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Ballooning leads the advance in Astrophysics

Most fields of astrophysics (e.g. infrared, x-ray, gamma-ray)
have completed their initial exploration phase and are now
engaged 1n detailed investigations

Many initial explorations were (and still are) done from
balloon platforms

— Develop and test fly detector systems that later lead to spacecraft
missions

— Observations provide initial discoveries that guide later missions

Investigation of the Cosmic Microwave Background is a
good example of this process

— Early balloon flights tested and calibrated radiometers for COBE
(Nobel Prize science)

— Later balloon flights (BOOMERanG, MAXIMA) established their
own discoveries and led to WMAP

Cosmic Rays 1s one of the first modern physics /
astrophysics fields to take advantage of ballooning.
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Cosmic Rays were discovered less than a
hundred years ago

e In 1912 Victor Hess became the
first cosmic ray balloonist

e Measured an increase in the
background radiation as a function
of altitude, but only up to about
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Understanding the nature of cosmic rays

1920’s radiation was thought to be some form of high energy photon
— Hence the name Cosmic RAYS
1930’s cosmic rays found to be composed of high energy charged particles
— Effects due to Earth’s magnetic field (east-west; latitude)
— Discovery of positron and muon
— Birth of elementary particle physics
40’s and 50’s cosmic ray “beam” was used to develop the theory of
elementary particles.
1960’s space probes began identifying individual cosmic ray components
— Sources from the Sun as well as outside our Solar System
— Electrons, protons and other elements were identified
— Began measuring the energy spectrum

— GCR energy density found to be roughly equivalent to the energy released by a
supernova every 50 to 100 years

70’s, 80°s and 90°s pushed the frontiers in both charge and energy

— Antiprotons, elements up to Uranium, energies to ~102! eV
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Composition measurements cover the full element range
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 Relative abundances range over 11 orders of magnitude
* Detailed composition limited to less than ~ 1 GeV/nucleon

LSU 04/19/07 LCANS 2007 - April 27, 2007 5



10*

GCR energy spectrum 3 F™, Fluxes of Cosmic Roys
« Covers more than 20 N
. b T L A «——— (1 porticle per m’~second)
orders of magnitude 3 "% FSeveral isotope . |
. - measurements .
* Flux varies by more than -« €—> =
30 orders of magnitude - 0
» Required detector size Sl St s
varies greatly over this 10_10::
ra’nge :_ /&vﬁ (K?T)?thicle per m’—year)
— Satellites limited to low gL ManyZ<26 N
- element measurements O
< - X
energy (< 100 GeV) <€ > s
— Balloons can approach the g'°[
“knee” (~ 1 PeV i
— Air shower measurements 10 °F
for highest energy i
. -22[
e Most detailed measure-  '° [
i Ankl s
ments are at low energy - P e e
 Little composition F Many measurements, g
knowledge aboVe 1 PCV 10_232 No proven element resolution ( ﬂ
-|||| T AT EEE AT I pornd vvoed ool v eomd el o] el vl ||:iuu
LSUO4/19/O7 109 1010 1011 1012 1015 1014 1015 1016 101}' 1018 10‘19 1020 1021

Energy (eV)



Fundamental questions remain unanswered!

* What 1s the origin of this extra solar system
matter?
— Can individual sources be detected?

— What does the GCR composition tell us about the
nucleosynthetic history of this matter?

* How does this matter get accelerated to such high
energies?

— Are there different astrophysical sites associated with
different energy regimes?

 Are there signatures of any exotic physics?
— Are there anti-matter regions in the universe?

— What 1s causing the effects associated with “Dark
Matter?
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Cosmic ray balloon payloads

Anti-Electron Sub-Orbital Payload /
Low Energy Electronics
(AESOP/LEE)

— Study solar modulation of electrons
up to 20 GeV; resolve positrons and
negatrons up to 6 GV

— 934 kg (2060 Ibs) gl S
— Flights in 97, 98, 99, 00 (120 hours)
— Still operational

AESOP / LEE

Balloon Experiment Superconducting
Spectrometer (BESS)

— Anti-protons and isotopes of light
nuclei from 0.18 to 4.20 GeV; search
for anti-deuterium, anti-helium

— 2,070 kg (4400 1bs)

— 9 “ConUS” Flights 1993 — 2002;
LDB flight in 2004 (8.5 days)

— Anticipate flight in 2007
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Cosmic ray balloon payloads

Transition Radiation Array for
Cosmic Energetic Radiation
(TRACER)

— Direct measurements of O to Fe from
~50 GeV to several 100 TeV; 5 m?sr

— 1614 kg (3550 Ibs)
— Flights in 2003, 2006 (14 days)
— Proposing for more flights

Trans-Iron Galactic Element Recorder
(TIGER)

— GCR nuclei heaver than iron (26 <Z <
40) for energies ranging from 0.3 to ~100
GeV/nucleon

— 700 kg (1543 Ibs)
— Flights in 2001 and 2003 (50 days)
— Unrecovered after 2003 flight
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Advanced Thin Ionization Calorimeter
(ATICO)

— GCR nuclei from H to Fe from 50
GeV to ~100 TeV; GCR electrons
from ~20 GeV to several TeV

— 1636 kg (3600 Ibs)

— Flights in 2000, 2002 (30 days),
launch failure in 2005

— Anticipate flight in 2007

Cosmic ray balloon payloads

Cosmic Ray Energetics and Mass

(CREAM)

GCR nuclei from H to Fe for energies
from ~1 TeV to ~500 TeV

1141 kg (2526 1bs)
Flights in 2004 and 2005 (70 days)
Anticipated flights in 2007 and 2008
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Cosmic ray balloon payloads

Cosmic Ray Electron Synchrontron
Telescope (CREST)

— GCR celectrons at energy >4 TeV;
Detects synchrotron emission of electrons
passing Earth’s magnetic field

— 1318 kg (2900 Ibs)
— First LDB flight in 2009

— Under construction
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Supernova shock waves may accelerate GCR

* See evidence of both electrons and atomic nuclei being accelerated
by SNR shock waves

e Model predicts an upper energy limit of E ~ Z x 104 eV
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* Measuring these spectra changes in the 1 — 500 TeV energy range is
the primary science objective of TRACER, CREAM and ATIC
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ATIC & CREAM use 1onization calorimetry
to measure GCR energy at TeV energies

Py —— Charge Detector (Silicon Matrix)

-

- Carbon Target
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A high energy cosmic ray interacts in
the ATIC instrument to begin an
electromagnetic cascade that is
measured in the BGO Calorimeter
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Trade mass for area & energy resolution
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* As the calorimeter depth (in radiation lengths, X)) increases more

of the electromagnetic cascade 1s contained
— Improves energy resolution and ability to suppress backgrounds

« As area increases statistics improve and, for a given time at float,
the measurement upper energy limit increases
 Calorimeters use dense materials, so mass increases dramatically
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Highly “pixelated” Silicon Matrix Detector

determines particle charge

Si-Matrix: 4480 pixels each 2 cm x 1.5 cm
mounted on offset ladders; 0.95 m x 1.05 m
area; 16 bit ADC; CR-1 ASIC’s; sparsified
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Plastic Scintillator Hodoscopes provide initial
trigger, plus addition trajectory & charge info
(24""’] Silicon Detector Si B
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BGO Calorimeter used to determine particle
energy & shower core trajectory

Calorimeter: 10 layers ; 2.5 cm x 2.5 cm x 25

24° ilicon Detector Si
v 1 BiltonGelector? \ cm BGO crystals (~22 X, total depth) , 40 per
layer, each crystal viewed by R5611 pmt; three
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On-board Control & Data System
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Data System: All data recorded on-board; 150 Gbyte disk; LOS data rate — 330 kbps; TDRSS
data rate — 6+ kbps; Underflight capability (not used).

Housekeeping: Temperature, Pressure, Voltage, Current, Rates, Software Status, Disk status

Command Capability: Power on / off; Trigger type; Thresholds; Pre-scaler; Housekeeping
frequency; LOS data rate, Reboot nodes; High Volt settings; Data collection on / off

Mass: ~80 lbs., Power: 45 W
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ATIC in its LDB flight configuration

ATIC-3 (2005)

(NSBF 2004)
Balloon 4050 1bs
Science Gondola 3515 1bs
Science Solar Array 80 lbs
NSBF Electronics (SIP,etc.) 505 lbs
NSBF Solar Array 150 Ibs
NASA Rotator 160 Ibs
Parachute & susp. 590 Ibs
Ballast 600 lbs
Misc. (1 Ballast Hopper,etc.) 300 lbs
Gross Load 9950 Ibs

® ATIC 1s one of the heaviest
payloads to be launched in
Antarctica

® Uses a 39 million ft? — light balloon
to reach ~120,000 feet
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Electrons might provide additional information
about the GCR source

High energy electrons have a high energy loss rate
— Lifetime of ~10° years for >1 TeV electrons

Transport of GCR through interstellar space 1s a diffusive process
— Implies that source of high energy electrons are < 1 kpc away

Know that electrons are 10 = oA
. I s e & « Godenatal 1964
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ATIC 1s able to 1dentity GCR electrons

 Possible bump at 300 — 800 GeV seen by both ATIC and Torii may be a

source signature?

* Long duration ATIC flight for 2007 will be critical to resolving this 1ssue
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Electron Calorimeter (ECAL)

er Pressure J
Proposed to NASA asanew LDB ™ s:>_a T SOFTI
payload in April, 2007 S1 Detector__ <@ Silicon Matrix e

Pressure

Upgraded version of ATIC

— Optimized for electrons

— Add a second layer to the Silicon S
Matl'iX Structure

— Scintillating Optical Fiber Track
Imager (SOFTI) replaces carbon -

— Include a neutron detector Calorimeter |

bn Detector

SOFTI improves trajectory reconstruction, tracks early development of shower
— Six X,Y layers of 1 mm fibers with thin lead sheets to foster shower start

Double layer silicon matrix & improved tracking improves identification of
gamma rays produced in the atmosphere above the balloon

Use shower profile in SOFTI & BGO to separate protons & electrons
— Only 1 1n 20,000 protons are misidentified as electrons

Hadron showers produce more neutrons than electron showers
— Can distinguish between p & e independent of shower profile method
— Push instrument proton rejection to 1 in 200,000
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Potential ECAL results

ECAL uses established technology and
can be quickly built

— First LDB flight proposed for 2009

Now reasonable to anticipate 25 days
per LDB flight

— Plan two LDB flights for total of 50 days
exposure

Primary ECAL science goals

— Distinguish between Kobayashi “distant™
and “local” source models at 99%
confidence level

— Validate and investigate nature of the
ATIC “feature”

Electron measurement backgrounds
pushed to lowest possible level

— Dominated by electrons produced in
atmosphere above balloon payload

— Contribution of 10% - 15% at a few TeV
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Conclusions

* The study of galactic cosmic rays over the last century
has revealed much about the nature of this high energy,
extra-solar system matter, but there are still many
unanswered questions

* Answers to these questions lie hidden 1n low flux regions
— High energy, high element number, rare events

« Balloon flight experiments still provide the best
opportunity to address some of these questions

— Now possible to fly heavy, large geometry payloads for long
durations

— Development of detector systems that may one day fly on
space missions
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