during both nominal
and emergency situations
Quantify re-adaptation capability by
study the effect of gaps in sub-
orbital exposure on functional
neurological tests and actual flight
performance metrics
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Take-home points

In parabolic flight, certain otolith-dependent ocular
responses improve over the course of 3 days of

flying

Pilots (non-parabolic) had similar responses to
experienced parabolic fliers, suggesting that certain
experiences can prepare one for parabolic flight

Adaptation of otolith-dependent pitch responses transfers to otolith-dependent
translation responses
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Instability of torsional alignment (deg)
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Gain of pitch vestibuloocular reflex

(deg/deg; ideal gain is 1.0)
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Take-home points

In parabolic flight, certain otolith-dependent
neurological responses improve over the course of

3 days of flying

Pilots (non-parabolic) had similar responses to
experienced parabolic fliers, suggesting that certain
experiences can prepare one for parabolic flight

Adaptation of otolith-dependent pitch responses transfers to otolith-dependent
translation responses
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Measuring static eye position

e OCR
e Torsional alignment
e Vertical alignment

 Nikon D70 digital
camera

e Subjects’ head
upright/ tilted




Measuring pitch VOR gain

Active sine-like head
movements

e 0.3-1.6 Hz. Results
based on 0.6-1.3 Hz

e 20-30°
e 40-90°sec

Fixating stationary point
in the light.

Eye movements were
recorded using a head-
mounted video system
(Chronos).

Gain computed by least-
squares fitting of eye

velocity to head velocity,
for each cycle of motion.
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The bottom line...

Parabolic flight consists of specific flight trajectories
that provide periods of 0 g and 1.8 g.

Subjects experience sensorimotor disruption when
initially exposed to parabolic flight, specifically in the
pitch vestibuloocular reflex and torsional alignment.

Over the course of three days in parabolic flight,
responses became appropriate in 0 g, 1 gand 1.8 g.

Responses in 1 g were not affected by adaptation In
0 g and 1.8 g, suggesting context-specific adaptation
(rather than generalized sensory rearrangement)

24




Bac
Bac
Met

Outline

Kground: Parabolic flight
Kground: Science

nods: Recording eye position

Results
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Background
Parabolic Flight







Play movie:
C:\Faisal\kc-
135\Skew\KC135 March2002_Day3 MarkFaisal.avi

Play movie:
C:\Faisal\kc-
135\Pictures\Aug2006\walkingupsidedown.mov
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534000 feet (10000 m)

n

Startof 0 g 4
Pitch 45° nose-up £

,,, 0g

1.8 1.8 24000 feet
J J (7300 m)

5 4
R ™

"~ End ofOg
W\, Pitch 45° nose-down

e

g = gia = gravitoinertial acceleration = the occupants’
perceptions
of gravity
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Play movie:
c:\Faisal\kc-135\Pictures\Apr2006\HPIM2161.MPG
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It IS not zero gravity!

In parabolic flight, the plane accelerates downwards to
match gravity, so the net force Is zero.

Even in orbit, there is still gravity (~9.37 m/s?at 300 km)

Preferred terms Less correct

—

freefall
Zero g

gravitoinertial acceleration (gia)

weightlessness microgravity zero gravity
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Why doesn’t ever¥body fall to the
front of the plane”

Vertical (7) ;
axis "é% W
{2y Z

\ -
b ‘

Longitudinal (x)
axis |

Karmali F, Shelhamer M. The dynamics of
parabolic flight: flight characteristics and
passenger percepts. Acta Astronautica (In press)




140 KT IAS, Mach 0.43

245 KT TAS, 34000 ft
BELOW UNACCELERATED
STALL SPEED

225 KT IAS, Mach 0.61
360 KT TAS, 45° nose up

350 KT IAS, Mach 0.83
MAX UPWARD VELOCITY

510 KT TAS, 24000 ft

Aircraft g level, (gravito-inertial acteleration) during two parébolas (aircraft coordinates)

| ‘ | ‘ | | | |

Vertical

Longitudinal

Lateral
g level (g)

g level ()

g level ()

Altitude

80 100
Time (seconds)

120

140

180



Rotational dynamics

The aircraft is rotating through 90° every 30 seconds

Angular velocity Centripetal

of 3 9/s C> acceleration of
0.006 g

Angular acceleration of Tangential

2 °/s? during transitions C> acceleration of

between 0 gand 1.8 g 0.07 g

Our paper claims these are “barely at the threshold
of detection” of the semicircular canals!

Karmali F, Shelhamer M. The dynamics of parabolic flight: flight characteristics and 35
passenger percepts. Acta Astronautica (In press)




Otolith stimulation
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Why they call it the “Vomit Comet”

Approximately 40-60% of participants get sick on their first
flight. The next day, most are fine.

A sensorimotor rearrangement has occurred. This learning
IS retained for months.

We want to improve our understanding of these adaptive
processes.

Studied a range of sensorimotor responses at different
neural levels: brainstem through to perceptual

* based on design MVL Spacelab experiments
37




Background




Vestibular-Ocular Reflexes

\

Otolith organs Eye movements opposite

measure linear

] of head movements
gravity (contains Conjugate: eyes move
utricle and saccule) together

Semicircular canals Disconjugate: difference
(SCC) measure between left and right eyes

angular velocity

VOR gain=Eye velocity / head velocity
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Eye movements and otolith organs

Eye misalignments occur in parabolic flight and whole-
body pitch rotation — otolith implicated warkham, biamond,

Karmali)

Ocular counterroll is reduced after space flight (ciarke 2000,
Moore 2003, Vogel 1986).

Pitch VOR still exists when canals deactivated (angelaxi

Otolith-dependent misalignments can be adapted with
static head positioning using a visual-vestibular
mismatch (schor) 10




Hypotheses

1. . learning a set of
specific responses that is calibrated for each g level.

Example: initially inappropriate otolith-driven responses, which
eventually become appropriate (correctly calibrated) in each g
level.

2. . learning a set of general
responses, each of which is simultaneously
appropriate for multiple g levels.

Example: gradual decrease in otolith-driven responses, reflecting
overall lack of reliability of otolith information as g level varies.
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Experimental design

Three consecutive days of flying per subject

Responses tested:
* Pre-parabolas

o Early

o Late

e Post-parabolas

14 subjects: 5 experienced, 6 naive, 3 pilots

Measurements:

 torsional alignment

e ocular counterroll

e Vvertical alignment

e pitch VOR gain — active & passive
e Also tried linear VOR, SVV, SPV

No medication for motion sickness
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Experimental design

Day 1

Day 2

Day 3

Pre-parabolas

Pre-parabolas

Pre-parabolas

Early (first 10
parabolas)

Early (first 10
parabolas)

Early (first 10
parabolas)

Late (last 10
parabolas)

Late (last 10
parabolas)

Late (last 10
parabolas)

Post-parabolas

Post-parabolas

Post-parabolas
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Measuring pitch VOR gain

Active sine-like head
movements

e 0.3-1.6 Hz. Results
based on 0.6-1.3 Hz

e 20-30°
e 40-90°sec

Fixating stationary point
in the light.

Eye movements were
recorded using a head-
mounted video system
(Chronos).

Gain computed by least-
squares fitting of eye

velocity to head velocity,
for each cycle of motion.




Measuring static eye position

e OCR
e Torsional alignment
e Vertical alignment

 Nikon D70 digital
camera

e Subjects’ head
upright/ tilted




Results

Torsional alignment instability
Ocular counterroll (response to head tilt)
Active pitch VOR

47




Instability of torsional alignment (deg)
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Conjugate torsional eye position
(+CW,; degrees)
N

—— Naive subjects (n=6)
—— Pilots subjects (n=3)

—— Experienced subjects (n=4)
D
D
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Conclusions

All responses showed a g-level dependence early in flight,
which decreased with experience.

Rate of adaptation varied between reflexes: torsional
dlsconjugacy IS fastest, then pitch VOR, then ocular counterroll.

Torsional alignment instability rapidly reduced upon exposure to parabolic flight, and adaptation is
retained between flights. The relatively rapid adaptation may be because errors in torsional alignment have
greater functional offsets than conjugate changes in torsional eye position and changes in the pitch VOR.

Pitch VOR gain initially dropped in 0 g and increased in 1.8 g, consistent with an otolith contribution.
Difference between g levels decreased with experience and eventually disappeared, showing that the different
otolith contributions In the different g levels are correctly processed after adaptation.

Ocular counterroll is initially larger in 1.8 g and smaller in 0 g. Differences between g levels do not change
within 3 days, although pilots show more appropriate responses in 1 g. An explanation for this slow adaptation
may be that a well-tuned OCR gain is not critical; it is not compensatory in normal circumstances.

None of the mechanisms show a change in response to 1 g after exposure to parabolic flight. This
suggests that adaptation is context specific.

Upon adaptation, torsion, torsional alignment and pitch
VOR are correctly calibrated in each g level, supporting the
hypothesis of a adaptation of each

response.
55
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Compare t-test significance of day
1 vs day 3 naive

Change bar graphs to std err
Instead of std

Review adapt. Spaceflight
See MJS PPT

Inc cool videos

~45 slides
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Otolith ambiguity — same sensor transduces tilt and translation of head

Transduced signal during tilt differs dramatically in weightlessness / high g environments, and changes in
otolith-dependent reflexes occur

Designing a countermeasure to speed adaptation or pre-adapt reflexes could reduce adverse problems during
space missions, return to Earth or visiting other celestial bodies

Characterizing the adaptive characteristics of otolith-dependent reflexes and the relationship between
adaptation of translation and tilt important for the design of countermeasures

To learn more about these pathways, we studied the vestibulo-ocular reflex

Specifically interested in the pitch VOR, because this is the most common type of head movement in which
the otolith organs transduce a changing direction of gravity

During pitch head movements, three (or more) sensory signals available: otolith-transduced head position;
SCC-transduced head velocity; eye position
Goals:

* to adapt VOR and show that adaptation is otolith-organ dependent

» Show that adaptation of VOR transfers from tilt to translation

» Characterize how the brain processes otolith organ information using the characteristics of the transfer of
adaptation

With pitch head movements, during translation and tilt, the compensatory eye movement is vertical. Makes it
impossible to distinguish adaptation that is dependent on eye- vs. head- motion-dependent adaptation. Using
vertical eye misalignment allows dependency on velocity and position to be better discriminated.
Methods

* How to adapt VOR / eye misalignment?
Results / Discussion
Conclusions

* The evidence that Cartesian components of the g vector are used as adaptive cues is important because it
suggests that countermeasures on Earth can adapt some responses without changing the magnitude of the g
vector. That means adaptation of otolith-dependent reflexes could occur in a 1 g field, which allows longer,
cheaper adaptation sessions than jet or parabolic flight. 63




ransfer of oculomotor adaptation between
otolith-dependent tilt and translation reflexes

Faisal Karmall
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The bottom line...

A vertical misalignment between the eyes can be
adapted that is dependent on otolith-transduced
head tilt during pitch head rotation using a visual-
vestibular mismatch

Modification of the response to otolith-transduced
head tilt also modifies the response to vertical
translation

Modeling shows that for adaptation, the brain
processes the g vector as Cartesian components,
rather than in polar coordinates o




Background




Vestibular-Ocular Reflexes

\

Otolith organs Eye movements opposite

measure linear

] of head movements
gravity (contains Conjugate: eyes move
utricle and saccule) together

Semicircular canals Disconjugate: difference
(SCC) measure between left and right eyes

angular velocity

VOR gain=Eye velocity / head velocity
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Eye movements and otolith organs

Eye misalignments occur in parabolic flight and whole-body
pitch rotation — otolith implicated (varkham, biamond, Karmali)

Amount of misalignment decreases with experience in parabolic
flight — shows adaptation of pathway occurs

Pitch VOR gain changes with g level — otolith implicated
Pitch VOR still exists when canals deactivated (angeaki

Otolith-dependent misalignments can be adapted with static
head positioning using a visual-vestibular mismatch (schon

68




Previous studies of transfer
between translation and rotation

Yaw adaptation affects interaural translation
reSPONSe (koizuka et al.)

Interaural adaptation affects yaw response (oizukaetal)

Yaw adaptation affects response to constant-velocity
p|tCh rotation (Petropoulos, Wall Ill, Oman)

These studies suggest adaptation of a pathway
common to the SCC and otolith reflexes

In contrast, we find adaptation specific to the otolith
pathway
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OR galn IS dependent on
g level in parabolic flight
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Experimental
Design
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AIms

Show that a misalignment between the eyes can be
adapted that it dependent on otolith-transduced tilt
during dynamic pitch rotation using a visual-
vestibular mismatch

Determine if modification of the response to otolith-
transduced head tilt also modifies the response to
vertical translation

Develop a model to understand how the brain
processes otolith information during adaptation of
otolith-ocular responses
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Motion profiles
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SENSOry environment auring
motion profiles

Motion profile

Sensory Active piteh rotation Vertical translation
receptor

Otolith Changing orientation Linear acceleration
organs relative to gravity

Semicircular Yes No

canals (SCC)

Orbital eye Yes Yes

position

Collic (neck) Yes No

reflex
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SENSory environment during

motion profiles

Motion profile

Sensory Active pitch rotation Vertical translation

receptor

Otolith organs Changing Linear acceleration
orientation relative
to gravity

Semicircular Yes No

canals (SCC)

Orbital eye Yes Yes

position

Collic (neck) Yes No

reflex
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Study procedures

The pitch plasticity study
Pre-test Adapt
Pitch Pitch

(monocular (20 min)
targets)

The vertical translate study

Pre-test Pre-test

A
Vertical Pitch Pidtzgt
(monocular  (monocular (15 min)

target) target)

Post-test
Pitch
(monocular
targets)

Post-test
Pitch
(monocular
target)

Adapt
Pitch
(5 min)

Post-test
vertical
(monocular
target)
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Scleral contact lens colls

Coil frame in a cube that consists of I
three orthogonal magnetic fields \
oscillating at different frequencies

Coll acts as antenna that picks up a linear combination
of the three that depends on its orientation

Accuracy <0.01°
Wire Is fragile, and often breaks

Small coll frame used on vertical sled — data for pitch
not usable during the vertical translate study




Generalized Estimating Equations

t-test Is often used to compare time-series data in two
different conditions

t-test assumes independence between measures, which is

not usually the case with rapidly-changing, sampled data such
as eye position

GEE is a more correct and stringent technique that takes into
account the correlation of the data with itself

t-test will sometimes indicate significance when GEE does not

Zeger, S. L. & Liang, K. Y. (1986). Longitudinal data analysis
for discrete and continuous outcomes. Biometrics 42, 121-130.

Karmali, Ramat, Shelhamer (2006). Journal of Vestibular
Research 16:117-125. 78




Pitch plasticity study

Goal: understand the nature of central compensation

Study the ability of the brain to learn an otolith organ-dependent
misalignment during dynamic head movements

Subject performs active pitch rotation

Induced a vertical misalignment of the eye by presenting a
visual disparity between the left and right eyes

Subject wears red-blue glasses

Real-time head position is fed to laptop which projects a field of
dots onto a screen

The dots have a vertical disparity between left and right eyes
Reqgular & eye-head dissociation paradigms
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Pitch plasticity study
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Misalignment vs. head position for
three target positions (subject J)

Post-
adaptation

-4

'-ﬁ'- = n

Pre-adaptation

-50 0 50
Head position (degrees; + up)

Vertical misalignment (degrees; right-left; + up)




Vertical misalignment (degrees; right-left; + up)

4 Standard paradiom ,  Eye-head digsociation paradia
Subject H Subject H Subject H* Subject H*
2 / 2 2 2
0 o%% 0 A{(‘gdev 0 %@7 0 W
-2 -2 -2 -2
-4 4 4 4
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2 2 2 2
0 8 0 M A-Bqﬁ@gv
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Vertical misalignment
(degrees; right-left; + up)

Vertical misalignment
(degrees; right-left; + up)

Ideal results demonstrating h4ead position-dependent adaptation

w
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Vertical misalignment
(degrees; right-left; + up)

0 -
Head position (deg; + up) Eye position (deg; + down)

Ideal results demonstrating e)/e position-dependent adaptation

w
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Vertical misalignment
(degrees; right-left; + up)

0 R 0
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Example: misalignment dependent
on head position

al misalignment (degrees; right-left, + up)

Misalignment vs. head position for

Misalignment vs. eye position for

three target positions (subject H)

al misalignment (degrees; right-left; + up)

2

index of head-position-dependent adaptation=

three target positions (subject H)

U
‘\
“

MS,. — MS,_,

eye

|\/ISeye + I\/IShead

-3 -3
-4 ' -4
-50 0 50 -50

Head position (degrees; + up)

0

Eye position (degrees; + down)
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Example: misalignment partly
dependent on eye position

Misalignment vs. head position for Misalignment vs. eye position for
three target positions (subject H) three target positions (subject H)

4 T 4 T

Vertical misalignment (degrees; right-left; + up)
|

Vertical misalignment (degrees; right-left; + up)
o

or _
1k - 1F 4
2ok . 2k _
3r - 3+ i
-4 ! 4 !
-50 0 50 -50 0

Head position (degrees; + up) Eye position (degrees; + down)
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ls adaptation dependent on eye or head?

= Compare mean sum-of-squares of regression for
misalignment on eye, and misalignment on head

1 T T T T T T T T T

0.8F Subject exhibits head-position-dependent adaptatign .

0
M “

04+ .

-0.6 -

Index of head-position-dependent adaptation

-0.8 Subject exhibits eye-pagsition-dependent adaptation T

| | | | | |
H H* J J* L M* B B* Y

Subject




Pitch plasticity study — summary

Position-dependent misalignments were adapted in
all subjects

Head position was implicated as the adaptation cue
IN most subjects

Otolith organs or SCC could be driving adaptation

In the next study, we performed the same adaptation
and also tested in vertical translation, which
stimulated the otolith organs but not the SCC
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Pre-test
Vertical
(monocular
target)

Vertical translate study

Pre-test Post-test Post-test
) Adapt . Adapt .
Pitch , Pitch . vertical
Pitch Pitch
(monocular : (monocular . (monocular
(15 min) (5 min)
target) target) target)
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% Vertical sled movement characteristics
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esponse to vertical translation

Pre-adaptation response (subject J) Post-adaptation response (subject J)
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Sensitivity to vertical translation increases
after adaptation of pitch response

Pre-adaptation

Sensitivity 0.083°/g (subject H)

-0.5 0 0.5

Sensitivity 0.190°/g (subject J)

-0.5 0 0.5

Sensitivity 0.289°/g (subject M)

-0.5 0 0.5

Vertical misalignment (degrees; right-left; + up)

Sensitivity -0.053°/g (subject B)

-0.5 0 0.5

Sensitivity -0.217°/g (subject W)

&
L)
° °
.o: :,.0 o
0.5 0 0.5

Post-adaptation

Difference

Sensitivity 0.166°/g (subject H)

Sensitivity change 0.084°/g

-0.5 0 0.5

Sensitivity change 0.321°/g

-0.5 0 0.5

Sensitivity change 0.086°/g

-0.5 0 0.5

Sensitivity change -0.078/g

-0.5 0 0.5

Sensitivity change 0.24%/g

1 .
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\d ° ;.
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1 L L L
-1 -0.5 0 0.5
Sensitivity 0.514°/g (subject J)
1 T T r
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1 L e L I .
-1 -0.5 0 0.5
Sensitivity 0.375°/g (subject M)
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1 L L L
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Sensitivity to vertical translation increases
after adaptation of pitch response
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Vertical translate study — summary

Head-position-dependent adaptation of misalignment
during pitch rotation was otolith organ dependent

Adaptation transferred from otolith-dependent tilt
response to otolith-dependent translation response

Misalignment is a tool to study the otolith-ocular
pathway: it allows questions to be asked about
tilt/translation which are difficult to answer using
conjugate eye movements
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What model of otolith organ information
processing explains the transfer of
adaptation from pitch to vertical translation?

Polar Cartesian
coordj,Qgtes &gmponents
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Modeling — summary

Otolith organ information is processed in Cartesian
components

Adaptation affects all g vector components equally
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Conclusions

Otolith-dependent eye misalignments can be
adaptively created during dynamic pitch rotation
using a visual-vestibular mismatch

Adaptation transfers from otolith-transduced tilt
responses to translation responses

Components of the g vector are used to determine
the ocular response; adaptation affects all
components equally
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Application to countermeasures

Adapting otolith reflexes during weightlessness is
expensive and of a short duration

Countermeasures can focus on adapting responses
of individual Cartesian components

When appropriate g vector cannot be provided using
translation, it can be provided using tilt
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Future work

Test for transfer when adapted Cartesian
components are the same

The relationship between head position and
misalignment in the adaptive paradigm was linear —
a parabolic relationship would separate otolith and
SCC contributions

Transfer of adaptation from vertical translation to
pitch rotation
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Future work

Head orientation during adaptation

during first test

during second test

rotation axis g vector rotation axis g vector rotation axis g vector
components components components
stimulated stimulated stimulated
Pitch upright VT & NO Roll onside VT (&IA) Yaw onside NO (&IA)
Roll upright VT & IA Pitch supine VT (&NO) Yaw supine IA (&NO)
Yaw supine NO & TA Pitch upright NO (&VT) Roll upright IA (&VT)
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Background




The Vestibular System

“Sixth sense” that keeps us balanced
Stops us from falling when we stumble
Helps move eyes (“gaze stabilization”)

Patients with Vestibular
Disease or stroke

Astronauts affected by
weightlessness

Vertigo
Difficulty walking
Eyes move incorrectly

Vertigo and motion sickness
Difficulty walking upon return
Eyes move incorrectly
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http://accuweather.ap.org/cgi-bin/apdownload.pl?6754643+Intl_Photos+accuweather.ap.org:80+++�

Vestibular-Ocular Reflexes

\

Eye movements opposite
of head movements

Otolith organs
measure linear
acceleration and

gravity (contains Torsion Is rotation of eye
utricle and saccule) about the line of sight
Semicircular canals Conjugate: eyes move
(SCC) measure together

angular velocit . . .
J Y Disconjugate: difference

between left and right eyes
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The otolith organ: a mass on a lever

Temporal
bone of the The mass is
head called the

otoconia and
deflects when
The lever is a acted upon by

hair cell that external forces
measures

deflection

g vector: the sum of linear acceleration and gravity

1 g of downward gravity is indistinguishable from
1 g of upward acceleration of the head
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Vertical misalignments
during parabolic flight
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Otolith Asymmetry Hypothesis

Left Right
Eye Eye

Central
Compensation

Left Right
Otolith Otolith

t g vector j

112




“Over 50% of utricular-activated, second-order
vestibular neurons received commissural
Inhibition from the contralateral utricular nerve.”

“Almost all the saccular-activated, second-order
vestibular neurons exhibit no response to
stimulation of the contralateral saccular nerve.”

Uchino, 2004
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Implications of otolith asymmetry

It can predict space sickness: a better understanding
of the mechanisms may help to improve screening
and produce simpler screening tests

It may reduce task performance by creating a
sensory conflict or misaligning the eyes

Understanding how it adapts may be useful in
training including partial adaptation before flight
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Experimental
Design
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Motion proflles

Parabolic flight

Active pitch rotation Passive pitch rotation
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SENSOry environment auring
motion profiles

Motion profile

Sensory Passive pitch rotation Active pitch rotation Vertical translation
receptor (full body)
Otolith organs Changing orientation Changing Linear acceleration
relative to gravity orientation relative
to gravity
Semicircular Only before vestibular ~ Yes No
canals (SCC) time constant exceeded
Orbital eye Yes, due to Yes Yes
position counterpitch response
Collic (neck) No Yes No

reflex
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SENSOry environment auring
motion profiles

Motion profile

Sensory Passive pitch rotation Active pitch rotation Vertical translation
receptor (full body)
Otolith organs Changing orientation Changing Linear acceleration
relative to gravity orientation relative
to gravity
Semicircular Only before vestibular ~ Yes No
canals (SCC) time constant exceeded
Orbital eye Yes, due to Yes Yes
position counterpitch response
Collic (neck) No Yes No

reflex
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Study procedures

The pitch innate study

Slow test Medinm test Flast test
Pitch Pitch Pitch

The pitch plasticity study

Pre-test Adapt Post-test
Pitch Pitch Pitch
(monocular (20 min) (monocular
targets) targets)

The vertical translate study

Pre-test Pre-test Post-test
Vertical Pitch Adapt Pitch
(monocular (monocular ity _ (monocular
target) target) (5 i) target)

Adapt
Pitch
(5 min)

Post-test
vertical
(monocular
target)
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Scleral contact lens colls

Coil frame in a cube that consists of I
three orthogonal magnetic fields \
oscillating at different frequencies

Coll acts as antenna that picks up a linear combination
of the three that depends on its orientation

Accuracy <0.01°
Wire Is fragile, and often breaks

Small coll frame used on vertical sled — data for pitch
not usable during the vertical translate study




Generalized Estimating Equations

t-test Is often used to compare time-series data in two
different conditions

t-test assumes independence between measures, which is

not usually the case with rapidly-changing, sampled data such
as eye position

GEE is a more correct and stringent technique that takes into
account the correlation of the data with itself

t-test will sometimes indicate significance when GEE does not

Zeger, S. L. & Liang, K. Y. (1986). Longitudinal data analysis
for discrete and continuous outcomes. Biometrics 42, 121-130.

Karmali, Ramat, Shelhamer, Journal of Vestibular Research.
2006 Dec:;16:117-125 121
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Static alignmen

Vertical misalignment (Degrees, right-left, +down)
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Slow rotation — 6°/sec

Vertical misalignment during slow pitch rotation (6 deg/sec)
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Medium rotation — 60%sec

Right eye

Left eye

Chair position
*  Target flash
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Fast rotation — 2 second steps
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Fast rotation — 2 second steps

Vertical misalignment
(degrees, right-left, +down)

Vertical misalignment
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Summary of vertical eye misalignments for static orientation and slow, medium and fast pitch rotations
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I Fast: significance of orientation dependence - peak misalignment (backward)
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Pitch Innate study - summary

Misalignment Average Number of
determined misalignment  significant
0)Y, difference subjects
between (p<0.01;
upright & GEE)
upside-down
Static Orientation 0.99° 3/5 R Orientation-dependent
Slow Orientation 1.74° 3/3 >mlsa“gnment5 'mP“Cate
asymmetry in otolith
Medium Orientation 0.39° 3/4 pathway
-
Fast Angular 1.86° (peak ~
velocity misalignment) Velocity-dependent
(orientation > misalignments implicate
significant in SCC pathwa
1/5 subjects) P y

Otolith asymmetry acts in both:
e pitch rotation - g vector direction changing

. . . . 130
 vertical acceleration - g vector magnitude changing




Pitch plasticity study

Goal: understand the nature of central compensation

Study the ability of the brain to learn an otolith organ-dependent
misalignment during dynamic head movements

Subject performs active pitch rotation

Induced a vertical misalignment of the eye by presenting a
visual disparity between the left and right eyes

Subject wears red-blue glasses

Real-time head position is fed to laptop which projects a field of
dots onto a screen

The dots have a vertical disparity between left and right eyes
Reqgular & eye-head dissociation paradigms
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Pitch plasticity study
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Vertical misalignment (degrees; right-left; + up)

Misalignment vs. head position for
three target positions (subject J)

Post-
adaptation

-4

--ﬁ'- = n

Pre-adaptation

-50 0 50
Head position (degrees; + up)



Vertical misalignment (degrees; right-left; + up)

4 Standard paradiom ,  Eye-head digsociation paradia
Subject H Subject H Subject H* Subject H*
2 / 2 2 2
0 o%% 0 A{(‘gdev 0 %@7 0 W
-2 -2 -2 -2
-4 4 4 4
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2 2 2 2
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Vertical misalignment
(degrees; right-left; + up)

Vertical misalignment
(degrees; right-left; + up)

Ideal results demonstrating h4ead position-dependent adaptation

w
T

Vertical misalignment
(degrees; right-left; + up)

0 -
Head position (deg; + up) Eye position (deg; + down)

Ideal results demonstrating e)/e position-dependent adaptation

w
T

Vertical misalignment
(degrees; right-left; + up)

0 R 0

Head position (deg; + up) Eye position (deg; + down)



Example: misalignment dependent
on head position

al misalignment (degrees; right-left, + up)

Misalignment vs. head position for

Misalignment vs. eye position for

three target positions (subject H)

al misalignment (degrees; right-left; + up)

2

index of head-position-dependent adaptation=

three target positions (subject H)

U
‘\
“

MS,. — MS,_,

eye

|\/ISeye + I\/IShead

-3 -3
-4 ' -4
-50 0 50 -50

Head position (degrees; + up)

0

Eye position (degrees; + down)

50



Example: misalignment partly
dependent on eye position

Misalignment vs. head position for Misalignment vs. eye position for
three target positions (subject H) three target positions (subject H)

4 T 4 T

Vertical misalignment (degrees; right-left; + up)
|

Vertical misalignment (degrees; right-left; + up)
o

or _
1k - 1F 4
2ok . 2k _
3r - 3+ i
-4 ! 4 !
-50 0 50 -50 0

Head position (degrees; + up) Eye position (degrees; + down)

50



ls adaptation dependent on eye or head?

= Compare mean sum-of-squares of regression from
misalignment on eye and misalignment on head

1 T T T T T T T T

0.8F Subject exhibits head-position-dependent adaptatign .

0
M “

04+ .

-0.6 -

Index of head-position-dependent adaptation

-0.8 Subject exhibits eye-pagsition-dependent adaptation T

| | | | | |
H H* J J* L M* B B* Y

Subject




Pitch plasticity study — summary

Position-dependent misalignments were adapted in
all subjects

Head position was implicated as the adaptation cue
IN most subjects

Otolith organs or SCC could be driving adaptation

In the next study, we performed this experiment and
tested in vertical translation, which stimulated the
otolith organs but not the SCC
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Vertical translate study

The vertical translate study

Pre-test Pre-test Post-test Post-test
Vertical Pitch Adap t Pitch Adapt vertical
(monocular (monocular Clitely _ (monocular Pltch (monocular
target) target) {5 i) target) (& k) target)
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% Vertical sled movement characteristics
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esponse to vertical translation

Pre-adaptation response (subject J) Post-adaptation response (subject J)
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Sensitivity to vertical translation increases
after adaptation of pitch response

Sensitivity 0.083°/g (subject H)

1
] Ld
0
LA o %o
1 L L L
-1 -0.5 0 0.5
Sensitivity 0.190°/g (subject J)
1
-
° 9
0
1 . . .
-1 -0.5 0 0.5

Sensitivity 0.289°/g (subject M)

-1 -0.5

0

0.5

Sensitivity -0.053°/g (subject B)

Vertical misalignment (degrees; right-left; + up)

-1 -0.5

0

0.5

Sensitivity -0.217°/g (subject W)
1 T . .
0
-1
-1

Sensitivity 0.166°/g (subject H)
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Sensitivity change 0.084°/g
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Sensitivity to vertical translation increases
after adaptation of pitch response
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Vertical translate study — summary

Head-position-dependent adaptation of misalignment
during pitch rotation was otolith organ dependent

Adaptation transferred from otolith-dependent tilt
response to otolith-dependent translation response

Misalignment is a tool to study the otolith-ocular
pathway: it allows questions to be asked about
tilt/translation which are difficult to answer using
conjugate eye movements
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Modeling

What is the nature of the central compensation?

What model of otolith organ information processing
explains the transfer of adaptation from pitch rotation
to vertical translation?
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Model overview
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Additive vs.
Multiplicative
Compensation

neuronal firing rate

Otolith organ afferents
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What model of otolith organ information
processing explains the transfer of
adaptation from pitch to vertical translation?

g vector g vector components
»

g vector

g vector g vector

NO 150




2 3
Time (days) Time (days)

Eye torsion with head tilted during change g level
Torsion changes even though g vector direction does not
change

Suggests the g vector component determines torsion




Misalignment predicted by

Pitch Plasticity Study

Vertical Translate Study
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Modeling — summary

Context-specific adaptation is a likely candidate for
central compensation

Otolith organ information is processed in g vector
components

Adaptation affects all g vector components equally
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Conclusions

Vertical eye misalignments that are dependent on
the otolith organs occur during pitch rotation

Vertical eye misalignments that are dependent on
the SCC occur during fast pitch rotation

Otolith-dependent misalignments can be adaptively
created during dynamic pitch rotation using a
visual-vestibular mismatch

Context-specific adaptation is a likely candidate for
central compensation

Components of the g vector are used to determine
the ocular response; adaptation affects all
components equally
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Implications

Understanding central compensation in the otolith-
ocular pathway can improve the design of adaptation
regiments for both astronauts and patients

Understanding how otolith information is used by the
brain can guide the selection of motion profiles used
for adaptation paradigms

The ability to measure innate misalignments using
pitch rotation may help in assessing risks during
spaceflight
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Future work

Model a SCC asymmetry by having canal planes that
are slightly different in the left and right ear

The relationship between head position and
misalignment in the adaptive paradigm was linear —
a parabolic relationship would help to separate
otolith and SCC contributions

In fast rotation, SCC-dependent misalignments were
iImplicated — further investigation is required

Transfer of adaptation from vertical translation to
pitch rotation

Transfer of adaptation between otolith-dependent tilt
and translation with conjugate eye movements

156




Future work

Head orientation during adaptation

during first test

during second test

rotation axis g vector rotation axis g vector rotation axis g vector
components components components
stimulated stimulated stimulated
Pitch upright VT & NO Roll onside VT (&IA) Yaw onside NO (&IA)
Roll upright VT & IA Pitch supine VT (&NO) Yaw supine IA (&NO)
Yaw supine NO & TA Pitch upright NO (&VT) Roll upright IA (&VT)
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Control of motion and posture



http://accuweather.ap.org/cgi-bin/apdownload.pl?6754643+Intl_Photos+accuweather.ap.org:80+++�
http://accuweather.ap.org/cgi-bin/apdownload.pl?3135268+Intl_Photos+accuweather.ap.org:80+++�

The Vestibular System

“Sixth sense” that keeps us balanced
Stops us from falling when we stumble
Helps move eyes (“gaze stabilization”)

Patients with Vestibular Astronauts affected by microgravity
Disease or stroke

Vertigo Vertigo and motion sickness
Difficulty walking Difficulty walking upon return
Eyes move incorrectly Eyes move incorrectly

Studying astronauts will help us cure people on the ground
161




Background & Significance

Astronauts and others exposed to unusual
acceleration environments get sick

Torsional misalignment found in parabolic flight and

may be due to otolith asymmetry

Motion sickness correlated with torsional misalignment

Motion sickness correlated with an otolith mass
asymmetry in fish

In pitch head movements, the otoliths detect a

changing g vector and contribute to eye movements
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Vestibular-Ocular Reflexes

/ \

Otoliths measure Eye movements opposite
linear acceleration of head movements

and gravity (contains Torsion is rotation of eye
utricle and saccule) about the line of sight
Semicircular canals Conjugate: eyes move
(SCC) measure together

angular velocity Disconjugate: difference

between left and right eyes

Eye misalignment between L and R eye position
Visual disparity between what is seen by L and R eye,




The otoliths: a mass on a lever

Temporal
bone of the The mass is
head called the

otoconia and
_ deflects when
The leveris a acted upon by

hair cell that external forces
measures

deflection

Gravito-inertial acceleration (g level): the sum of linear
acceleration and gravity. 1 g of downward gravity is

Indistinguishable from 1 g of upward acceleration of the head
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Otolith Asymmetry Hypothesis

Left Right
Eye Eye

Central
Compensation

Left Right
Otolith Otolith

tg level (GIA) j
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Implications of otolith asymmetry

It can predict space sickness: a better understanding
of the mechanisms may help to improve screening
and produce simpler screening tests

It may reduce performance by misaligning the eyes

Understanding how it adapts may be useful in
training including partial adaptation before flight
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Hypotheses

An otolith asymmetry will manifest as ocular
misalignments when the magnitude and orientation
of the g vector Is unusual.

An otolith asymmetry will imbalance the otolith
contribution to the pitch VOR, resulting in ocular
misalignment

A reduction is misalignment will occur with
experience in an environment, and this adaptation
occurs within the central compensation mechanism
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Experimental Methods:
Parabolic Flight
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Experimental Methods: Video

eye movement recording
Binocular (both eyes) | —
50 Hz d
Accelerometers and
rate sensors
Subjects in darkness

Software finds pupil In
Image and computes
gaze direction ’

gia=0041023




Experimental Methods: Summary

Parabolic flight

Centrifugation

Pitch rotation

A N o MO~ OA N o N~
T T 1T 71

A N o v N
T 1

oo ATEE.......
NN
|/ = g ==

Time (seconds)

Parabolic flight

Otolith: vertical; change in
magnitude (0-1.8 g) but not
direction

Pitch rotation: 3 °/s

Roll rotation: 0 °/s

Yaw rotation: O °/s

Centrifugation

Otolith: rotates in roll to
vertical, change in magnitude
1-2 g and direction

Pitch rotation: 0 °/s

Roll rotation: 1 °/s

Yaw rotation: 0 °/s to 100 °/s

Pitch rotation

Otolith: continuously rotating
in pitch; fixed magnitude g
Pitch rotation: up to 90 °/s
Roll rotation: 0 °/s

Yaw rotation: 0 /s




Perceptual Observation

Operator: “Did you notice the light diverging at all?”

Subject: “The little light... diverged, and | couldn’t get it to
come back together again when | was looking off to the
right. The two divergent red lights were not always in the
same relation to each other.”

Operator: “Did they separate completely horizontally,
completely vertically or something in between?”

Subject: “...It was mostly vertically, but the bottom one
would move across, moving horizontally more than the top
one”

Subject: “I tried to focus them back on top of each other. They
were always vertically separated but | tried to get them
horizontally aligned.”

Subject #2: “For right targets, one moved up and to the left.
For left targets one moved down and to the right.”

Subject #2: “At the end | didn’t notice it as much at all.”






Compensated vertical eye
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Develop a method to detect
vertical translation of the
camera relative to the eye
using features in the video
Image

... using an automatically
selected landmark

Algorithm

Automatically select a smaller rectangular landmark
Find in each video frame using cross-correlation
“Temporal feature-selection”




CO'COrrEIatiOn Metric to estimate motion of a

landmark relative to other
landmarks
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Co-correlation predicts landmark tracking accuracy
5 I I I I

First iteration
Worthy (most accurate) landmarks
Second iteration

+  Worthy (most accurate) landmarks
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Aim 1: Parabolic flight vertical

3. How Is disconj_ugac’}/ Influenced by target
distance and position’

The magnitude of g-dependent vertical skew does
not depend on the horizontal or vertical displacement
of the fixation target (ANOVA; p>0.4)

Vertical skew is significantly smaller for far targets
compared to near targets (t-test; p<0.1)

Target Near (12 cm) Far (30 cm) Overall

Right +1.54°+1.13° (n=18)  +0.99°+1.04° (n=4)  +1.44°+1.16° (n=22)

Left +0.99°+0.63° (n=9) +0.70°£0.65° (n=3)  +0.92°%0.62° (n=12)
Center +0.90°£0.67° (n=9) +1.15°£0.00° (n=1) +0.93°£0.63° (n=10)
Up +1.20°+0.91° (n=4) - (n=0) +1.20°+0.91° (n=4)

194
Overall | +1.24°+0.93° (n=40) +0.90°+0.79° (n=8) +1.18°+0.93°




Magnitude of skew differential between 0 g and 1.8 g(degrees)
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Summary Aim 1: Determine how binocular
alignment is disrupted during linear acceleration

The results provide evidence for vertical skew
related to g level, possibly as a consequence of
otolith asymmetry

The skew is does not varies with target position
(comitant) but reduces with target distance

Vertical skew and torsional disconjugacy Is
reduced with exposure to parabolic flight

The relationship between vertical and torsional
disconjugacies will be studied
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Aim 2: Pitch Rotations

Methods

Rotate full body
In the pitch
direction

Slow, medium,
fast paradigms

Eye movements
recorded with
scleral search
coils
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Medium pitch rotation

60 9/sec

Target flashes  H
evera_? seconds Ea
|

resetting skew

Skew changes
by 0.94°.

Will attempt to
reduce noise by
finding and
removing fast
phases




Summary of Aim 2: Determine how binocular
allgF?ment IS disrupted during dynamic tilt (pitch

Vertical skew occur in pitching with different motion
profiles

Torsional disconjugacy occurs in slow pitching;
will look In medium, fast

Will look for correlation between vertical/torsional

Will perform regression of all experimental data to
determine dependency on motion variables
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Aim 4; Model how otolith asymmetry could
contribute to disruption of binocular alignment
under these different motion scenarios

Can an anatomically-based otolith asymmetry model
explain the vertical and torsional disconjugacies?

Does a mode
otolith-vertica

suggest that the pathway Is a direct
or that it is otolith-torsion-vertical?

Does the model correctly predict changes in
disconjugacy with different vestibular and visual

Inputs?

Can the model predict adaptation? How are
adaptation and central compensation related?
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B: Does a model suggest that the pathway Is:
direct otolith-vertical or otolith-torsion-vertical?

A direct pathway is Otolith Torsion about an axis
suggested by asymmetry other than an optical

evidence that ‘ axis will result Iin vertical

damage to the movement.

otolith pathway It has been shown that

will result in torsion results from
’7‘ otolith asymmetry.

Vertical disconjugate and

vertical skew.

conjugate offset

The model incorporated the geometry of how torsion about
different axes would cause vertical movements. We will use

experimental data to determine which axis is consistent 220




D: How to model influence of central
compensation on vestibular nuclel

Central compensation

Left otolith > > Left [

oot _©
Right otolith = > Right _~

eye

Central compensation—

Left otolith > Left [

oot _©
Right otolith > Right _~

eye
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D: How to model influence ot centra
compensation on vestibular
nuclel

v
Central compensation—

Left otolith —(t ) —1 - Left
= oo ®
Right otolith = @ ~ : Right _~
eye

Context-specific adaptation
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