Solar observing balloons

Now: Large, larger, largest! Future: Small? Smaller? Smallest?

Why go to near-space?

- * High resolution (no seeing)
- * Park sky (coronagraphs; bolometers)
- * Observe UV (solar atmosphere)
- * Observe IR (fly above the H₂O)

Where do atmospheric effects happen?

How low can you go (in wavelength)?

Penetration altitude vs. wavelength

- * Extreme altitude balloons can now float high enough to observe solar FUV - true stellar emission lines.
- * Opens field formerly reachable only with spacecraft!
- * Longest transition-ma region line: 1892 A; T_{atm}~ 10% at 50km

Longest solar emission lines

Importance of emission line imaging

Ground-based absorption line (Ca K)

Space-based emission line (Fe IX)

Recent solar gondolas

- Flare Genesis high resolution magnetograph (visible light)
 - * 2000 kg
 - * 80 cm mirror
 - * 0.2" nominal resolution

Recent solar gondolas

* Solar Bolometric Imager - fullspectrum imager

Recent solar gondolas

- * SunRISE 1m vis/UV observatory
 - * Very high spatial resolution
 (0.1")
 - * Multinational effort & technology devel.
 - * Spacecraft-style ops
 - * 5 scientific meetings to date
 - * ~75 scientists on team
 - * First flight ~Q3 2007

SCRIBE: A 14" observatory in the mesosphere

- * SCRIBE nominal mass: 770 lbs (1200lbs TSW w/CSBF flight)
- * "Big-60" vehicle: float @ 50km
- * 14" telescope (nadir-pointed)
- * Solar limb sensor & tip/tilt mirror
- * Instrument is on an optical table
- * Endurance: 14-18 hours

SCRIBE front view

SCRIBE rear view

SCRIBE first instruments:

 Stereoscopic Doppler imager (Mg II 'k' line at 2795 Å)

* FUV test imager (C l 1908 Å; Si III 1892 Å)

SCRIBE science

- * Observe waves in the solar chromosphere
- * Search for FUV photons from the Sun in the lower mesosphere
- * Enable custom, pointed solar remote sensing experiments

SCRIBE science

- * Observe waves in the solar chromosphere
- * Search for FUV photons from the Sun in the lower mesosphere
- * Enable custom, pointed solar remote sensing experiments

SCRIBE process lessons

- * It appears possible to build a general purpose, pointed, high-resolution balloon observatory within the constraints of NASA's SR&T LCAS program (~ \$2M max).
- * The solar physics community tends not to believe this, in part because recent trends have been toward large, complex solar payloads.
- * "Low cost" = "affordable within your particular budget".

* You always want one more scale height of altitude.

The Coronagraph Problem: balloon solution?

- * Viewing the solar corona requires a medium resolution camera (size is 7°-10° in the sky) with deep stray light rejection (10⁻⁸-10⁻¹¹).
- * That's hard within the atmosphere (0.01% detection problem).
- * Spaceborne solutions are v. expensive and therefore conservative
- * Eclipses are rare and brief.
- * High altitude balloons are a nice solution.
- * SCRIBE-like platform (perhaps SCRIBE itself) would allow experimentation with coronal dynamics imaging

Solar applications for v. light payloads

- Very light payloads (10-100 lbs): high resolution pointing system is not feasible (yet!).
- * Spectral detections (e.g. detect FUV photons)
- * Sky-glow profile measurements
- Lightweight coronagraph? (~1-10 arcmin pointing required)

Something for everyone:

- Current solar observing platforms follow the "cast-iron spacecraft" concept: large telescopes (for best imaging quality) and dedicated instruments.
- * A SCRIBE-like general purpose observatory platform would enable experimental techniques in the UV, FUV, and IR that are currently inaccessible at ground-based locations.
- A smaller disposable payload design could be used to support continuous observations (e.g. space weather prediction with a coronagraph)
- * There is scientific and enabling "low-hanging fruit" to be had in quite small payloads (e.g. sky darkness sounding at different altitudes & wavelength; searching for FUV light in the upper stratosphere).