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How can we:
 Make sub-orbital flight more safe?
 Make sub-orbital flight more enjoyable?
 Benefit humans on Earth through 

sub-orbital flight experiments? 



Sensorimotor disruptions
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Autonomic
Motion Sickness

Orthostatic intolerance

Eye movements

Vestibulo-ocular reflex
Pitch

Roll

Eye alignment
Torsional

Vertical
Nystagmus

Saccade accuracy

Postural stability
Gait

Head-body-eye 
coordination

Motor coordination Manual joystick control

Orientation illusions Inversion illusion



Goals
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Sub-orbital 
passengers

Sub-orbital pilots

• Maximize enjoyment 
(maximize corporate revenue 
via customer referrals)

• Accomplish research 
tasks

• Safely pilot the aircraft 
during both nominal and 
emergency situations
Without interference from 
sensorimotor disruption



Overcoming sensorimotor disruptions
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Strategies

Adaptation 

Re-adaptation

Pre-adaptation

Pharmaceutical

Cognitive training

Orbital 
flight

Sub-orbital 
passengers

Sub-orbital 
pilots

***** * *

** * *****

*** ***** **

*** *** **

***** ***** ***



How quickly do we adapt?
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Recommendations 
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Operators Researchers
Use pre-adaptation in parabolic 
flight for sub-orbital passengers

Emphasize recency of experience 
for sub-orbital pilots

Develop and conduct a 
neurological examination for sub-
orbital pilots

Consider screening of passengers 
for latent and undiagnosed 
neurovestibular problems before 
sub-orbital flight

Study the effectiveness of 
parabolic flight as a tool to pre-
adapt sub-orbital passengers

Find sensorimotor symptoms 
caused by the unique sub-orbital 
flight trajectory, and ways to 
mitigate them

Study the correlation between 
sensorimotor disruption and pilot 
performance and appropriate 
countermeasures.
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Adaptation

Adaptation Seconds - Days
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Research Goals
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Sub-orbital passengers Sub-orbital pilots

• Allow passengers to fully focus on the 
flight experience without distraction of 
sensorimotor disruption

• Allow passengers to complete a set of 
personal tasks within a short period of 
time, such as movement in 0 g, flips, 
looking out the window, and interacting 
with other passengers

• Allow scientist-passengers to complete 
scientific tasks quickly and accurately

• Consider any interactions between flight 
phases specific to sub-orbital flight 

• Ensure that sensorimotor disruption 
does not interfere with the ability to 
pilot the aircraft during both nominal 
and emergency situations

• Quantify re-adaptation capability by 
study the effect of gaps in sub-
orbital exposure on functional 
neurological tests and actual flight 
performance metrics
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Adaptation of otolith-ocular responses to 
parabolic flight
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Research Fellow
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Supported by: NSBRI, NIH, 
NSERC (Canada)
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Take-home points
 In parabolic flight, certain otolith-dependent ocular 

responses improve over the course of 3 days of 
flying

 Pilots (non-parabolic) had similar responses to 
experienced parabolic fliers, suggesting that certain 
experiences can prepare one for parabolic flight

 Adaptation of otolith-dependent pitch responses transfers to otolith-dependent 
translation responses
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Naïve Subjects
(n=5)

Pilot Subjects
(n=3)

Experienced
parabolic
flyers
(n=4)

Naïve subjects had significantly different
results compared to both pilots and 
experienced subjects on day 1 (p<0.04),
but not subsequent days.

Naïve Subjects
(n=5)

Pilot Subjects
(n=3)

Experienced
parabolic
flyers
(n=4)

Naïve subjects had significantly different
results compared to both pilots and 
experienced subjects on day 1 (p<0.04),
but not subsequent days.

Naïve Subjects
(n=5)

Pilot Subjects
(n=3)

Experienced
parabolic
flyers
(n=4)

Naïve subjects had significantly different
results compared to both pilots and 
experienced subjects on day 1 (p<0.04),
but not subsequent days.
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Day 1
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Take-home points
 In parabolic flight, certain otolith-dependent 

neurological responses improve over the course of 
3 days of flying

 Pilots (non-parabolic) had similar responses to 
experienced parabolic fliers, suggesting that certain 
experiences can prepare one for parabolic flight

 Adaptation of otolith-dependent pitch responses transfers to otolith-dependent 
translation responses
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Measuring static eye position
• OCR
• Torsional alignment
• Vertical alignment

• Nikon D70 digital 
camera

• Subjects’ head 
upright/ tilted
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Measuring pitch VOR gain
 Active sine-like head 

movements 
• 0.3-1.6 Hz. Results 

based on 0.6-1.3 Hz
• 20-30º
• 40-90º/sec

 Fixating stationary point 
in the light.

 Eye movements were 
recorded using a head-
mounted video system 
(Chronos).

 Gain computed by least-
squares fitting of eye 
velocity to head velocity, 
for each cycle of motion. 
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Adventures in weightlessness:

Adaptation of otolith-dependent ocular 
responses to parabolic flight

Presented by:
Faisal Karmali
Research Fellow
JVPL / MEEI / HMS

MEEI Vestibular Seminar
March 24, 2008

Faisal Karmali, Ondrej Juhasz, 
Michelle Zwernemann, Mark Shelhamer
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The bottom line…
1. Parabolic flight consists of specific flight trajectories 

that provide periods of 0 g and 1.8 g.

2. Subjects experience sensorimotor disruption when 
initially exposed to parabolic flight, specifically in the 
pitch vestibuloocular reflex and torsional alignment.

3. Over the course of three days in parabolic flight, 
responses became appropriate in 0 g, 1 g and 1.8 g.

4. Responses in 1 g were not affected by adaptation in 
0 g and 1.8 g, suggesting context-specific adaptation 
(rather than generalized sensory rearrangement)
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Outline
 Background: Parabolic flight
 Background: Science
 Methods: Recording eye position
 Results

 Conclusions
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Background
Parabolic Flight
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Mercury astronauts training aboard a C-131B (1959)
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 Play movie: 
C:\Faisal\kc-
135\Skew\KC135_March2002_Day3_MarkFaisal.avi

 Play movie:
C:\Faisal\kc-
135\Pictures\Aug2006\walkingupsidedown.mov
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Start of 0 g
Pitch 45º nose-up 

24000 feet
(7300 m)

34000 feet (10000 m)

0 g

1.8 g 1.8 g

End of 0 g
Pitch 45º nose-down

g = gia = gravitoinertial acceleration ⇒ the occupants’
perceptions

of gravity
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 Play movie:
c:\Faisal\kc-135\Pictures\Apr2006\HPIM2161.MPG



31

It is not zero gravity!
 In parabolic flight, the plane accelerates downwards to 

match gravity, so the net force is zero.
 Even in orbit, there is still gravity (~9.37 m/s2 at 300 km)

freefall              weightlessness   microgravity    zero gravity
zero g
gravitoinertial acceleration (gia)

Preferred terms Less correct
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KC135 Photo



33

Why doesn’t everybody fall to the 
front of the plane?

Wz

WWx

Nz

Nx

Vertical (z)
axis

Longitudinal (x) 
axis

θ

degreesKarmali F, Shelhamer M. The dynamics of 
parabolic flight: flight characteristics and 
passenger percepts. Acta Astronautica (In press)
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Rotational dynamics
 The aircraft is rotating through 90º every 30 seconds

 Our paper claims these are “barely at the threshold 
of detection” of the semicircular canals!

Angular velocity 
of 3 º/s

Centripetal 
acceleration of 
0.006 g

Angular acceleration of 
2 º/s2 during transitions 
between 0 g and 1.8 g

Tangential 
acceleration of 
0.07 g

Karmali F, Shelhamer M. The dynamics of parabolic flight: flight characteristics and 
passenger percepts. Acta Astronautica (In press)
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Otolith stimulation
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Why they call it the “Vomit Comet”
 Approximately 40-60% of participants get sick on their first 

flight. The next day, most are fine. 

 A sensorimotor rearrangement has occurred. This learning 
is retained for months.

 We want to improve our understanding of these adaptive 
processes.

 Studied a range of sensorimotor responses at different 
neural levels: brainstem through to perceptual 
• based on design MVL Spacelab experiments
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Background
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Vestibular-Ocular Reflexes

 Otolith organs 
measure linear 
acceleration  and 
gravity (contains 
utricle and saccule)

 Semicircular canals 
(SCC) measure 
angular velocity

 Eye movements opposite 
of head movements

 Conjugate: eyes move 
together

 Disconjugate: difference 
between left and right eyes 

VOR gain=Eye velocity / head velocity
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 Eye misalignments occur in parabolic flight and whole-
body pitch rotation – otolith implicated (Markham, Diamond, 
Karmali)

 Ocular counterroll is reduced after space flight (Clarke 2000, 

Moore 2003, Vogel 1986).

 Pitch VOR still exists when canals deactivated (Angelaki)

 Otolith-dependent misalignments can be adapted with 
static head positioning using a visual-vestibular 
mismatch (Schor)

Eye movements and otolith organs
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Hypotheses
1. Context-specific adaptation: learning a set of 

specific responses that is calibrated for each g level.
• Example: initially inappropriate otolith-driven responses, which 

eventually become appropriate (correctly calibrated) in each g 
level.

2. Generalized adaptation: learning a set of general 
responses, each of which is simultaneously 
appropriate for multiple g levels.
• Example: gradual decrease in otolith-driven responses, reflecting 

overall lack of reliability of otolith information as g level varies.
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Methods
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Experimental design
 Three consecutive days of flying per subject
 Responses tested: 

• Pre-parabolas
• Early
• Late
• Post-parabolas

 14 subjects: 5 experienced, 6 naïve, 3 pilots
 Measurements: 

• torsional alignment 
• ocular counterroll
• vertical alignment 
• pitch VOR gain – active & passive
• Also tried linear VOR, SVV, SPV

 No medication for motion sickness
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Experimental design
Day 1 Day 2 Day 3

Pre-parabolas Pre-parabolas Pre-parabolas

Early (first 10 
parabolas)

Early (first 10 
parabolas)

Early (first 10 
parabolas)

Late (last 10 
parabolas)

Late (last 10 
parabolas)

Late (last 10 
parabolas)

Post-parabolas Post-parabolas Post-parabolas



45

Measuring pitch VOR gain
 Active sine-like head 

movements 
• 0.3-1.6 Hz. Results 

based on 0.6-1.3 Hz
• 20-30º
• 40-90º/sec

 Fixating stationary point 
in the light.

 Eye movements were 
recorded using a head-
mounted video system 
(Chronos).

 Gain computed by least-
squares fitting of eye 
velocity to head velocity, 
for each cycle of motion. 
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Measuring static eye position
• OCR
• Torsional alignment
• Vertical alignment

• Nikon D70 digital 
camera

• Subjects’ head 
upright/ tilted
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Results
 Torsional alignment instability
 Ocular counterroll (response to head tilt)
 Active pitch VOR
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Day 3
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Conclusions
 All responses showed a g-level dependence early in flight, 

which decreased with experience.

 Rate of adaptation varied between reflexes: torsional 
disconjugacy is fastest, then pitch VOR, then ocular counterroll.

• Torsional alignment instability rapidly reduced upon exposure to parabolic flight, and adaptation is 
retained between flights. The relatively rapid adaptation may be because errors in torsional alignment have 
greater functional offsets than conjugate changes in torsional eye position and changes in the pitch VOR.

• Pitch VOR gain initially dropped in 0 g and increased in 1.8 g, consistent with an otolith contribution. 
Difference between g levels decreased with experience and eventually disappeared, showing that the different 
otolith contributions in the different g levels are correctly processed after adaptation.

• Ocular counterroll is initially larger in 1.8 g and smaller in 0 g. Differences between g levels do not change 
within 3 days, although pilots show more appropriate responses in 1 g. An explanation for this slow adaptation 
may be that a well-tuned OCR gain is not critical; it is not compensatory in normal circumstances.

• None of the mechanisms show a change in response to 1 g after exposure to parabolic flight. This 
suggests that adaptation is context specific.

 Upon adaptation, torsion, torsional alignment and pitch 
VOR are correctly calibrated in each g level, supporting the 
hypothesis of a context-specific adaptation of each 
response.
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 Compare t-test significance of day 
1 vs day 3 naïve

 Change bar graphs to std err 
instead of std

 Review adapt. Spaceflight
 See MJS PPT
 Inc cool videos
 ~45 slides
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 Otolith ambiguity – same sensor transduces tilt and translation of head
 Transduced signal during tilt differs dramatically in weightlessness / high g environments, and changes in 

otolith-dependent reflexes occur
 Designing a countermeasure to speed adaptation or pre-adapt reflexes could reduce adverse problems during 

space missions, return to Earth or visiting other celestial bodies
 Characterizing the adaptive characteristics of otolith-dependent reflexes and the relationship between 

adaptation of translation and tilt important for the design of countermeasures
 To learn more about these pathways, we studied the vestibulo-ocular reflex
 Specifically interested in the pitch VOR, because this is the most common type of head movement in which 

the otolith organs transduce a changing direction of gravity
 During pitch head movements, three (or more) sensory signals available: otolith-transduced head position; 

SCC-transduced head velocity; eye position
 Goals: 

• to adapt VOR and show that adaptation is otolith-organ dependent
• Show that adaptation of VOR transfers from tilt to translation
• Characterize how the brain processes otolith organ information using the characteristics of the transfer of 

adaptation
 With pitch head movements, during translation and tilt, the compensatory eye movement is vertical. Makes it 

impossible to distinguish adaptation that is dependent on eye- vs. head- motion-dependent adaptation. Using 
vertical eye misalignment allows dependency on velocity and position to be better discriminated.

 Methods
• How to adapt VOR / eye misalignment?

 Results / Discussion
 Conclusions

• The evidence that Cartesian components of the g vector are used as adaptive cues is important because it 
suggests that countermeasures on Earth can adapt some responses without changing the magnitude of the g 
vector. That means adaptation of otolith-dependent reflexes could occur in a 1 g field, which allows longer, 
cheaper adaptation sessions than jet or parabolic flight.
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Transfer of oculomotor adaptation between 
otolith-dependent tilt and translation reflexes

Faisal Karmali
Post-doctoral fellow
JVPL / MEEI / HMS

MVL, MIT
November 14, 2007
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The bottom line…
1. A vertical misalignment between the eyes can be 

adapted that is dependent on otolith-transduced 
head tilt during pitch head rotation using a visual-
vestibular mismatch

2. Modification of the response to otolith-transduced 
head tilt also modifies the response to vertical 
translation

3. Modeling shows that for adaptation, the brain 
processes the g vector as Cartesian components, 
rather than in polar coordinates
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Background
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Vestibular-Ocular Reflexes

 Otolith organs 
measure linear 
acceleration  and 
gravity (contains 
utricle and saccule)

 Semicircular canals 
(SCC) measure 
angular velocity

 Eye movements opposite 
of head movements

 Conjugate: eyes move 
together

 Disconjugate: difference 
between left and right eyes 

VOR gain=Eye velocity / head velocity
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 Eye misalignments occur in parabolic flight and whole-body 
pitch rotation – otolith implicated (Markham, Diamond, Karmali)

 Amount of misalignment decreases with experience in parabolic 
flight – shows adaptation of pathway occurs

 Pitch VOR gain changes with g level – otolith implicated

 Pitch VOR still exists when canals deactivated (Angelaki)

 Otolith-dependent misalignments can be adapted with static 
head positioning using a visual-vestibular mismatch (Schor)

Eye movements and otolith organs
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Previous studies of transfer 
between translation and rotation
 Yaw adaptation affects interaural translation 

response (Koizuka et al.)

 Interaural adaptation affects yaw response (Koizuka et al.)

 Yaw adaptation affects response to constant-velocity 
pitch rotation (Petropoulos, Wall III, Oman)

 These studies suggest adaptation of a pathway 
common to the SCC and otolith reflexes

 In contrast, we find adaptation specific to the otolith 
pathway
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Experimental 
Design
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Aims
1. Show that a misalignment between the eyes can be 

adapted that it dependent on otolith-transduced tilt 
during dynamic pitch rotation using a visual-
vestibular mismatch

2. Determine if modification of the response to otolith-
transduced head tilt also modifies the response to 
vertical translation

3. Develop a model to understand how the brain 
processes otolith information during adaptation of 
otolith-ocular responses
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Motion profiles
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Motion profile
Sensory 
receptor

Active pitch rotation Vertical translation

Otolith 
organs

Changing orientation 
relative to gravity

Linear acceleration

Semicircular 
canals (SCC)

Yes No

Orbital eye 
position

Yes Yes

Collic (neck) 
reflex

Yes No

Sensory environment during 
motion profiles
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Motion profile
Sensory 
receptor

Passive pitch rotation 
(full body)

Active pitch rotation Vertical translation

Otolith organs Changing orientation 
relative to gravity

Changing 
orientation relative 
to gravity

Linear acceleration

Semicircular 
canals (SCC)

Only before vestibular 
time constant exceeded

Yes No

Orbital eye 
position

Yes, due to 
counterpitch response

Yes Yes

Collic (neck) 
reflex

No Yes No

Cognitive intent No Yes No
Cognitive 
anticipation

Some situations Yes Yes

Sensory environment during 
motion profiles
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Pre-test 
Pitch
(monocular 
targets)

Adapt 
Pitch
(20 min)

Post-test 
Pitch 
(monocular 
targets)

Pre-test 
Vertical 
(monocular 
target)

Pre-test 
Pitch 
(monocular 
target)

Adapt 
Pitch
(15 min)

Post-test 
Pitch 
(monocular 
target)

Adapt 
Pitch
(5 min)

Post-test 
vertical
(monocular 
target)

The pitch plasticity study

The vertical translate study

Study procedures
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Scleral contact lens coils
 Coil frame in a cube that consists of 

three orthogonal magnetic fields 
oscillating at different frequencies

 Coil acts as antenna that picks up a linear combination 
of the three that depends on its orientation

 Accuracy <0.01º 
 Wire is fragile, and often breaks
 Small coil frame used on vertical sled – data for pitch 

not usable during the vertical translate study
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Generalized Estimating Equations

 t-test is often used to compare time-series data in two 
different conditions

 t-test assumes independence between measures, which is 
not usually the case with rapidly-changing, sampled data such 
as eye position

 GEE is a more correct and stringent technique that takes into 
account the correlation of the data with itself

 t-test will sometimes indicate significance when GEE does not 

Zeger, S. L. & Liang, K. Y. (1986). Longitudinal data analysis 
for discrete and continuous outcomes. Biometrics 42, 121-130.
Karmali, Ramat, Shelhamer (2006). Journal of Vestibular 
Research 16:117-125.
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 Goal: understand the nature of central compensation
 Study the ability of the brain to learn an otolith organ-dependent 

misalignment during dynamic head movements
 Subject performs active pitch rotation
 Induced a vertical misalignment of the eye by presenting a 

visual disparity between the left and right eyes
 Subject wears red-blue glasses
 Real-time head position is fed to laptop which projects a field of 

dots onto a screen
 The dots have a vertical disparity between left and right eyes
 Regular & eye-head dissociation paradigms

Pitch plasticity study
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Pitch plasticity study
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Position-dependent misalignment 
increased in most experiments

* eye-head dissociation paradigm
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Example: misalignment dependent 
on head position
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Example: misalignment partly 
dependent on eye position

-50 0 50
-4

-3

-2

-1

0

1

2

3

4

Misalignment vs. head position for
three target positions (subject H)

V
er

tic
al

 m
is

al
ig

nm
en

t (
de

gr
ee

s;
 ri

gh
t-l

ef
t; 

+ 
up

)

Head position (degrees; + up)
-50 0 50

-4

-3

-2

-1

0

1

2

3

4

Misalignment vs. eye position for
three target positions (subject H)

V
er

tic
al

 m
is

al
ig

nm
en

t (
de

gr
ee

s;
 ri

gh
t-l

ef
t; 

+ 
up

)

Eye position (degrees; + down)



87

Is adaptation dependent on eye or head?
 Compare mean sum-of-squares of regression for 

misalignment on eye, and misalignment on head

H H* J J* L M* B B* Y
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Pitch plasticity study – summary
 Position-dependent misalignments were adapted in 

all subjects

 Head position was implicated as the adaptation cue 
in most subjects

 Otolith organs or SCC could be driving adaptation

 In the next study, we performed the same adaptation 
and also tested in vertical translation, which 
stimulated the otolith organs but not the SCC
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Vertical translate study
Pre-test 
Vertical 
(monocular 
target)

Pre-test 
Pitch 
(monocular 
target)

Adapt 
Pitch
(15 min)

Post-test 
Pitch 
(monocular 
target)

Adapt 
Pitch
(5 min)

Post-test 
vertical
(monocular 
target)
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Response to vertical translation
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Sensitivity to vertical translation increases 
after adaptation of pitch response

Increase in 
sensitivity 
increases 
for 4 of 5 
subjects

Change 
statistically  
significant 
in all 
subjects 
(GEE)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity 0.083°/g (subject H)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity change 0.084°/g

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity 0.166°/g (subject H)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity 0.190°/g (subject J)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity change 0.321°/g

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity 0.514°/g (subject J)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity 0.289°/g (subject M)

Ve
rti

ca
l m

is
al

ig
nm

en
t (

de
gr

ee
s;

 ri
gh

t-l
ef

t; 
+ 

up
)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity change 0.086°/g

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity 0.375°/g (subject M)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity -0.053°/g (subject B)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity change -0.078°/g

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity -0.133°/g (subject B)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity -0.217°/g (subject W)

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity change 0.249°/g

-1 -0.5 0 0.5 1
-1

0

1
Sensitivity 0.053°/g (subject W)

Vertical acceleration (g; 1 g=9.81 m/s2)

Pre-adaptation Post-adaptation Difference



93

Sensitivity to vertical translation increases 
after adaptation of pitch response
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Vertical translate study – summary

 Head-position-dependent adaptation of misalignment 
during pitch rotation was otolith organ dependent

 Adaptation transferred from otolith-dependent tilt 
response to otolith-dependent translation response

 Misalignment is a tool to study the otolith-ocular 
pathway: it allows questions to be asked about 
tilt/translation which are difficult to answer using 
conjugate eye movements
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What model of otolith organ information 
processing explains the transfer of 

adaptation from pitch to vertical translation?

pitchangle

g vector

g vector

VT

NO

Polar 
coordinates

Cartesian 
components

VT

g vector

NO
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Modeling – summary

 Otolith organ information is processed in Cartesian 
components

 Adaptation affects all g vector components equally



98

Conclusions
 Otolith-dependent eye misalignments can be 

adaptively created during dynamic pitch rotation 
using a visual-vestibular mismatch

 Adaptation transfers from otolith-transduced tilt 
responses to translation responses

 Components of the g vector are used to determine 
the ocular response; adaptation affects all 
components equally 
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Application to countermeasures
 Adapting otolith reflexes during weightlessness is 

expensive and of a short duration

 Countermeasures can focus on adapting responses 
of individual Cartesian components

 When appropriate g vector cannot be provided using 
translation, it can be provided using tilt
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Future work
 Test for transfer when adapted Cartesian 

components are the same

 The relationship between head position and 
misalignment in the adaptive paradigm was linear –
a parabolic relationship would separate otolith and 
SCC contributions

 Transfer of adaptation from vertical translation to 
pitch rotation
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Future work

Head orientation during adaptation  during first test  during second test 
rotation axis g vector 

components 
stimulated 

 rotation axis g vector 
components 
stimulated 

 rotation axis g vector 
components 
stimulated 

Pitch upright VT & NO   Roll onside VT (&IA)  Yaw onside NO (&IA) 
Roll upright VT & IA  Pitch supine VT (&NO)  Yaw supine IA (&NO) 
Yaw supine NO & IA  Pitch upright NO (&VT)  Roll upright IA (&VT) 
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Background
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The Vestibular System
 “Sixth sense” that keeps us balanced
 Stops us from falling when we stumble
 Helps move eyes (“gaze stabilization”)

Patients with Vestibular 
Disease or stroke

Astronauts affected by 
weightlessness

Vertigo
Difficulty walking
Eyes move incorrectly

Vertigo and motion sickness
Difficulty walking upon return
Eyes move incorrectly

http://accuweather.ap.org/cgi-bin/apdownload.pl?6754643+Intl_Photos+accuweather.ap.org:80+++�
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Vestibular-Ocular Reflexes

 Otolith organs 
measure linear 
acceleration  and 
gravity (contains 
utricle and saccule)

 Semicircular canals 
(SCC) measure 
angular velocity

 Eye movements opposite 
of head movements

 Torsion is rotation of eye 
about the line of sight

 Conjugate: eyes move 
together

 Disconjugate: difference 
between left and right eyes 
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The otolith organ: a mass on a lever

The lever is a 
hair cell that 
measures 
deflection

The mass is 
called the 
otoconia and 
deflects when 
acted upon by 
external forces

g vector: the sum of linear acceleration and gravity 
1 g of downward gravity is indistinguishable from 
1 g of upward acceleration of the head 

Temporal 
bone of the 

head
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Vertical misalignments 
during parabolic flight

Karmali, Ramat, Shelhamer, Journal of Vestibular Research. 2006 Dec;16:117-125
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Otolith Asymmetry Hypothesis

Left 
Otolith

Right 
Otolith

Left 
Eye

Right 
Eye

g vector

Central 
Compensation
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 “Over 50% of utricular-activated, second-order 
vestibular neurons received commissural 
inhibition from the contralateral utricular nerve.”

 “Almost all the saccular-activated, second-order 
vestibular neurons exhibit no response to 
stimulation of the contralateral saccular nerve.”

 Uchino, 2004
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Implications of otolith asymmetry
1. It can predict space sickness: a better understanding 

of the mechanisms may help to improve screening 
and produce simpler screening tests

2. It may reduce task performance by creating a 
sensory conflict or misaligning the eyes

3. Understanding how it adapts may be useful in 
training including partial adaptation before flight
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Experimental 
Design
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Motion profiles
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Motion profile
Sensory 
receptor

Passive pitch rotation 
(full body)

Active pitch rotation Vertical translation

Otolith organs Changing orientation 
relative to gravity

Changing 
orientation relative 
to gravity

Linear acceleration

Semicircular 
canals (SCC)

Only before vestibular 
time constant exceeded

Yes No

Orbital eye 
position

Yes, due to 
counterpitch response

Yes Yes

Collic (neck) 
reflex

No Yes No

Sensory environment during 
motion profiles
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Motion profile
Sensory 
receptor

Passive pitch rotation 
(full body)

Active pitch rotation Vertical translation

Otolith organs Changing orientation 
relative to gravity

Changing 
orientation relative 
to gravity

Linear acceleration

Semicircular 
canals (SCC)

Only before vestibular 
time constant exceeded

Yes No

Orbital eye 
position

Yes, due to 
counterpitch response

Yes Yes

Collic (neck) 
reflex

No Yes No

Cognitive intent No Yes No
Cognitive 
anticipation

Some situations Yes Yes

Sensory environment during 
motion profiles
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Slow test 
Pitch 

Medium test
Pitch

Fast test 
Pitch 

Pre-test 
Pitch 
(monocular 
targets)

Adapt 
Pitch 
(20 min)

Post-test 
Pitch 
(monocular 
targets)

Pre-test 
Vertical 
(monocular 
target)

Pre-test 
Pitch 
(monocular 
target)

Adapt 
Pitch 
(15 min)

Post-test 
Pitch 
(monocular 
target)

Adapt 
Pitch 
(5 min)

Post-test 
vertical 
(monocular 
target)

The pitch innate study

The pitch plasticity study

The vertical translate study

Study procedures
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Scleral contact lens coils
 Coil frame in a cube that consists of 

three orthogonal magnetic fields 
oscillating at different frequencies

 Coil acts as antenna that picks up a linear combination 
of the three that depends on its orientation

 Accuracy <0.01º 
 Wire is fragile, and often breaks
 Small coil frame used on vertical sled – data for pitch 

not usable during the vertical translate study
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Generalized Estimating Equations

 t-test is often used to compare time-series data in two 
different conditions

 t-test assumes independence between measures, which is 
not usually the case with rapidly-changing, sampled data such 
as eye position

 GEE is a more correct and stringent technique that takes into 
account the correlation of the data with itself

 t-test will sometimes indicate significance when GEE does not 

Zeger, S. L. & Liang, K. Y. (1986). Longitudinal data analysis 
for discrete and continuous outcomes. Biometrics 42, 121-130.
Karmali, Ramat, Shelhamer, Journal of Vestibular Research. 
2006 Dec;16:117-125
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Pitch innate study

 coils
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Static alignment
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Medium rotation – 60º/sec
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Backward movement
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Summary of vertical eye misalignments for static orientation and slow, medium and fast pitch rotations

 

 

Static orientation: misalignment differential
Slow: peak vertical misalignment (forward)
Slow: peak misalignment (backward)
Medium: misalignment differential (forward)
Medium: misalignment differential (backward)
Fast: significance of orientation dependence - peak misalignment (forward)
Fast: significance of orientation dependence - peak misalignment (backward)
Fast: significance of orientation dependence - peak misalignment velocity (forward)
Fast: significance of orientation dependence - peak misalignment velocity (backward)
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Pitch innate study - summary
Misalignment 
determined 
by

Average 
misalignment 
difference 
between 
upright & 
upside-down

Number of 
significant 
subjects 
(p<0.01; 
GEE)

Static Orientation 0.99º 3/5

Slow Orientation 1.74º 3/3

Medium Orientation 0.39º 3/4

Fast Angular 
velocity 
(orientation 
significant in 
1/5 subjects)

1.86º (peak 
misalignment) Velocity-dependent 

misalignments implicate 
SCC pathway

Orientation-dependent 
misalignments implicate 
asymmetry in otolith 
pathway

 Otolith asymmetry acts in both:
• pitch rotation - g vector direction changing
• vertical acceleration - g vector magnitude changing
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 Goal: understand the nature of central compensation
 Study the ability of the brain to learn an otolith organ-dependent 

misalignment during dynamic head movements
 Subject performs active pitch rotation
 Induced a vertical misalignment of the eye by presenting a 

visual disparity between the left and right eyes
 Subject wears red-blue glasses
 Real-time head position is fed to laptop which projects a field of 

dots onto a screen
 The dots have a vertical disparity between left and right eyes
 Regular & eye-head dissociation paradigms

Pitch plasticity study



132

Pitch plasticity study
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Position-dependent misalignment 
increased in most experiments

* eye-head dissociation paradigm
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Example: misalignment dependent 
on head position
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Example: misalignment partly 
dependent on eye position
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Is adaptation dependent on eye or head?
 Compare mean sum-of-squares of regression from 

misalignment on eye and misalignment on head
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Pitch plasticity study – summary
 Position-dependent misalignments were adapted in 

all subjects
 Head position was implicated as the adaptation cue 

in most subjects
 Otolith organs or SCC could be driving adaptation
 In the next study, we performed this experiment and 

tested in vertical translation, which stimulated the 
otolith organs but not the SCC



141

Vertical translate study

Pre-test 
Vertical 
(monocular 
target)

Pre-test 
Pitch 
(monocular 
target)

Adapt 
Pitch 
(15 min)

Post-test 
Pitch 
(monocular 
target)

Adapt 
Pitch 
(5 min)

Post-test 
vertical 
(monocular 
target)

The vertical translate study
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Response to vertical translation
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Sensitivity to vertical translation increases 
after adaptation of pitch response

Increase in 
sensitivity 
increases 
for 4 of 5 
subjects

Change 
statistically  
significant 
in all 
subjects 
(GEE)
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Sensitivity to vertical translation increases 
after adaptation of pitch response
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Vertical translate study – summary

 Head-position-dependent adaptation of misalignment 
during pitch rotation was otolith organ dependent

 Adaptation transferred from otolith-dependent tilt 
response to otolith-dependent translation response

 Misalignment is a tool to study the otolith-ocular 
pathway: it allows questions to be asked about 
tilt/translation which are difficult to answer using 
conjugate eye movements
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Modeling

 What is the nature of the central compensation?
 What model of otolith organ information processing 

explains the transfer of adaptation from pitch rotation 
to vertical translation?
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Model overview

Right 
otolith 
organ

Left 
otolith 
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Sensorimotor 
processing 
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Additive
Multiplicative
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Additive vs.
Multiplicative
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What model of otolith organ information 
processing explains the transfer of 

adaptation from pitch to vertical translation?

pitchangle

g vector

g vector

VT

NO

g vector 
model

g vector components 
model

VT

g vector

NO



151

 Eye torsion with head tilted during change g level
 Torsion changes even though g vector direction does not 

change
 Suggests the g vector component determines torsion
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Modeling – summary

 Context-specific adaptation is a likely candidate for 
central compensation

 Otolith organ information is processed in g vector 
components

 Adaptation affects all g vector components equally
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Conclusions
 Vertical eye misalignments that are dependent on 

the otolith organs occur during pitch rotation
 Vertical eye misalignments that are dependent on 

the SCC occur during fast pitch rotation
 Otolith-dependent misalignments can be adaptively 

created during dynamic pitch rotation using a 
visual-vestibular mismatch

 Context-specific adaptation is a likely candidate for 
central compensation

 Components of the g vector are used to determine 
the ocular response; adaptation affects all 
components equally 
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Implications
 Understanding central compensation in the otolith-

ocular pathway can improve the design of adaptation 
regiments for both astronauts and patients

 Understanding how otolith information is used by the 
brain can guide the selection of motion profiles used 
for adaptation paradigms

 The ability to measure innate misalignments using 
pitch rotation may help in assessing risks during 
spaceflight
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Future work
 Model a SCC asymmetry by having canal planes that 

are slightly different in the left and right ear
 The relationship between head position and 

misalignment in the adaptive paradigm was linear –
a parabolic relationship would help to separate 
otolith and SCC contributions

 In fast rotation, SCC-dependent misalignments were 
implicated – further investigation is required

 Transfer of adaptation from vertical translation to 
pitch rotation

 Transfer of adaptation between otolith-dependent tilt 
and translation with conjugate eye movements
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Future work

Head orientation during adaptation  during first test  during second test 
rotation axis g vector 

components 
stimulated 

 rotation axis g vector 
components 
stimulated 

 rotation axis g vector 
components 
stimulated 

Pitch upright VT & NO   Roll onside VT (&IA)  Yaw onside NO (&IA) 
Roll upright VT & IA  Pitch supine VT (&NO)  Yaw supine IA (&NO) 
Yaw supine NO & IA  Pitch upright NO (&VT)  Roll upright IA (&VT) 
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Control of motion and posture

(AP Photo/Misha Japaridze) 

http://accuweather.ap.org/cgi-bin/apdownload.pl?6754643+Intl_Photos+accuweather.ap.org:80+++�
http://accuweather.ap.org/cgi-bin/apdownload.pl?3135268+Intl_Photos+accuweather.ap.org:80+++�
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The Vestibular System
 “Sixth sense” that keeps us balanced
 Stops us from falling when we stumble
 Helps move eyes (“gaze stabilization”)

Patients with Vestibular 
Disease or stroke

Astronauts affected by microgravity

Vertigo
Difficulty walking
Eyes move incorrectly

Vertigo and motion sickness
Difficulty walking upon return
Eyes move incorrectly

 Studying astronauts will help us cure people on the ground
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Background & Significance
 Astronauts and others exposed to unusual 

acceleration environments get sick
 Torsional misalignment found in parabolic flight and 

may be due to otolith asymmetry
 Motion sickness correlated with torsional misalignment
 Motion sickness correlated with an otolith mass 

asymmetry in fish
 In pitch head movements, the otoliths detect a 

changing g vector and contribute to eye movements
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Vestibular-Ocular Reflexes

 Otoliths measure 
linear acceleration  
and gravity (contains 
utricle and saccule)

 Semicircular canals 
(SCC) measure 
angular velocity

 Eye movements opposite 
of head movements

 Torsion is rotation of eye 
about the line of sight

 Conjugate: eyes move 
together

 Disconjugate: difference 
between left and right eyes 

Eye misalignment between L and R eye position
Visual disparity between what is seen by L and R eye
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The otoliths: a mass on a lever

The lever is a 
hair cell that 
measures 
deflection

The mass is 
called the 
otoconia and 
deflects when 
acted upon by 
external forces

Gravito-inertial acceleration (g level): the sum of linear 
acceleration and gravity. 1 g of downward gravity is

indistinguishable from  1 g of upward acceleration of the head 

Temporal 
bone of the 

head
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Otolith Asymmetry Hypothesis

Left 
Otolith

Right 
Otolith

Left 
Eye

Right 
Eye

g level (GIA)

Central 
Compensation
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Implications of otolith asymmetry
1. It can predict space sickness: a better understanding 

of the mechanisms may help to improve screening 
and produce simpler screening tests

2. It may reduce performance by misaligning the eyes
3. Understanding how it adapts may be useful in 

training including partial adaptation before flight
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Hypotheses
 An otolith asymmetry will manifest as ocular 

misalignments when the magnitude and orientation 
of the g vector is unusual.

 An otolith asymmetry will imbalance the otolith 
contribution to the pitch VOR, resulting in ocular 
misalignment

 A reduction is misalignment will occur with 
experience in an environment, and this adaptation 
occurs within the central compensation mechanism
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Experimental Methods: 
Parabolic Flight
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Parabolic Flight 
Trajectory
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Experimental Methods: Video 
eye movement recording
 Binocular (both eyes)
 50 Hz
 Accelerometers and 

rate sensors
 Subjects in darkness
 Software finds pupil in 

image and computes 
gaze direction
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Experimental Methods: Summary
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Yaw rotation: 0 º/s
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Perceptual Observation
 Operator: “Did you notice the light diverging at all?”
 Subject: “The little light… diverged, and I couldn’t get it to 

come back together again when I was looking off to the 
right. The two divergent red lights were not always in the 
same relation to each other.”

 Operator: “Did they separate completely horizontally, 
completely vertically or something in between?”

 Subject: “…It was mostly vertically, but the bottom one 
would move across, moving horizontally more than the top 
one”

 Subject: “I tried to focus them back on top of each other. They 
were always vertically separated but I tried to get them 
horizontally aligned.”

 Subject #2: “For right targets, one moved up and to the left. 
For left targets one moved down and to the right.”

 Subject #2: “At the end I didn’t notice it as much at all.”
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Vertical Results: Video
0      1       2

Gravity
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Vertical eye position 
trace
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Algorithm
 Automatically select a smaller rectangular landmark
 Find in each video frame using cross-correlation
 “Temporal feature-selection”

Goal Develop a method to detect 
vertical translation of the 
camera relative to the eye 
using features in the video 
image
… using an automatically 
selected landmark
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Co-correlation  Metric to estimate motion of a 
landmark relative to other 
landmarks
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3: How is disconjugacy influenced by target 
distance and position?

Target Near  (12 cm) Far (30 cm) Overall

Right +1.54°±1.13° (n=18) +0.99°±1.04° (n=4) +1.44°±1.16° (n=22)

Left +0.99°±0.63° (n=9) +0.70°±0.65° (n=3) +0.92°±0.62° (n=12)

Center +0.90°±0.67° (n=9) +1.15°±0.00° (n=1) +0.93°±0.63° (n=10)

Up +1.20°±0.91° (n=4) - (n=0) +1.20°±0.91° (n=4)

Overall +1.24°±0.93° (n=40) +0.90°±0.79° (n=8) +1.18°±0.93°
(n 48)

 The magnitude of g-dependent vertical skew does 
not depend on the horizontal or vertical displacement 
of the fixation target (ANOVA; p>0.4)

 Vertical skew is significantly smaller for far targets 
compared to near targets (t-test; p<0.1)

Aim 1: Parabolic flight vertical
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Adaptation
 Vs. flight experience
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Adaptation (Torsional 
disconjugacy) 
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Summary Aim 1: Determine how binocular 
alignment is disrupted during linear acceleration

 The results provide evidence for vertical skew 
related to g level, possibly as a consequence of 
otolith asymmetry

 The skew is does not varies with target position 
(comitant) but reduces with target distance

 Vertical skew and torsional disconjugacy is 
reduced with exposure to parabolic flight

 The relationship between vertical and torsional 
disconjugacies will be studied



203

Methods
 Rotate full body 

in the pitch 
direction

 Slow, medium, 
fast paradigms

 Eye movements 
recorded with 
scleral search 
coils

Aim 2: Pitch Rotations
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Medium pitch rotation
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Target flashes 
every 7 seconds 
resetting skew

Skew changes 
by 0.94º.

Will attempt to 
reduce noise by 
finding and 
removing fast 
phases
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Summary of Aim 2: Determine how binocular 
alignment is disrupted during dynamic tilt (pitch 
VOR)

 Vertical skew occur in pitching with different motion 
profiles

 Torsional disconjugacy occurs in slow pitching; 
will look in medium, fast

 Will look for correlation between vertical/torsional
 Will perform regression of all experimental data to 

determine dependency on motion variables 
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 Can an anatomically-based otolith asymmetry model 
explain the vertical and torsional disconjugacies?

 Does a model suggest that the pathway is a direct 
otolith-vertical or that it is otolith-torsion-vertical?

 Does the model correctly predict changes in 
disconjugacy with different vestibular and visual 
inputs?

 Can the model predict adaptation? How are 
adaptation and central compensation related?

Aim 4: Model how otolith asymmetry could 
contribute to disruption of binocular alignment 
under these different motion scenarios
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B: Does a model suggest that the pathway is:
direct otolith-vertical or otolith-torsion-vertical?

A direct pathway is 
suggested by 
evidence that 
damage to the 
otolith pathway 
will result in 
vertical skew.

Otolith 
asymmetry

Torsion

Vertical disconjugate and 
conjugate offset

?

Torsion about an axis 
other than an optical 
axis will result in vertical 
movement. 

It has been shown that 
torsion results from 
otolith asymmetry. 

The model incorporated the geometry of how torsion about 
different axes would cause vertical movements. We will use 
experimental data to determine which axis is consistent
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D: How to model influence of central 
compensation on vestibular nuclei

Central compensation

+

Vestibular nuclei

Left otolith

Right otolith
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D: How to model influence of central 
compensation on vestibular 
nuclei

Central compensation
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 Context-specific adaptation
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