# Balloon Borne Observations of the Cosmic Microwave Background Radiation

Shaul Hanany University of Minnesota





Observational Cosmology - University of Minnesota







- COBE had ~10 degree angular resolution
- Higher angular resolution encodes
  - geometry of space
  - total matter and energy content
  - constituents of matter and energy
  - evolution of the universe
  - ...more

### Balloons

- Atmosphere = source of emission
- Higher resolution = larger aperture
- Faster turnaround





Hanany et al. 2000



MAXIMA





- Collaboration: **UCB/U. Minn.** + CalTech,U. Rome, IROE Florence, QMW London
- North American balloon-borne
- Resolution: 10'
- Bolometers cooled to 0.1 K
- Funding from NASA/NSF (1993 ~2001)



### **Bolometer**



# MAXIMA Results

- 3 hour flight from Palestine in 1998.
- Highest angular resolution image of the CMB
- Statistical properties of the CMB over broadest range of angular scales
- To this date: **Highest Instantaneous Sensitivity CMB Instrument**
- Best determination of the total energy density of the universe (contemporaneous with boomerang)
- Together with data from supernovae: conclusive evidence for both dark matter and dark energy



Science : "One of the ten most important scientific breakthroughs for the year 2000"





# The Next Frontier - Polarization

- CMB is polarized
- Convert 'degree of polarization' and 'angle of polarization' to: 'E mode' and 'B mode'
- E mode originates at the epoch of decoupling



WMAP 2006

- B mode is signature of the inflationary epoch (t=10<sup>-35</sup> sec)
- Detection of B mode would give un-ambiguous evidence for inflation
- Detection of B mode would fix the energy scale of inflation
- B mode polarization is the only known way to probe inflation directly



# **B-mode Polarization Challenges**

- Signal is less than 100 nanoK
- Energy scale of inflation is unknown to ~10 orders of magnitude
- Signal could be substantially less than 100 nanoK

 Signal is expected to be dominated by foregrounds





# EBEX – E and B EXperiment

Shaul Hanany University of Minnesota

#### **Brown**

Andrei Korotkov Shawn Manchester Greg Tucker

#### Cardiff

Peter Ade

Columbia University Will Grainger Amber Miller Britt Reichborn-Kjennerud

APC, Paris Radek Stompor

Harvard Matias Zaldarriaga IAS Nicolas Ponthieu

SISSA/ISAS Carlo Baccigalupi

#### McGill

Matt Dobbs

Oxford Brad Johnson

UC Berkeley, LBNL Sherry Cho Adrian Lee Helmuth Spieler

UC San Diego Tom Renbarger

#### U. of Minnesota

Sean Bryan Clayton Hogen-Chin Hannes Hubmayr Terry Jones Jeff Klein Tomotake Matsumura Michael Milligan Bob Wellington Kyle Zilic

U. of Toronto Enzo Pascale

Weizmann Institute of Science Lorne Levinson Ilan Sagiv



## EBEX Science Goals

- Detect or improve current upper bound on B-mode by x10
- Characterize polarized foregrounds
- Detect B-mode lensing signal
- Provide high s/n measurement of E-mode polarization
- Test new technologies that are candidates for a future CMB polarization satellite





# EBEX in a Nutshell

### Sensitivity

- Long duration balloon borne
- Up to 1476 bolometric TES

### Foregrounds

- Frequency range with only one foreground
- 3 Frequency bands: 150, 250, 420 GHz

### Systematic Error Rejection

• Polarimetry with half wave plate

### Schedule

- Funded by NASA since March 05
- NA test flight 2008



frequency [GHz]



• Cable Suspension gondola (modelled after BLAST)

- 1.5 x 1.8 m primary
- 1 m secondary
- 1500 Lb cryostat
- Detectors maintained at 0.3 K











EBEX Focal Plane



- Total of 1476 detectors
- Maintained at 0.27 K
- 3 frequency bands/focal plane
- G=15 pWatt/K
- NEP = 1.4e-17 (150 GHz)
- NEQ = 156 µK\*rt(sec) (150 GHz)

• 
$$\tau = 3$$
 msec,





- Weight: 5000 Lb
- Moment of Inertia: 1920 Kg m<sup>2</sup>
- Power: 1100 Watt
- Cryogen hold time: 24 days
- Data rate: 10 MBits/sec
- Data storage: 3 TBytes





- Balloon payloads have provided an extremely cost effective way to probe the cosmic microwave background radiation
- They have a critical role in being pathfinders for future NASA missions
- They have a critical role in training the next generation of our technology leaders
- They have already produced cutting edge science (MAXIMA, Boomerang, MAXIPOL, Archeops) and they will continue to do so into the future





- 14 days
- 350 deg<sup>2</sup>
- ~20,000 8' pixels
- Low dust contrast (4µK rms)
- 796, 398, 282 TES detectors at 150, 250 ,420 GHz
- 0.7 μK/8' pixel Q/U; 0.5 μK/8' pixel - T







### 6 degree diameter, diffraction limited FOV; Strehl > 0.9



