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ABSTRACT

The development and evolution of a circumplanetary disk during the accretion of a giant planet is examined. The
planet gains mass and angular momentum from infalling solar nebula material while simultaneously contracting
due to luminosity losses. When the planet becomes rotationally unstable it begins to shed material into a circum-
planetary disk. Viscosity causes the disk to spread to a moderate fraction of the Hill radius where it is assumed
that a small fraction of the material escapes back into heliocentric orbit, carrying away most of the excess angular
momentum. As the planet’s contraction continues, its radius can become smaller than the spatial range of the inflow
and material begins to fall directly onto the disk, which switches from a spin-out disk to an accretion disk as the
planet completes its growth. We here develop a description of the circumplanetary disk, which is combined with
models of the planet’s contraction and the inflow rate including its angular momentum content to yield a solution
for the time evolution of a planet–disk system.

Key words: planet–disk interactions – planets and satellites: formation – planets and satellites: physical evolution

1. INTRODUCTION

The regular satellites of Jupiter and Saturn have orbits that
are prograde, nearly circular, and approximately co-planar, sug-
gesting that they formed within circumplanetary disks. Early
studies of giant planet satellite formation employed a bottom-
up or deconstruction approach in which a characterization of the
satellite precursor disk was attempted by augmenting the satel-
lite system mass to roughly solar composition (e.g., review by
Pollack et al. 1991). This so-called minimum mass sub-nebula
(MMSN) model is similar to that historically used in planetary
formation models. However, over the intervening period our
understanding of giant planet formation and disk–planet inter-
actions has expanded considerably, and recently a new class of
models has emerged utilizing a top-down approach that attempts
to describe disk generation in the context of giant planet forma-
tion and contraction (Canup & Ward 2002, 2006, 2009; Magni
& Coradini 2004; Alibert et al. 2005; Sasaki et al. 2010). This
results in a dynamically evolving disk throughout most of the
planet’s contraction phase and a disk structure that can differ
markedly from the earlier, more or less static, minimum mass
models.

When a gas giant planet undergoes runaway gas accretion,
it nearly fills the entire Hill sphere within which its gravity
dominates over that of the Sun. The ratio of the Hill sphere
radius, RH , to the planet’s radius, R, is ∼(4πρa3/9 M�)1/3,
where M� is Sun’s mass. For example, at Jupiter’s distance,
a = 5.2 AU, and current mean density, ρ = 1.3 g cm−3,
the Hill sphere of a planet is more than 700 times the planet’s
radius; at Saturn’s distance, this ratio rises to over a thousand. A
forming gas planet will begin to contract within its Hill sphere
once the rate of its gas accretion can no longer compensate for
the increasing rate of its gravitational contraction due to the
planet’s growing mass and luminosity. As the planet contracts,
two processes are thought to be effective means for producing
circumplanetary disks of gas (H + He) and solids (rock + ice).
(1) Accreted gas delivers angular momentum to the planet,
and as the spinning planet contracts, conservation of angular
momentum dictates that its rate of rotation increases. When
this rate reaches the critical rate for rotational instability, the

planet’s outer equatorial layers begin to shed, forming a so-
called “spin-out disk.” (2) If the solar nebula is still present
during the contraction phase, so that gas accretion continues, at
some point the gas inflowing from solar orbit contains too much
angular momentum to fall directly onto the planet as it becomes
smaller and smaller. Instead, gas flows into orbit around the
planet and directly creates an “accretion disk”.

Prior disk formation models have typically assumed either
that the accretion of gas ends before the planet contracts, so
that as the planet contracts a pure spin-out disk is formed (e.g.,
Korycansky et al. 1991), or that the planet has fully contracted
while it continues to accrete gas, resulting in a pure accretion
disk (e.g., Canup & Ward 2002; D’Angelo et al. 2003). More
likely, the disk produced around a growing gas giant may be due
to a combination of both processes. Understanding how disks
are created around gas giants is important not only for modeling
a gas planet’s growth, but also because the disk properties
ultimately determine the nature of its final satellites, including
their bulk composition, masses, orbital distributions, etc.

In the next section, the basic physical processes involved in
disk formation and evolution are introduced, and the relatively
simple case of a planet that has accreted all of its gas prior
to its contraction is discussed. We estimate the properties of
the resulting spin-out disk as a function of the planet’s angular
momentum, and find, in particular, that an inviscid spin-out
disk is generally inconsistent with the properties of the regular
satellite systems at Jupiter and Saturn. In Section 3, we proceed
to the more complex situation when a planet is simultaneously
contracting and accreting gas. We determine how inflowing
gas is partitioned between the planet versus a circumplanetary
disk as a function of the planet’s contraction history, the
mass inflow rate, and the angular momentum contained in
the inflow. Section 4 then addresses the still open question of
angular momentum accretion by the planet. In Section 5, the
disk evolution model is merged with both inflow and planet
evolution models to complete the solution. We consider several
different descriptions for the planet’s contraction: an existing
numerical model (Papaloizou & Nelson 2005), a proxy model
that describes the planet as a polytrope, allowing one to examine
the effects of varying the adopted parameters of the system, and
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a model that includes a short duration collapse phase that could
have occurred after the planet has contracted to a small fraction
of its starting radius. We close the presentation in Section 6 with
a discussion of the results and their ramifications. Section 7 then
concludes the paper with a review of our overall findings and
their implications. For the reader’s convenience, a list of symbol
definitions has been included in Table 1.

2. SPIN-OUT DISK FORMATION

2.1. Angular Momentum Bias

The planet of mass M acquires angular momentum L from the
incoming material, and material with both positive and negative
angular momentum will be accreted. The net magnitude is
difficult to estimate without detailed hydrodynamic modeling,
although some dimensional arguments have been employed
to provide rough estimates. A natural characteristic length
scale is the planet’s Hill radius, RH , while its mean motion
Ω = (GM�/a

3)1/2 provides a characteristic frequency. We
define the angular momentum bias, �, of the inflowing material
by setting

jc ≡ dL/dM = �R2
H Ω, (1)

where jc is the average specific angular momentum of the inflow
and prograde (retrograde) rotation corresponds to � > 0 (< 0) .
For example, if one considers a strictly two-dimensional (2D)
Keplerian flow across the radius RH surrounding the planet,
then the angular momentum bias of the material crossing
this boundary is � = 1/4 (Ruskol 1982; Lissauer & Kary
1991; Mosqueira & Estrada 2003). In Section 4, we discuss
other estimates for � based on both analytic arguments and
hydrodynamical simulation results. However, the bias is still a
key uncertainty, and as such, we construct generalized models
that treat � as an unspecified parameter before returning to this
issue in Section 4.

2.2. Rotational Instability

As the planet contracts, its spin frequency, ω ∼ L/C, in-
creases, where C = λMR2 is its moment of inertia, and we will
assume for simplicity that convection maintains nearly uniform
rotation within the planet. A moment of inertia parameter can be
roughly estimated from a polytropic model (e.g., Chandrasekhar
1958). For example, for polytropic indices n = 1.5, 2, 2.5,
the gyration constant is λ = 0.21, 0.15, 0.11. For comparison,
Jupiter’s current value is λ = 0.26.

When the planet’s spin frequency reaches the critical value for
rotational instability, ωc, the planet starts to shed material from
its equator into a disk. If it is assumed that the bias is independent
of mass, the planet’s cumulative angular momentum is found by
integrating Equation (1),

L =
∫

jcdM = (3�/5)MR2
H Ω. (2)

For a full mass Jupiter, this gives L = �(5.41 × 1047) g cm2 s−1

(i.e., likely much larger than the current angular momentum
of Jupiter and its satellites augmented to solar composition,
∼8.6 × 1045 g cm2 s−1; e.g., Korycansky et al. 1991). An
estimate of ωc ≈ (GM/R

3 )1/2 is obtained by setting the spin
rate equal to the Kepler frequency at the surface of a spherically
symmetric planet, where both M(t) and R(t) are time dependent.1

1 In reality, a critically rotating fluid planet will be highly distorted into a
flattened spheroid with a gravity field that differs from that of a point mass. In
Appendix A we briefly discuss how this would alter the analysis and explain
our rationale for omitting this complication.

As the planet contracts, rotational instability sets in once L
equals the critical value,

Lc = λMR2ωc = λM (GMR)1/2 , (3)

which determines the critical planet radius, Rrot, for commence-
ment of spin-out from the planet,

Rrot = 1

3

(
3�

5λ

)2

RH . (4)

Note, however, that if � > 5λ/
√

3, Equation (4) does not
apply since Rrot cannot exceed RH. In this situation, as long
as the planet fills its Hill sphere and accretion is limited by its
luminosity (see Section 5.1) we assume that the planet maintains
itself at the brink of stability. Once the planet becomes luminous
enough to separate from the Hill boundary and contract, it can
immediately begin to shed a disk.

2.3. Contraction of an Accreted Planet

We first examine a case in which the bulk of the planet’s
mass has already been accreted before rotational instability sets
in, so that there is no additional mass inflow to the planet as it
contracts. Once R � Rrot, the planet begins to shed mass into a
disk. The behavior of the disk material depends on its ability to
transport angular momentum via stresses.

2.3.1. An Inviscid, Zero Stress Disk

If we consider the extreme of a zero stress disk, shed material
remains in orbit where it first leaves the planet. Mass and angular
momentum conservations require M +Mdisk = MT , L+Ldisk =
LT , where the subscripts disk and T refer to the disk and total
values, respectively, and accordinglyṀdisk = −Ṁ, L̇disk =
−L̇. Since material is spun out at the local mean motion, we
have L̇disk = Ṁdisk(GMR )1/2 implying

L̇ = Ṁ(GMR )1/2 (5)

as well. However, requiring the planet to maintain L = Lc, and
differentiating Equation (3) leads to

L̇ = Lc

(
3

2

Ṁ

M
+

1

2

Ṙ

R

)
. (6)

Equating Equations (5) and (6) and rearranging yield(
1 − 3λ

2

)
R

M

dM

dR
= λ

2
(7)

which integrated gives M = MT (R/Rrot)q as the mass of the
contracting planet, where q = λ/ (2 − 3λ) . Consequently, the
mass left behind in a disk as a function of the planet’s radius is

Mdisk = MT [1 − (R/Rrot )q] (8)

with the final disk mass obtained by setting R = Rp � Rrot,
with Rp being the final radius of the planet. For example, with
λ = 0.15, q = 0.097 is small, which mitigates its influence
somewhat. If we set Rrot ≈ 102

Rp, then the final mass of the
planet is, Mp ∼ 0.64 MT , while Mdisk = 0.36MT . In the case of
a Jupiter mass planet, Mp = MJ implies MT = 1.56 MJ , with
the mass of the disk being about ∼56% of the mass of Jupiter.
Even for Rrot ≈ 25Rp (implying a very small bias � ≈ 0.08),
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Table 1.
Definition of Symbols

a Planet semi-major axis
c Gas sound speed
E,ER,ET Polytrope total energy, rotational energy, thermal energy
F(t) Mass inflow rate
FshearFdiff Shear- or torque-limited mass inflow rate,

diffusion-limited mass inflow rate
finflow Mass inflow rate per unit area
F (r) In-plane mass flux, circumplanetary disk
Fd Mass flux across outer disk edge
Fp Mass flux from planet to disk
g (r) , gd , gp Viscous couple at distance r, at outer disk, at planet
h Circumsolar disk half-thickness
Id Moment of inertia, circumplanetary disk
J, JR Cumulative angular momentum in inertial frame, in

rotating frame
j (r) , jd , jp Specific angular momentum of circumplanetary disk at

r, at disk outer edge, at planet
jR Specific angular momentum of circumplanetary disk in

rotating frame
jc Average inflow specific angular momentum
Δj Spread in inflow specific angular momentum
jrot Specific angular momentum of inflow in frame rotating

with planet
� Inflow angular momentum bias
L,Lc Planet spin angular momentum, critical spin angular

momentum for rotational stability
Ldisk Circumplanetary disk angular momentum
LT Total accreted angular momentum
L Luminosity
m Molar molecular weight
M, Mp, MJ ,MS Planet mass, final planet mass, mass of Jupiter, mass of

Saturn
M� , M⊕ Solar mass, Earth mass
Md,MD Circumstellar disk local and global masses (see

Section 5.2)
Mdisk Circumplanetary disk mass
Misol Isolation mass
Mo Planet mass at time of separation from Hill sphere
Mν Viscous mass
Mtq Transition mass between diffusion and torque limited

regimes
MT Total accreted mass
n Polytropic index
P Polytrope pressure
R (t) , Rp Planet radius, final planet radius
	 Universal gas constant
RB Planet Bondi radius
RH , RHP Planet Hill radius, final planet Hill radius
Rrot Planet radius at commencement of spin-out
r Orbital radius, circumplanetary disk
rd Outer radius of circumplanetary disk
rc, ri , ro Centrifugal radius, inner radius of inflow region, outer

radius of inflow region
rs , rz Distance marker for stage (Equation (24)), distance

marker for zone (Equation (25))
T Polytrope temperature
Teff Effective temperature of polytrope
Tc Central temperature of polytrope
U Polytrope potential energy
xo Unperturbed streamline location at large distance from

planet
xmax Maximum streamline x-value that intercepts planet Hill

sphere
xmin Minimum streamline x-value that intercepts planet Hill

sphere
α Alpha viscosity parameter
γ Outer radius of circumplanetary disk in Hill radii
γa Adiabatic index

Table 1.
(Continued)

η Gas enthalpy
κ Opacity
λ Planet moment of inertia coefficient
ν, νd Viscosity, viscosity at circumplanetary disk outer edge
ρ Planet density
Σ Gas surface density, circumsolar disk
σ Gas surface density, circumplanetary disk
σSB Stephan–Bolztman constant
τneb Nebular dissipation timescale
τν Viscous timescale
τcol Envelope collapse timescale
τKH, τKH,J Planet Kelvin–Helmholtz timescale, Kelvin–Helmholtz

timescale for MJ , RJ

ϕ Planet gravitational potential
Ω Planet orbital frequency
ω, ωc, ω

′ Planet angular rotation rate, critical rotation rate,
rotation rate scaled to critical rate

the disk mass decreases somewhat but is still ∼0.37MJ . These
masses are vastly larger than that necessary to account for
observed satellite systems, i.e., ∼f Msat, where f is the gas to
solid ratio of the infalling material and Msat is the total mass of
the satellite system. For the giant planets in our solar system,
Msat ∼ 10−4Mp, and for a solar composition infall, f ∼ 102,
which implies an MMSN of order ∼1% of the planet’s mass. In
addition, massive disks with Mdisk/M � O(10−1) would likely
be gravitationally unstable, which would generate an effective
viscosity and invalidate the starting assumption of a zero stress
disk.

The massive spin-out disk calculated above is a result of
the large angular momentum excess accreted by the planet
compared to the giant planet plus satellite systems observed
in our solar system. Since the fully contracted planet is limited
in the amount of angular momentum it can contain, a significant
amount of material must remain in orbit to store it. Indeed, the
initially spun out material has an even larger specific angular
momentum than the inflow average because (GMRrot )1/2 =
(3�/5λ) R

2
H Ω = 3 jc /5λ > jc, assuming a largely convective

and uniformly rotating planet. Thus given the estimated angular
momentum budget associated with accreting a gas giant, the
angular momentum that would need to be contained in an
inviscid spin-out disk is so large that the resulting disk is too
massive and/or too radially extended compared to the MMSN
construct.

2.3.2. Viscous Disks

A number of factors suggest that once gas is in circumplan-
etary orbit, it will not remain static but will instead radially
spread due to angular momentum transport. A viscous proto-
satellite disk has been invoked by Coradini et al. (1989), Canup
& Ward (2002, 2006), Alibert et al. (2005), and Sasaki et al.
(2010), and perhaps the most compelling argument for this is
that viscous diffusion allows most of the disk’s mass to evolve
inward and be accreted by the planet, while most of the disk’s
angular momentum (contained in a small fraction of its mass) is
transported outward where it can eventually be removed from
circumplanetary orbit. Thus, a much smaller disk mass can be
consistent with the expected angular momentum budget than
in the inviscid case. A circumplanetary disk also shares ba-
sic traits with the circumsolar disk, in which kinematic vis-
cosity is commonly invoked to explain, e.g., observed mass
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accretion rates onto stars in extrasolar systems (e.g., Stone et al.
2000).

The source and magnitude of viscosity in cold disks are
actively debated, and while a number of candidate mechanisms
have been proposed, the mode and rate of angular momentum
transport are quite uncertain. Given this uncertainty, a simplified
parameterization is often used, i.e., the so-called alpha model
(Shakura & Sunyaev 1973) that defines a viscosity ν = αch,
where α is a constant, c is the gas sound speed in the disk,
and h ≈ c/Ω is its vertical scale height (i.e., the disk’s
half thickness). The alpha model envisions angular momentum
transport due to communication between turbulent disk eddies
with velocity, α1/2 c, and eddy length scale, α1/2h (e.g., Dubrulle
et al. 1995). Because the characteristic eddy velocity and length
scale would be no larger than the disk sound speed and the
disk thickness, respectively, the α parameter is a constant
less than unity. Circumstellar disk models typically consider
10−4 < α < 0.1 (e.g., Stone et al. 2000).

It is generally accepted that magnetorotational instability
(MRI) in weakly magnetized disks drives turbulence and out-
ward angular momentum transport, with effective α-values
∼10−2–0.1 (Balbus & Hawley 1991). To be operative, MRI
requires a minimum ionization fraction, which can be produced
thermally (for temperatures in excess of ∼103K), by galac-
tic cosmic-rays (for regions of low gas surface density, e.g.,
Dullemond et al. 2007), or by stellar X-rays (e.g., Glassgold
et al. 1997). However, the presence of dust grains can deactivate
MRI because they are effective charge absorbers and can cause
the ionization fraction to plummet (Sano et al. 2000). It is thus
plausible that both the protosatellite disk and the circumsolar
disk at Jupiter’s distance would have been “layered”: comprised
of MRI “active” regions at the disk surfaces, together with a
neutral, dust-rich “dead zone” surrounding the disk mid-plane
(e.g., Gammie 1996). This would result in a smaller effective α
as a vertically averaged value than in a fully MRI active disk.

Non-magnetic hydrodynamic mechanisms have also been
proposed as sources of turbulence and viscous transport in neu-
tral disks, including notably those that rely on non-axisymmetric
effects, including decaying vortices (e.g., Lithwick 2007), baro-
clinic instability (Klahr & Bodenheimer 2003), and shear insta-
bility (Dubrulle et al. 2005). Recent experimental results claim
to rule out angular momentum transport via axisymmetric hy-
drodynamical turbulence at levels corresponding to α > 10−5

(Hantao et al. 2006). Gravitational torques from objects accret-
ing within the disk may provide an effective viscosity (Goodman
& Rafikov 2001; see also Canup & Ward 2002). In the specific
context of an actively supplied accretion disk, the shock front
resulting from the difference in the free-fall velocity of mass
infalling to the disk and that of the orbiting gas is another po-
tential source of turbulence and therefore viscosity (Cassen &
Moosman 1981). Such an inflow-driven viscosity would cease
once the inflow had stopped completely, but it is possible that
the last remaining orbiting gas could be then removed by other
sources of viscosity, e.g., by MRI once small grains have been
removed through accretion onto the satellites. Spiral shocks
generated by the inflowing gas may also drive angular momen-
tum transport (Lubow et al. 1999), although such shocks appear
weaker in 3D simulations than in 2D simulations (Bate et al.
2003).

Viscous angular momentum transport is characterized by a
torque due to viscous shear, g = 3πσνj,exerted by the inner
disk on the outer disk across the circumference 2πr, where σ
is the gas surface density, and j = (GMr)1/2 is the specific

angular momentum at orbital radius r; the quantity g is often
referred to as the viscous couple (Lynden-Bell & Pringle 1974).
The viscous couple causes the angular momentum of an annular
ring of mass δm = 2πrσδr to change at a rate

δm
dj

dt
= g (r) − g (r + δr) → −∂g

∂r
δr. (9)

With dj/dt = (∂j/∂r) u, where u = dr/dt is the radial velocity
of disk material with u > 0 defined as an outward velocity,
Equation (9) gives

2πσrδr
∂j

∂r
u = −∂g

∂r
δr. (10)

Thus, the couple drives an in-plane radial mass flux in the disk,
F = 2πrσu,that satisfies (Lynden-Bell & Pringle 1974)

F
∂j

∂r
= −∂g

∂r
. (11)

When the outer edge of the disk expands to distances compa-
rable to the planet’s Hill radius, at some point material escapes
from the gravity of the planet and is returned to the circumstel-
lar orbit. Accordingly a viscous circumplanetary disk will have
an outer edge rd = γRH , where γ is a moderate fraction of
unity, and a vanishing couple there,2 with g (rd = 0) . Provided
the viscous spreading time, τν ∼ r2

d /ν, is less than the char-
acteristic time scale over which processes supplying material
to the disk change, a quasi-steady state is attained wherein the
time variation in the flux F can be ignored when integrating
Equation (11) so that F = F (r) . When there is no inflow onto
the disk, a steady-state F is constant throughout and integration
of Equation (11) gives Fj + g = C. Evaluating C at rd gives

g (r) = F (jd − j ) = −Ṁ[(GMrd )1/2 − (GMr)1/2], (12)

where jd = j (rd ) .
To track the mass of the planet, we again employ conservation

of angular momentum, but Equation (5) is now incomplete. The
angular momentum of the planet not only decreases due to
the shedding of material, but also due to the viscous torque,
−gp = −g (R) exerted on the planet by the disk, i.e.,

L̇ = Ṁ (GMR)1/2 − gp = Ṁ (GMrd )1/2 . (13)

Equating this to Equation (6) yields(( rd

R

)1/2
− 3λ

2

)
R

M

dM

dR
= λ

2
(14)

where the quantity (rd/R)1/2 = (γRH/R)1/2 now replaces unity
in the lead bracket. When rd > Rrot » R, the term 3λ/2 can
safely be ignored and the equation integrated to give

M/MT ≈
[

1 − λ

6

R
1/2
rot − R1/2

r
1/2
dT

]6

, (15)

where rdT = rd (MT ) . Expanding to first order, the mass, ΔM,
shed by the planet reads

ΔM

MT

≈ λ

(
Rrot

rdT

)1/2
[

1 −
(

R

Rrot

)1/2
]

. (16)

2 If the disk extends near enough to the Hill radius, the solar tidal torque
could remove angular momentum from the disk as well (R. Nelson 2009,
private communication). We briefly discuss this process in Appendix B.



1172 WARD & CANUP Vol. 140

For R = Rp, RHP = 744Rp, rdT = γRHP , λ = 0.15, the
percentage shed is ∼ (4.9, 2.2) /γ 1/2 for Rrot = (102, 25)Rp,
respectively, which is much less than in the inviscid case.

Although Equation (16) gives us the mass processed through
the disk, unlike the inviscid case, not all of the gas phase
resides in the disk at the same time. Differentiating ΔMg =
f ΔM/ (1 + f ) ≈ ΔM for f � 1 with respect to time tells us
the flux through the disk,

F ≈ −λ

2

(
R

rd

)1/2
Ṙ

R
MT , (17)

which is positive since Ṙ < 0. From Equation (12) and the
definition of g (r) , the surface gas density can be found

σ = λMT

6πν

(
R

rdT

)1/2 ∣∣∣∣ ṘR
∣∣∣∣
[( rd

r

)1/2
− 1

]
(18)

and integration over the disk yields its mass at any given time,

Mdisk = 2π

∫ rd

R

σ rdr = λ

3
MT

(
R

rdT

)1/2 ∣∣∣∣ ṘR
∣∣∣∣

×
∫ rd

R

[( rd

r

)1/2
− 1

]
r

ν
dr. (19)

For instance, if ν = νd (r/rd ) ,

Mdisk = λ

3
MT

(
r2
d

νd

) ∣∣∣∣ ṘR
∣∣∣∣
(

R

rdT

)1/2
[

1 −
(

R

rd

)1/2
]2

. (20)

Assuming R � rd, the ratio of this to ΔM is of order
Mdisk/ΔM ≈ (1/3) (R/Rrot)1/2 (τν/τKH) , where we have intro-
duced the Kelvin–Helmholtz contraction timescale for the planet
τKH ≡ |R/Ṙ|. Since it was assumed at the outset that the disk’s
viscous time scale is much shorter than the planet’s contraction
time scale, only a small fraction of ΔMg is actually in the disk
at a given time. The gas that has left the system and gone into
circumstellar orbit is of order ΔMg −Mdisk. For RHP = 744Rp,

λ = 0.15, Mdisk/MT ≈ 1.8 × 10−3γ −1/2 (τν/τKH) (R/Rp)1/2.
On the other hand, solid particles do not necessarily follow this
evolution if they coagulate and decouple from the gas phase.

3. DISKS WITH ONGOING ACCRETION

So far we have considered a planet that had acquired its full
mass prior to its contraction. However, estimates of maximum
gas accretion rates, (∼10−2 M⊕ yr−1, e.g., Hayashi et al. 1985)
imply that, e.g., Jupiter would begin to contract to a size smaller
than its Hill sphere once it exceeded ∼0.2–0.3 MJ (e.g., Tajima
& Nakagawa 1997). Papaloizou & Nelson (2005) tracked a
Jovian planet’s evolution including ongoing gas accretion and
predicted that a Jupiter-mass planet would contract to within the
current orbit of Io in less than a million years. When accretion
is ongoing during planet contraction, the system passes through
stages in which the circumplanetary disk transitions from a spin-
out disk to an accretion disk as we next describe.

3.1. Inflow Pattern

A quantity closely related to the angular momentum bias, �,
is the so-called centrifugal radius, rc, of the inflowing material
(e.g., Cassen & Summers 1983). This is the distance from the

planet where a circular orbit would have the same specific
angular momentum as the inflow average jc, i.e.,

rc = 1

GM

(
dL

dM

)2

= �2

3
RH . (21)

If rc exceeds the planet radius R, most of the inflowing
material would have too much angular momentum to reach
the planet and would instead accumulate in a disk. Setting
� ∼ 1/4 (Section 2.1) results in rc ∼ RH/48, which for
Jupiter (RHP ≈ 744RJ ) and Saturn (RHP = 1080RS) implies
rc ≈ 15RJ and 23RS, respectively, as the planets approach their
final masses. This has led to the suggestion that the compactness
of these planet’s satellite systems compared to their Hill spheres
is due in part to a small prograde angular momentum bias of
incoming material (e.g., Stevenson et al. 1986; Canup & Ward
2002; Mosqueira & Estrada 2003).

Of course, it is unlikely that at any given time, all inflowing
material has a specific angular momentum, j, equal to the average
dL/dM = jc. Both positive and negative angular momentum
material would mix as it descends toward the planet. Numerical
simulations have not yet determined this angular momentum
distribution. In the absence of this information, we adopt a
heuristic model in which an incoming mass δM is distributed
evenly across a range of specific angular momenta jc − Δj/2 <
j < jc + Δj/2 so that there is a mass dM = (δM/Δj ) dj in
any interval dj. When this material achieves centrifugal balance,
dj = (GMr)1/2 dr/2r. For a mass inflow rate F, this implies
an inflow rate per unit area, finflow, to the planet’s and/or disk’s
mid-plane of

finflow = F

4πr2
c

(
jc

Δj

) ( rc

r

)3/2
(22)

with inner and outer boundaries of ri(o) = rc (1 ∓ Δj/2jc)2 .
Assuming a broad distribution with Δj ≈ jc, the inner and
outer boundaries of the inflow upon reaching the planet or disk
are ri ≈ rc/4, ro ≈ 9rc/4 (the latter of which is comparable to
the outer limit assumed by Canup & Ward 2002).

3.2. Inflow Stages

As the planet contracts and the centrifugal radius increases
due to its growing mass and Hill radius, the disk–planet
configuration passes through three stages depending on whether
the inflow falls on the planet or the disk or both. These are
depicted schematically in Figure 1. The overall behavior hinges
on which state is occupied as well as whether the planet rotates
at a stable rate or at the critical rate, ωc. In the former case, the
viscous couple vanishes at the planet, gp = 0, and the planet
can accept material from the disk unimpeded while increasing
its rotation rate. These stages will be prescripted with an “S” to
signify stable rotation. In stage S1, there is no disk; in stages
S2 and S3, a disk forms by direct infall, and a stagnation point
(F = 0) exists within the inflow boundaries (zone 2) separating
inward and outward fluxes of disk material, with the flux at
the planet always inward (Fp < 0). In contrast, if the planet
rotates at the critical rate for stability, ωc, the viscous couple at
the planet–disk interface adjusts to the value needed to maintain
this state. These stages will be prescripted with a “C” to indicate
critical rotation. This results in material shedding (Fp > 0) by
the planet, and the development of a spin-out disk in stage C1.
In stages C2 and C3, the disk is due to a combination of direct
infall and the planet’s tendency to shed, resulting in a value of



No. 5, 2010 CIRCUMPLANETARY DISK FORMATION 1173

Figure 1. Various stages of planet and disk accretion encountered during a gas planet’s contraction. The inflow pattern partitions the disk into zones depending on the
relative size of the planet, R, compared to the inner, ri , and outer, ro, boundaries of the inflow. In stage 1, the inflow F is entirely on the planet, in stage 2 it is partially
on the planet and partially on the disk, and in stage 3 it is entirely on the disk. The disk in-plane flux is F(r). The flux leaving the disk at its outer radius, rd , is Fd, and
is always positive; the flux at the planet, Fp, is the mass exchange rate between planet and disk and can be either positive (a spin-out disk) or negative (an accretion
disk). In zone 2, the in-plane flux changes with r due to the inflow, while in zones 1 and 3, there is no inflow and in the quasi-steady state the fluxes are constant across
the zones.

Fp that can be either positive or negative, depending on which
influence dominates. In this section, we solve for these cases in
detail.

3.3. In-plane Flux, F(r)

From Equation (22) with Δj = jc we have an inflow per
unit area of finflow = F/(4πr

1/2
c r3/2) between ri = rc/4 and

ro = 9rc/4. This causes a divergence of the in-plane flux, F(r),
such that (e.g., Canup & Ward 2002)

dF

dr
= 2πrfinflow = F

2r
1/2
c r1/2

. (23)

Equation (23) can be integrated to obtain the flux variation with
r for the various stages. In the following expressions, the flux
Fn is subscripted by a zone number. Zone 1 is the region of the
disk exterior to ro, zone 2 is the disk region between ri and ro,
while zone 3 is the disk region interior to the inflow pattern,
r < ri, as shown in Figure 1.

1. Stage 1. Since R > ro, there is no infall on the disk and
only zone 1 exists for which the flux is constant throughout:
F1 = Fp = Fd, where Fd = F (rd ) .

2. Stage 2. A zone 2 appears from the planet’s radius to ro

within which the flux increases (becomes more positive),
while outside of that in zone 1, the flux is again constant:

F2 = Fp + F

[(
r

rc

)1/2

−
(

R

rc

)1/2
]

,

F1 = Fp + F

[
3

2
−

(
R

rc

)1/2
]

= Fd

3. Stage 3. There is now a zone 3 close to the planet where
the flux is constant, then a flux that becomes more positive
between ri and ro, followed by another region of constant
flux:

F3 = Fp,
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F2 = Fp + F

[(
r

rc

)1/2

− 1

2

]
,

F1 = Fp + F = Fd.

To economize on notation, we introduce two distance mark-
ers: the first changes with the stage,

rs ≡ ro if ro < R (Stage 1);
R if ri < R < ro (Stage 2);
ri if R < ri (Stage 3) (24)

and the second changes with the zone,

rz ≡ ro if ro < r (Zone 1),

r if ri < r < ro (Zone 2),

ri if r < ri (Zone 3) . (25)

Using these we can write the flux in the generalized form

F (r) = Fp + F

[(
rz

rc

)1/2

−
(

rs

rc

)1/2
]

(26)

Equations (24)–(26) together with the obvious condition r � R
can reproduce the flux for each case. In each expression, the flux
is related to its value Fp at the planet–disk boundary. This flux
can be positive with the planet shedding material to the disk,
or negative with the planet accreting material from the disk.
Evaluating Equation (26) at rd tells us that the flux exiting the
disk at the outer edge is

Fd = Fp + F

[(
ro

rc

)1/2

−
(

rs

rc

)1/2
]

. (27)

The value of Fd is always positive. With this, a useful alternative
expression for F in terms of Fd can be found, namely,

F (r) = Fd − F

[(
ro

rc

)1/2

−
(

rz

rc

)1/2
]

. (28)

3.4. Viscous Couple

To determine Fp (or Fd ) we must also know the variation in
the viscous couple, g (r) . The couple is found by integrating
Equation (11). Recall that we assume quasi-equilibrium states
exist so that ∂σ/∂t = 0. In zones 1 and 3 where the flux
is constant, the combination Fj + g will be constant as well.
However, in zone 2, we use Fdj/dr = d (Fj ) /dr − jdF/dr
to rewrite Equation (11) as

d

dr
(Fj + g) = j

dF

dr
(29)

and integrate with the help of Equation (23). The expressions
below subscript the couple by the zone number and relate the
flux at the planet to the value of the couple there.

1. Stage 1: only zone 1 pertains for which F1j + g =
Fpjp + gp = Fdjd, where in the final term the couple
is assumed to vanish at the outer disk edge, g(rd ) = 0. We
conclude that

Fp(jd − jp) = gp,

g1 = gp + Fp(jp − j ).

2. Stage 2: in zone 2, Equation (29) is integrated from the
planet’s radius and Equation (26) used to eliminate F to
yield,

g2 = gp + Fp

(
jp − j

) − F

[(
r

rc

)1/2

−
(

R

rc

)1/2
]

j

+
1

2
F

[
r

rc

− R

rc

]
jc,

while in zone 1 we again write, F1j + g = Fdjd, but use
F1 from stage 2 to find,

g1 =
[
Fp + F

[
3

2
−

(
R

rc

)1/2
]]

(jd − j ) .

Requiring that g1 (ro) = g2 (ro) at the mutual boundary of
the two zones then reveals that

Fp(jd − jp) = gp − F

[
3

2
−

(
R

rc

)1/2
]

jd

+
1

2
F

[
9

4
− R

rc

]
jc,

g1 = gp + Fp(jp − j ) − F

[
3

2
−

(
R

rc

)1/2
]

j

+
1

2
F

[
9

4
− R

rc

]
jc.

3. Stage 3: following similar procedures one obtains

Fp(jd − jp) = gp − F (jd − jc) ,

g3 = gp + Fp

(
jp − j

)
,

g2 = gp + Fp(jp − j ) − F

[(
r

rc

)1/2

− 1

2

]
j

+
F

2

[
r

rc

− 1

4

]
jc

g1 = gp + Fp(jp − j ) + F (jc − j )

for stage 3 behavior.

As with the flux, these results can be written in generalized
forms, namely,

Fp(jd − jp) = gp − F

[(
ro

rc

)1/2

−
(

rs

rc

)1/2
]

jd

+
F

2

[
ro

rc

− rs

rc

]
jc, (30)

g = gp − Fp(j − jp) − F

[(
rz

rc

)1/2

−
(

rs

rc

)1/2
]

j

+
F

2

[
rz

rc

− rs

rc

]
jc. (31)
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3.5. Application to an Accreting/Contracting Planet

With inflow from the disk, the planet’s growth rate is

Ṁ = F

[(
rs

rc

)1/2

−
(

ri

rc

)1/2
]

− Fp, (32)

where the first term is the infall directly onto the planet and the
second is that accreted from (or lost to) the disk. In a quasi-
steady state, conservation of mass dictates that the rate of inflow
to the system must equal the rate of change of the planet’s mass
plus any mass loss at the outer edge, i.e., Ṁ = F − Fd.

3.5.1. Stable Rotation

If the planet rotates at a subcritical rate, it can accrete material
from the disk even though it arrives with the critical specific
angular momentum (GMR)1/2 , because of our assumption that
nearly uniform planet rotation is maintained through convective
mixing. Accordingly, we set the viscous couple at the planet to
gp = 0. Again for stage S1, no disk exists, but for stages S2
and S3 there is an in-plane flux, with part of the material falling
on the disk being accreted by the planet (Fp < 0) as it spreads
inward and the remainder spreading outward and eventually
exiting the disk at rd .

Setting gp to zero, and using Equation (30) to eliminate Fp

in Equation (31) leads to

g = F

(
j − jp

jd − jp

) ( [(
ro

rc

)1/2

−
(

rs

rc

)1/2
]

jd

− 1

2

[
ro

rc

− rs

rc

]
jc

)
− F

([(
rz

rc

)1/2

−
(

rs

rc

)1/2
]

j

− 1

2

[
rz

rc

− rs

rc

]
jc

)
. (33)

As an example, let us consider a late stage S3 configu-
ration for which rs = ri and Equation (30) gives Fp =
−F(r1/2

d − r
1/2
c )/(r1/2

d − R1/2). In the limit that (rd/R)1/2 »1,
g/j = 3πσν reduces to

3πσν =F

[
1 −

(
rc

rd

)1/2
] [

1 −
(

R

r

)1/2
]

for R <r < rc/4,

(34)

= F

( [
1 −

(
rc

rd

)1/2
] [

1 −
(

R

r

)1/2
]

+
1

2

[
1 −

(
r

rc

)1/2

− 1

4

( rc

r

)1/2
] )

for rc/4 < r < 9rc/4,

= F

( [
1 −

(
rc

rd

)1/2
] [

1 −
(

R

r

)1/2
]

− 1 +
( rc

r

)1/2
)

for 9rc/4 < r.

This is the analog of the quasi steady-state disk profile used
by Canup & Ward (2002). The differences are due to their use

of a constant inflow, finflow = F/πr2
o between r = 0 and an

outer boundary of the inflow at 2rc.
The strategy is then to track the quasi steady-state evolution

of the disk viscous couple g together with M(t), R(t), which
are needed to determine the appropriate values for rc (M) ,
rd (M) , and then to employ σ = g/3πνj to determine the disk
profile for a given viscosity profile. For stable rotation, M(t) is
found by setting gp = 0 in Equation (30) and substituting into
Equation (32),

Ṁ

M
= F

M

(
1 +

(
jp

jd − jp

)[(
ro

rc

)1/2

−
(

rs

rc

)1/2
]

− 1

2

(
jc

jd − jp

) [
ro

rc

− rs

rc

] )
. (35)

The evolution of the planet’s radius, R(t), on the other hand, must
be obtained from a planet contraction model (see Section 5).

3.5.2. Critical Rotation

Once the planet is rotating at the critical rate, ωc ≈
(GM/R3)1/2, a combination of mass shedding and viscous
torques (gp �= 0) will maintain its spin angular momentum at
L = Lc = λM (GMR)1/2 . Notwithstanding, the rate of change
of L is

L̇ = F

2

[
rs

rc

− ri

rc

]
jc − Fpjp − gp, (36)

where the first term is the angular momentum falling directly on
the planet and the last two terms describe the angular momentum
exchange with the disk. If Equation (30) is used to eliminate gP,
Equation (36) becomes

L̇ = −Fpjd + Fjc − F

[(
ro

rc

)1/2

−
(

rs

rc

)1/2
]

jd . (37)

This must be equated to Equation (6) to find

λM

(
R

rd

)1/2 [
3

2

Ṁ

M
+

1

2

Ṙ

R

]
= F

[ (
rc

rd

)1/2

−
(

ro

rc

)1/2

+

(
rs

rc

)1/2
]

− Fp. (38)

Using (32) to remove FP yields after some manipulation,

[
3 − 2

λ

( rd

R

)1/2
]

Ṁ

M
+

Ṙ

R
= −2

λ

( rd

R

)1/2 F

M

[
1 −

(
rc

rd

)1/2
]

.

(39)
In the limit (rd/R)1/2 » 1, this expression reduces to

Ṁ ≈ −λ

2

(
R

rd

)1/2
M

τKH

+ F

[
1 −

(
rc

rd

)1/2
]

. (40)

Note that the disk outflow is

Fd = F − Ṁ ≈ λ

2

(
R

rd

)1/2
M

τKH

+ F

(
rc

rd

)1/2

. (41)
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The flux across the disk’s outer edge is always positive and
contains a contribution generated by the contraction and one by
the inflow. However, the flux at the planet is

Fp = Fd − F

[
3

2
−

(
rs

rc

)1/2
]

, (42)

which can be either positive (a spin out disk) or negative (an
accretion disk). In state C1, Fp = Fd > 0, and the disk is due to
spin-out. However, Fp progressively decreases from Fd in state
C2, until in stage C3, Fp = Fd − F, and the planet accretes
material from the disk (Fp < 0) if

λ

2

(
R

rd

)1/2
M

τKH
< F

[
1 −

(
rc

rd

)1/2
]

. (43)

We now return to Equations (30) and (31), but this time gP is
eliminated to find

g = Fp (jd − j ) + F

[(
ro

rc

)1/2

−
(

rs

rc

)1/2
]

jd

− F

[(
rz

rc

)1/2

−
(

rs

rc

)1/2
]

j − F

2

[
ro

rc

− rz

rc

]
jc. (44)

Using Equation (42), setting ro = (9/4) rc, g = 3πσνj, and
dividing throughout by j gives

3πσν = (F − Ṁ)

[( rd

r

)1/2
− 1

]
+ F

[
3

2
−

(
rz

rc

)1/2
]

− F

2

[
9

4
− rz

rc

] ( rc

r

)1/2
, (45)

which completes the solution for the critical rotation case.
Equations (33–34) and (44–45) are among the main contribu-

tions of this paper. In the following sections, the critical rotation
case will be applied to some specific examples. Before doing so,
however, we will discuss the angular momentum of the inflow
in more detail.

4. INFLOW ANGULAR MOMENTUM

Disk solutions Equations (33) and (44) are given in terms
of the centrifugal radius, rc. This quantity is quite sensitive
to the details of the inflow, depending on the square of the
angular momentum bias, � = jc/R

2
H Ω, which itself comes

from averaging a specific angular momentum, j, that could vary
widely across the inflow boundaries. Clearly, the compactness
of the giant planet satellite systems could most economically
be accounted for by an inflow that penetrates deeply into the
planet’s potential well and deposits presatellite material there
directly. Support for this notion is provided by the calculations
of Lissauer and co-workers that found � = 1/4 for undeflected
2D Keplerian flow across a region of radius r = RH (Lissauer &
Kary 1991; Lissauer 1995), and was adopted as a fiducial value
in some recent Galilean satellite formation models, e.g., Canup
& Ward (2002) and Mosqueira & Estrada (2003) (although the
latter applies this only to the inner three satellites). Undeflected
flow can be viewed as a limiting case of streamline behavior
found from integrating the planar Hill equations of motion

d2x/dt2 − 3Ω2x − 2Ωdy/dt = −∂ (ϕ + η) /∂x, (46)

d2y/dt2 + 2Ωdx/dt = −∂ (ϕ + η) /∂y, (47)

where x, y are local Cartesian coordinates in a frame attached to
the planet and rotating at its circumstellar orbital frequency Ω,
ϕ = −GM/(x2 + y2)1/2 is the planet’s gravitational potential
(ignoring the indirect part) and η is the enthalpy of the gas.
The enthalpy tends to counteract the potential so that their
sum, ϕ + η, varies less than ϕ alone (see, e.g., Paardekooper
& Papaloizou 2009). In this context, Lissauer’s problem can be
considered a limiting case where ϕ + η = constant, and the
solution reduces to pure Keplerian shear, with ẋ = 0, x = xo,
ẏ = −3Ωxo/2, where xo is the unperturbed streamline location
at a large distance from the planet, namely, the dashed lines in
Figure 2(a). In general, the specific angular momentum of the
flow with respect to the planet at any point is given by

j (x, y) = xẏ − yẋ + r2Ω = jrot + r2Ω. (48)

The first term, jrot, is the z-component of r ×v while the second
term compensates for the fact that the cross product is being
taken in a rotating frame (e.g., Lissauer & Kary 1991). The
evaluation of r2Ω = R2

H Ω is the same for a streamline crossing
anywhere on the r = RH circle, but jrot is not, and finding
its average for the entire flow, j̄rot, requires weighting each
streamline contribution by its flux fraction, dj̄rot = jrotdF/F,
where dF = Σ |v| dl is the flux along a “tube’ of width dl, and
we have here denoted the circumstellar disk surface density by
Σ. If a steady-state flow is assumed, the flux dF is constant
and can be evaluated far from the planet where the flow is
Keplerian, so that Σ → Σo, v → − (3/2) xoΩ, dl → dxo,
and dF = (3/2) ΣoΩxodxo. Integrating dF across the range
xmin < xo < xmax of streamlines that eventually hit the Hill
sphere, one finds F = (3/4) ΣoΩ(x2

max − x2
min), and thus the

quantity,
dj̄ rot

dxo

= 2jrotxo

x2
max − x2

min

(49)

reveals from where contributions to j̄rot originate. For unde-
flected shear flow, i.e., neglecting the planet’s gravity, jrot =
− (3/2) x2

oΩ, xmin = 0, xmax = RH, dj̄rot/dxo = −3x3
oΩ/R2

H ,
and j̄rot = − (3/4) R2

H Ω. The left curves in Figure 2(b) display
jrot, dj̄rot/dxo as functions of xo for the undeflected case in
which all streamlines have jrot � 0. Transferring to the non-
rotating frame then gives the average specific angular momen-
tum, jc = j̄rot +R2

H Ω = (1/4) R2
H Ω, implying a bias of � = 1/4

(Lissauer & Kary 1991).
It is instructive to compare this situation with the opposite

extreme, ϕ + η ≈ ϕ, where parcels respond only to the planet’s
gravity; we will refer to this as the cold disk case corresponding
to zero pressure and η ∼ O(c2) → 0. Figure 2(a) shows a
numerical integration of trajectories in this limit (solid curves)
and their corresponding contributions, jrot, dj̄rot/dxo, are also
shown by the right curves in Figure 2(b). The resulting average
is j̄rot = −0.55R2

H Ω, implying a bias � ∼ 0.45, and would lead
to a more extended disk, i.e., rc ∼ 50RJ for Jupiter. Two effects
contribute to a less negative value of j̄rot than in the pure shear
case: (1) some of the streamlines now have positive values of
jrot because they acquire a velocity component toward the y-
axis and (2) the range of xo intersecting the r = RH circle has
shifted outward, increasing the flux fraction associated with less
negative jrot (Figure 2(b), right curves).

Under what conditions is ϕ+η ≈ constant a more appropriate
approximation than ϕ + η ≈ ϕ? We note that ϕ ≈ η ≈ c2 at
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(a)

(b)

Figure 2. Properties of the flow crossing a planet’s Hill sphere in 2D. Distances
are shown in units of Hill radii. (a) Flow streamlines are shown for two end-
member cases: vertical dashed lines correspond to the case of unperturbed flow
exterior to the Hill sphere (e.g., Lissauer & Kary 1991), while solid curves
correspond to the case in which gas parcels respond only to the planet’s gravity
and pressure forces are unimportant. For the latter, the originating xo/RH values
at a large distance from the planet for several of the streamlines are indicated. (b)
The specific angular momentum of the streamlines that intersect the Hill sphere
(jrot) scaled to R2

H Ω is shown as a function of initial streamline separation,
xo/RH . The bold dashed curve on the left corresponds to the unperturbed
flow case appropriate when the Bondi radius is comparable to the Hill radius
(RB/RH = 1) , while the bold solid curve on the right corresponds to the cold
disk/no-pressure case (RB/RH � 1) . The rate of change of the average jrot
with respect to xo scaled to R2

H Ω is also shown as a function of xo/RH for
the unperturbed case (left light-dashed curve) and the cold disk case (right
light-solid curve).

Figure 3. Specific angular momentum bias of the flow crossing a planet’s
Hill sphere as a function of the ratio between the planet’s Bondi radius and
its Hill radius. Black diamonds and the black dotted curve correspond to the
heuristic model developed in Section 4. Gray and red points indicate results
from hydrodynamical simulations of D’Angelo et al. (2003; see also Estrada
et al. 2009) and Ayliffe & Bate (2009), respectively. Open blue circles are
values given in Machida et al. (2008), while the dashed blue line and solid
blue circles correspond to the Machida et al. values corrected to include the
contribution of the rotating frame (see the text for details). The right axis shows
the corresponding value of the centrifugal radius scaled to a Jupiter radius,
assuming a Jupiter mass planet at 5.2 AU.

r = GM/c2 ≡ RB, which is the Bondi radius. For r � RB, the
enthalpy can counteract variations in the potential fairly well
because as the density rises from gravitational focusing, the
pressure rises as well, creating a pressure gradient that opposes
the planet’s gravitation (e.g., Paardekooper & Papaloizou 2009).
However, when r � RB, ϕ » η and pressure is no longer
sufficient for this. This suggests that we might obtain a sense
of the combined influence by a simple heuristic extension of
Lissauer’s approach that treats streamlines as undeflected until
they come within the planet’s Bondi radius and then follows the
trajectories under the planet’s gravity alone. Figure 3 displays
as black diamonds the resulting � ’s from such a procedure for
selected values of RB/RH = 3(RH/h)2, where h ∼ c/Ω is
the half-thickness of the circumstellar disk. For a constant Hill
radius, there is a steady decrease of the bias with decreasing
Bondi length or equivalently for a hotter, thicker nebula. What
if RB < RH ? In this circumstance, materials with impact
parameters RB < xo < RH also pass by the planet and
RB supercedes RH as the accretion boundary. Consequently,
jc ∼ (1/4) R2

BΩ with an effective bias of � ∼ (1/4) (RB/RH )2 ;
this is indicated in Figure 3 by the black dotted curve.

Although illustrative, its doubtful that the heuristic model
above can provide accurate enough predictions to model the
pre-satellite disk, and ultimately, numerical simulations will be
required to ascertain the behavior of � and rc as functions of the
planet’s mass and surrounding circumstellar disk environment.
Korycansky & Papaloizou (1996) numerically integrated the
equations of motion along with the continuity equation, ∇ ·
(σv) = 0, for a 2D steady-state flow, assuming an isothermal
disk and no accretion. They found that the flow pattern included
a largely pressure supported region circulating the planet that
has a radial extent almost equal to RH . Since the material could
not cool below the assumed isothermal temperature, this most
closely corresponds to the early phase when the gas envelope
fills the Hill sphere and cannot contract fast enough to detach
from that boundary (i.e., designated Model A by Papaloizou
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& Nelson 2005, see Section 5). In that situation, the planet’s
accretion rate is regulated by its luminosity. Even so, the
mass and angular momentum of the circulating region were
determined, and we can use them to ascertain the specific angular
momentum of the envelope destined to contract. These values
are shown in Figure 3 as green circles for cases presented by
Korycansky & Papaloizou (1996). The cases they chose are for
rather small Bondi radii, namely, RB/RH � 31/3 = 1.44, which
nevertheless could correspond to a Jovian size planet in a solar
nebula of scale height h/a ∼ O(0.1). Interestingly, they are
comparable to the simple estimate of our heuristic model when
RB < RH .

D’Angelo et al. (2003; see also Estrada et al. 2009) used a
nested grid hydrodynamics code to study gas flow in the vicin-
ity of accreting and non-accreting planets. The surface density
and azimuthally averaged specific angular momentum, j, were
determined as a function of distance from the planet. Ayliffe &
Bate (2009) have also computed the specific angular momen-
tum inside the Hill sphere, but used a 3D smoothed particle
hydrodynamics code. Both works adopt a thin circumstellar
disk of scale height h/a = 0.05 so that for a Jupiter mass
planet, the Bondi radius is 5.7 times the Hill radius. The peak
values of j ∼ (4, 3) × 1017 cm2 s−1 for planet orbiting ma-
terial found in these studies, respectively, correspond to peak
biases of �o ≡ j/R2

H Ω ∼ 0.8, 0.6, which, if identified with the
outer radius of the infall, imply that ro = �2

o/3RH ∼ 0.21RH ,
0.12RH . Although the disks actually extend farther than this in
radius, they are not centrifugally supported structures in their
outer portions.

To relate these findings to an average specific angular mo-
mentum, jc for these disks, we have digitized the disk surface
density and angular momentum curves found in Estrada et al.
(2009) and Ayliffe & Bate (2009) and used them to compute the
total disk mass and angular momentum; their ratio then gives the
average specific angular momentum, jc. The resulting biases are
� ∼ 0.69 and 0.56, giving centrifugal radii of 118RJ and 78RJ ,
respectively, and these are indicated in Figure 3 as gray and
red points at RB/RH = 5.7. Ayliffe & Bate also consider two
other planetary masses, 0.3MJ and 0.5MJ , for the same nebula
scale height, although the smallest mass does not always form
a circumplanetary disk (perhaps because the high accretion rate
they adopt results in very hot structures). These correspond to
RB/RH = 2.6 and 3.6, and the bias values obtained by digitizing
their curves are � ≈ 0.40 and 0.48, also included in Figure 3 as
red dots. Since as Korycansky & Papaloizou point out, the prob-
lem is scalable by the single parameter RH/h = (RB/3RH )1/2 ,
we can scale these results to a full Jupiter size, where the same
RB/RH applies if h/a = 0.075, 0.063. It does not seem unrea-
sonable that scale heights this large or even higher could have
prevailed within a few Hill sphere distances of Jupiter given its
energetic interaction with the solar nebula. These � values yield
centrifugal radii of ∼ (39, 57) RJ .

Machida et al. (2008; see also Machida 2009) have also
investigated angular momentum accretion onto a giant planet
by means of a 3D nested grid code using a much higher spatial
resolution inside the Hill sphere than other studies. They report
the average specific angular momentum directly for several
planetary masses and these are shown in Figure 3 by open blue
circles. They find that the resulting values can be fit with the
scaling jc = 1.4 × 1017 (M/MJ ) cm2 s−1 for masses � MJ

in a solar nebula with h/a = 0.05 at 5.2 AU. This gives a bias
of � = 0.29 (M/MJ )1/3 , and since these authors also point out
that the problem is scalable by RH/h ∝ (RB/RH )1/2 ∝ M1/3,

we can deduce that � ∼ 0.12 (RB/RH )1/2 for RB/RH � 5.7.
Although the slope of this curve is quite similar to that found
for our heuristic model, the values fall below those estimates as
well as the results of the other numerical simulations. However,
Machida et al. (2008) and M. N. Machida (2009, private
communication) did not correct for the rotating frame of the
shearing sheet formalism employed. This can be inferred from
their finding that the cumulative angular momentum, J, inside a
sphere of their initial unperturbed distribution is negative (their
Section 4.4). To correct for the fact that the coordinate frame
is rotating at frequency Ω, one would then have to include an
additional angular momentum of IΩ in the inventory, where
I = (2/5) MR2 is the moment of inertia of a constant density
sphere, giving a total positive J = (1/10) MR2Ω.

To make an analogous rotational correction to their accreted
disks, one must know the details of the disk’s structure, since
a constant density cannot be used. If we make the assumption
that the disk is flattened and replace the spatial density with a
surface density description, σ (r) , the angular momentum is

J =
∫ RH

0
2πr2σvϕdr =

∫ RH

0
2πr2σ

(
vϕ,R + rΩ

)
dr

= JR + IdΩ, (50)

where vϕ′ , vϕ,R are the azimuthal velocities of disk material
in the inertial and rotating frames respectively, and Id =
2π

∫ RH

0 r3σdr is the moment of inertia of the disk. Dividing (50)

by M = 2π
∫ RH

0 rσdr, the first term should recover the values,
jR = JR/M, found by Machida et al. (2008), while the second
term is the desired correction jcor = Ω

∫ RH

0 r3σdr/
∫ RH

0 rσdr.

Assuming a power-law disk, σ ∝ r−s , the correction factor
reduces to (2 − s)/(4 − s)R2

H Ω (for s �= 2, 4). Unfortunately,
an azimuthally averaged surface density profile is not given
directly in Machida et al. (2008) although the cumulative disk
mass as a function of radius is plotted logarithmically. There one
finds a curve that is quite flat with d (log M) /d (log r) ≈ 0.3,
implying that M ∝ r0.3, dM ∝ r−0.7dr. Since dM = 2πrσdr
as well, we infer that σ ∝ r−1.7, which is considerably steeper
than that given by Ayliffe & Bate (2009), although the latter’s
curves do steepen quite a bit at smaller r. Setting s ∼ 1.7
yields a correction factor of ∼0.13R2

H Ω, and with this, the
angular momentum bias in the inertial frame becomes � ≈
0.12 (RB/RH )1/2 + 0.13. This is also included in Figure 3 as the
blue dashed curve and is remarkably similar in both values and
slope to our heuristic values (indeed, a better concurrence than
we have any right to expect). The rotation corrected individual
values are also shown as filled blue circles.

We note in general that inferring the infall angular momen-
tum from the accumulated circumplanetary disk in hydrody-
namic calculations is complicated by the fact that some vis-
cous evolution of the disks is likely in these simulations and
this tends to increase the disks’ average specific angular mo-
mentum because mass accreted by the planet has very low
j = (GMR)1/2 , thus fractionally decreasing the mass of the
disk more than its angular momentum. For example, D’Angelo
et al. (2003) use a constant viscosity of 1015 cm2 s−1 for some
of their modeling for which the time scale of viscous evolution,
τν ≈ r2

d /ν = 1.6 × 10−3 (rd/RJ )2 yr, is only ∼O (10) yr for
rd ∼ 102RJ . The effective viscosity for the SPH simulations of
Ayliffe & Bate (2009) depends on the smoothing length of the
particles which is not given, but some viscous evolution of their
circumplanetary disks is likely to have occurred as well (M. R.
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Bate 2009, private communication). Machida et al. (2008) do
not include a viscosity term in their equations of motion. There
is, of course, a numerical viscosity associated with a grid code,
although Machida (2009) argues that it is small enough to be
ignored for their simulations.

Based on modeling efforts to date, we infer that the inflow
could fall in a fairly compact pattern for a sufficiently small
Bondi radius, helping explain the scale of the satellite systems.
The calculation is challenging (e.g., accounting for the viscous
evolution of the circumplanetary disk material may well be
required and has not been done to date), and the ultimate values
will be dependent on the local nebula conditions, which are
likely to remain uncertain. However, the bias is probably larger
than the pure shear estimate of 1/4, particularly for Jupiter. For
a full mass Jupiter, 2 < RB/RH < 3 for 0.085 > h/r >
0.069, suggesting a bias between 1/3 and 2/5; for Saturn,
1 < RB/RH < 2 for 0.079 > h/a > 0.056 suggesting �
more in the range of 1/4–1/3. The lower of these Bondi values
imply rc ∼ 28RJ , 23RS, while the higher values correspond to
rc ∼ 40RJ , 40RS. The outer boundary of the inflow, ro, would
still be quite small compared to RH for Δj/j ∼ 1 and could be
similar in scale to the regular satellite systems if the range of
incoming Δj/j was smaller than order unity used in Section 3.
We look forward to further, high-resolution simulations of giant
planet gas accretion for a variety of planet masses and disk
conditions, which could help tighten the constraints on this
important issue.

5. CONSTRUCTING PLANET–DISK HISTORIES

Returning to the circumplanetary disk model, Equations (39)
and (45) can be used to determine the time evolution of the
accompanying disk structure for a critically rotating planet
as functions of the angular momentum bias, the total inflow
rate, F (t) , and a planetary contraction model. We begin in
Section 5.1 by describing how to implement our disk formation
machinery with a numerical planet contraction model such as
that of Papaloizou & Nelson (2005). We then examine the case
of a contracting polytrope in Section 5.2. This polytropic model
retains much of the fundamental physics of the planet–disk
system but has the advantage of furnishing analytical formulae
for the accretion and contraction rates. Finally, we consider the
possibility of a relatively brief envelope collapse phase and the
subsequent post-collapse evolution.

5.1. A Numerical Contraction Model

Papaloizou & Nelson (2005) tracked a Jovian planet’s evolu-
tion including ongoing gas accretion, modeling the planet’s state
by numerically integrating stellar structure equations modified
by the existence of a solid core (an approach also used by, e.g.,
Bodenheimer & Pollack 1986 and Pollack et al. 1996). Two
classes of giant planet formation models were considered by
Papaloizou & Nelson (2005): Model A assumed the planet ex-
tends to the boundary of the Hill sphere and is relevant to the
early phase of accretion, while Model B assumed a free bound-
ary of a contracting planet that accretes mass from a circumplan-
etary disk, appropriate for a gas planet’s final growth stages. The
Papaloizou & Nelson (2005) models do not track the accreted
angular momentum. Yet the existence of a circumplanetary disk
at all implies a net angular momentum content of the inflowing
gas, and for self-consistency, one should account for the removal
of any excess angular momentum that would otherwise inhibit
the planet’s contraction. Here, we utilize a Model B result shown

in Figures 5(a) and 5(b). Digitized versions of M(t) and R(t) can
then be used in conjunction with Equation (39) to eliminate F in
Equation (45). We should point out, however, that the deduced
inflow is not necessarily the same as employed in Papaloizou &
Nelson (2005) since they did not explicitly model the disk.
Rather, it is an inflow that would give the same mass and radius
time dependence for the planet when the additional disk physics
is included.

5.2. An Inflow Model, F(t)

To implement the polytropic and/or collapse approaches we
need to furnish a specific model for the time-varying mass inflow
rate, F(t). Early on, we assume that the planet fills its Hill
sphere and accretion becomes regulated by its luminosity, i.e.,
a type Model A object. However, because our interest is in
the establishment of a circumplanetary disk, we wish to follow
models that track the system as the planet separates from this
boundary, i.e., Ṙ < ṘH , until the inflow ends as the nebula
dissipates. The following discussion describes three possible
growth phases that we term shear-limited, diffusion-limited, and
torque-limited and develops a simple parameterization for F(t).

We start by considering a planet orbiting within a locally
uniform circumstellar disk with surface density Σ. At first, the
accretion rate is only limited by the Keplerian shear of the gas
that brings material azimuthally to the planet and, as given in
Section 4, is of order Facc ≈ 2 × (3/4) Σ(x2

max − x2
min)Ω =

3Σx̄ΔxΩ, where Δx, x̄ are the width and mid-point of the
accretion annulus, and the lead factor of 2 comes from assuming
material is accreted from both exterior and interior to the orbit.
Using Figure 2 as a guide, we estimate xmax ∼ 2.3RH , xmin ∼
1.6RH ⇒ x̄ ∼ 2RH , Δx ∼ 0.7RH , and set Facc ≈ 4ΣR2

H Ω. As
the planet gains mass, RH ∝ M1/3increases and its accretional
reach extends further into the disk. However the half-width, w,
of the disk annulus that has been cannibalized increases as well,
varying roughly linearly with the mass, dM = 4πΣadw, and
eventually the rapid growth rate begins to stall when the planet
reaches the so-called isolation mass for which these distances
become comparable,3

Misol

M�

= 8√
3

(
xmax

RH

)3/2 (
πΣa2

M�

)3/2

. (51)

To increase its mass beyond this point, the planet must rely
on the ability of the disk material initially outside its accretion
annulus to viscously diffuse into its vicinity. The planet’s growth
rate then becomes diffusion-limited, for which Fdiff ≈ 3πΣνneb
is a more appropriate rate.4 Locally, the shear rate must still
apply to the diffusively delivered material, implying that for
Fdiff < Facc, the steady-state surface density right at the
planet, Σp, falls below that of the ambient disk such that
Σp/Σ ≈ 3πνneb/4R2

H Ω. As the planet’s growth continues, it
may become large enough that tidal torques exerted directly on
the disk by the planet begin to oppose the diffusion process. A
balance between the planet’s density wave torques and viscous
stresses in the disk leads to a more local and steeper edged gap
that further lowers the density being accreted by a factor of

3 Substitution of
√

12RH for xmax gives an oft quoted isolation mass for
planetesimal accretion (Lissauer & Stewart 1993; Ward 1993) but we prefer to
use the xmax of Section 4 for this rapid gas accretion phase.
4 Note that νneb refers to the solar nebula viscosity. This is not the same as the
viscosity of the circumplanetary disk even for identical α-values (see
Section 6.1).
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exp (−M/Mν) ,where

Mν

M�

≈ 6π

5

( νneb

a2Ω

) (
x̄

RH

)3

≈ 9.6πα

(
h

a

)2

(52)

is the so-called viscous mass (e.g., Ward & Hahn 2000) at
which the planet’s torques begin to create a significant density
depression, O (1/e) Σ, and the final form in Equation (52)
assumes an alpha-type viscosity law, νneb = αch (Shakura &
Sunyaev 1973). As planetary torques become the bottle neck of
the inflow, diffusion re-supplies the region outside the torque-
induced gap and the density there rises again to more or less
the disk ambient value. This is the torque-limited phase and
continues until the disk is dissipated, which is assumed to occur
on a characteristic time, τneb, i.e., Σ ≈ Σoe

−t/τneb .
Assembling these considerations into a composite, the fol-

lowing prescription for F(t) is adopted:

Shear − limited :

Facc ≈ 4ΣoR
2
H Ωe−M/Mν e−t/τneb for M � Misol

Diffusion − limited :

Fdiff ≈ 3πΣoνnebe
−t/τneb for Misol � M � Mtq (53)

Torque − limited :

Facc ≈ 4ΣoR
2
H Ωe−M/Mve−t/τneb for Mtq � M.

Note that the same functional form is used in the first and third
expressions, but this rate tends to be limited more by the R2

H

factor at low mass (shear-limited), and by the e−M/Mν factor
at high mass (torque-limited). The ratio of the two expressions
employed in Equation (53) is

Facc

Fdiff
= 4

3π

(
R2

H Ω
νneb

)
e−M/Mν ≈ 6.15

(
M�

Mν

)1/3(
M

Mν

)2/3

e−M/Mν,

(54)
where Equation (52) was used to eliminate νneb in favor of
Mν . Figure 4(a) shows this for Mν = 0.3MJ and indicates the
domain of each growth phase. The transition mass, Mtq,between
the diffusion and torque-limited phases is found by setting this
ratio to unity to find

(
Mtq

Mν

)2/3

e−Mtq/Mν = 0.162

(
Mν

M�

)1/3

. (55)

Note that Facc/Fdiff and Mtq do not depend on the disk
surface density, but the value of the isolation mass does.
The more massive the disk, the further to the right the Misol
transition boundary to diffusion-limited growth falls, i.e., at
larger planetary mass. In fact for heavy disks, the planet may
achieve sufficient mass to initiate gap opening before it hits
the isolation mass given by Equation (51). This motivates a
generalization of Misol, obtained by including the exponential
term in the relationship dM ≈ 4πΣe−M/Mν adw. Finally, if the
predicted gap width w ∼ xmax for the isolation mass is smaller
that the scale height of the nebula, Rayleigh instabilities in the
steep walls of the narrow gap would vigorously fill it in again
so it seems likely that the width should not be less than h.
As a simple device to insure this, we replace w ∼ xmax with
w ∼ xmax + h. Incorporating these changes leads to

eMisol/Mν − 1

(xmax + h) /a
≈ 4πΣoa

2

Mν

. (56)

(a)

(b)

Figure 4. (a) Ratio of inflow rates as a function of planet mass in Jupiter masses
for a fixed value of the viscous mass, Mν (corresponding to a fixed disk viscosity
for a given h). The planet’s growth is shear-limited so long as its mass is less than
the isolation mass, with Misol computed here assuming Md/MJ ∼ 1. Once the
planet has depleted the material initially in its vicinity, its rate becomes limited
by the rate at which diffusion can resupply material. This continues until its
mass becomes so large that its torques control the rate of inflow

(
M > Mtq

)
.

(b) The scaled inflow rate is shown as a function of time in units of the nebular
dissipation timescale (τneb) for multiple values of Md/MJ as indicated for each
of the curves. For a sufficiently large disk mass (e.g., Md/MJ = 50), planetary
torques constrain the inflow rate before the isolation mass is reached, and thus in
this case growth transitions directly from the shear-limited to the torque-limited
regimes.

In Figure 6, Misol is plotted as a function of the disk surface
density through the parameter πΣa2 ≡ Md. The diffusion-
dominated regime is bounded by the Misol and Mtq curves;
elsewhere Facc applies.

The inflow model depends on three parameters, τneb,
Σo (or equivalently Md ), and νneb (or equivalently, Mν).
It will also prove convenient to introduce yet another
parameter that involves their product, namely, MD =∫ ∞

0 Fdiffdt = 3πΣoνnebτneb. This can be thought of as the to-
tal amount of mass that can be delivered to the planet’s loca-
tion via diffusion over the lifetime of the disk. In terms of Md

and Mν,

MD = 5

2π

(
RH

x̄

)3

Mν (Ωτneb)

(
Md

M�

)
= 52.6M ′

ντ6Md,

(57)
where τneb = τ6 × 106 yr and the prime denotes a normalization
to a Jupiter mass, i.e., M ′

ν = Mν/MJ . Note that for modest
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(a) (b)

(c) (d)

Figure 5. Circumplanetary disk properties produced during an example Jupiter growth and contraction history from Papaloizou & Nelson (2005). (a) and (b) Planet
mass in Jupiter masses and planet radius in Jovian radii shown as a functions of time in units of the planet accretion timescale, τacc.This accretion and planet contraction
history assumes a 5 M⊕ core, τacc = 9 × 105 yr, and the opacity model of Bell & Lin (1994). (c) Disk surface density (in g cm−2) as a function of the radial distance
from the planet’s center in planetary radii. The three curves correspond to three times in the planet history shown in panels (a) and (b): t = 0.01τacc (thick gray line),
0.1τacc (thin solid line), and 0.8τacc (black line). Curves assume � = 1/3 and α = 0.003. (d) Disk temperatures for the same times shown in panel (c) assuming a
vertically isothermal disk that is heated solely by viscous dissipation.

values of M ′
v and τ6,MD tends to be �O (10) larger than Md

because the former refers to a global supply of material while
the latter to a more local inventory. Figure 4(b) displays the
inflow rate as a functions of time for several different values of
M ′

d . For high enough surface densities, where Σ = Md/πa2 =
102M ′

d g cm−2 at 5.2 AU, the diffusion-limited regime can be
avoided. Recall, however, that F (t) is the rate supplied to the
planet by the disk environment and is not always the same as
the accreted mass because during the luminosity-limited phase,
not all of the offered mass is accepted. On the other hand, a
circumplanetary disk cannot exist during this phase.

5.3. A Polytropic Model

We now describe how to build a model for the contraction of a
polytrope subject to a known time-dependent inflow F (t) . This
is a useful construct that can be solved in detail analytically and
used to explore variations in the predicted planet–disk behavior
that arise for different assumed values of the input parameters.

5.3.1. Energy

The potential and thermal energies of a polytrope of degree n
with mass M and radius R are

U = − 3

5 − n

GM2

2
, ET = n

5 − n

GM2

R
· (58)

With a rotating object, there is also a kinetic energy con-
tribution, ER = Iω2/2. For critical rotation, we will adopt
ER = λGM2/2R (see Appendix A for more discussion), and
accordingly, set the total energy to be

E ≈ −
(

3 − n

5 − n
− λ

2

)
GM2

2
≡ −p

GM2

R
· (59)

This can vary in time from energy delivered by accreting
material and from energy lost through the planet’s luminosity,
L. For simplicity, it is assumed that the accreting material falls
from rest at infinity so that any falling directly on the planet
has a kinetic energy equal and opposite to its potential energy.5

Most of the kinetic energy is converted to thermal energy at the
shock front, which we assume is then virialized. We also ignore
the thermal energy of the infalling material that is originating
from the colder solar nebula. Consequently, at this level of
approximation, direct infall to the planet does not add net energy.
Mass falling onto the disk also arrives with essentially zero net
energy, but much of the shock-induced conversion of kinetic
to thermal energy is subsequently radiated away by the disk
due to its large surface-to-volume ratio. By the time material

5 Since the material actually enters the Hill sphere with a speed largely
determined by the star’s gravity, this is approximation is poorest at the start of
contraction but becomes increasingly better as contraction proceeds and
R � RH .
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(a)

(b)

Figure 6. Transition masses in Jupiter masses are shown as a function of Md/MJ

for a τKHJ = 107 yr and for (a) Mν = 0.3MJ and (b) Mv = 0.1MJ . Solid curves
show the isolation mass and the transition mass between the diffusion-limited
and torque-limited growth regimes. The mass at which the planet begins to
contract within its Hill sphere, Mo,is shown for the shear-limited (dashed) and
diffusion-limited (dot-dashed) regimes.

viscously migrates to the planet, most of its kinetic energy is
due to its orbital motion and its specific total energy is negative,
i.e., −GM/2R. Thus, we set

Ė ≈ −L − Fp (−GM/2R) , (60)

where Fp < 0 implies flow onto the planet. Finally, a non-
zero couple between the disk and a critically rotating planet
also does work −gpωc on the planet that decreases its rotational
energy. However, this mechanical energy is converted to thermal
energy, and if we again make the simplifying assumption that
the preponderance of this is virialized and mixed throughout
the planet by convection, the couple does not change the net
energy, and Equation (60) is still approximately valid. Other
partitioning assumptions could also be accommodated by the
formalism developed here, although the computations would
proceed somewhat differently.

For a polytrope, the pressure, P, density, ρ, and temperature,
T, are related through

P = Kρ1+1/n, T = mKρ1/n/	, T = mKn/(n+1)p1/(n+1)/	,
(61)

where m is the molar molecular weight, 	 = 8.31 ×
107 erg mol−1 ◦K−1 is the universal gas constant, and the pro-
portionality constant is K = NnGM (n−1)/nR(3−n)/n, in which

Nn is a numerical value obtained from the Lane–Emden func-
tion for polytropic index n (e.g., Chandrasekhar 1958). The
pressure at the base of the photosphere is set to P ≈ GM/κR2,
where κ is the opacity (e.g., Schwarzchild 1958; Papaloizou &
Nelson 2005). Substituting these into the third expression of
Equation (61) yields the effective temperature,

Teff = m

	
(

GM

R

)(
Nn

n R2

κM

)1/(n+1)

. (62)

From this the planet’s luminosity can be estimated,

L = 4πR2σSBT 4
eff = 4πR2σSB

(m

	
)4

(
GM

R

)4(
Nn

n R2

κM

)4/(n+1)

,

(63)
where σSB = 5.67 × 10−5 erg cm−2 s−1 ◦K−4 is the
Stefan–Boltzman constant. Note that the luminosity is a power
law of the form L ∝ MaRb where a ≡ 4n/ (1 + n) , b =
2(3 − n)/(1 + n).

To determine the contraction rate, E is differentiated with
respect to time,

Ė = −p
GM2

R

(
2
Ṁ

M
− Ṙ

R

)
(64)

and equated to the rate of energy change (60) leading to,

−2
Ṁ

M
+

Ṙ

R
= − LR

pGM2
+

1Fp

2pM
. (65)

The first term on the right-hand side would be −τ−1
KH if Ṁ,

Fp → 0. Evaluating this term for Jupiter’s current mass and
radius provides a convenient reference time scale, namely,
τKHJ ≡ L (MJ ,RJ ) RJ /pGM2

J .

5.3.2. Stable Rotation

Recall that for ω < ωc, the couple at the planet vanishes so
that Equation (30) gives

Fp = −F

[(
ro

rc

)1/2

−
(

rs

rc

)1/2
] (

jd

jd − jp

)

+
F

2

[
ro

rc

− rs

rc

] (
jc

jd − jp

)
. (66)

Equation (65) can be combined with Equation (32) to get

Ṙ

R
= − LR

pGM2
+2

F

M

[(
rs

rc

)1/2

−
(

ri

rc

)1/2
]

+

(
1

2p
− 2

)
Fp

M
,

(67)
which together with Equation (35) can be integrated to give M(t)
and R(t). (Here, we have ignored a small variation in p coming
from the non-critical rotation.)

Since these equations are valid only so long as ω < ωc,
one must also monitor the behavior of ω′ ≡ ω/ωc = L/Lc.
Differentiating with respect to time, ω̇′ = L̇/Lc − ω′L̇c/Lc.
We find L̇ from Equation (36) with gp = 0, and L̇C from
Equation (6) yielding,

ω̇′ = 1

λ

(
1

2

F

M

[
rs

rc

− ri

rc

] ( rc

R

)1/2
− Fp

M

)
−ω′

[
3

2

Ṁ

M
+

1

2

Ṙ

R

]
.

(68)
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Note that if it is assumed that the polytrope starts in an S1 stage,
rs = ro, Fp = 0, and Equations (35) and (65) reduce to

Ṁ = F,
Ṙ

R
= − LR

pGM2
+ 2

F

M
. (69)

These are the same mass and radius rates one would get in
the case of no angular momentum, but unlike a zero angular
momentum case, the spin of the object is changing such that

ω̇′ = F

M

[
1

λ

( rc

R

)1/2
− 5
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Exactly when the body becomes rotationally unstable will
depend in part on its initial spin rate. If we make the additional
assumption of near quasi-equilibrium, ω̇′ ≈ 0, at separation, the
starting value is

ω′
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(
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)
. (71)

This is just what one gets by equating Equation (2) to λMR2
H Ω.

If such an object were to then contract without further mass
gain, it would become rotationally unstable at Rrot given by
Equation (4). However, because further accretion occurs, Rrot
must be determined through integration of Equation (68).

5.3.3. Critical Rotation

Once the planet is rotating critically, we can no longer set
gp = 0. Using Equation (32) to eliminate Fp in Equation (65)
gives
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(72)
Equations (39) and (72) can now be combined to give first-order
equations for M and R separately, namely,

[
2

λ

( rd

R

)1/2
+

1

2p
− 5

]
Ṁ
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If the inflow is known, these can be solved simultaneously with
the luminosity law (63) to obtain the mass and radius of the
polytrope with time. Equation (32) can then be used to back-out
Fp. Finally, substituting M(t), Ṁ(t), and F(t) into Equation (45)
gives the behavior of the couple from which the disk profile can
be found for a given viscosity model.

5.3.4. Polytropic Index, n

We now need to consider what is a suitable polytropic index
for our problem. In the case of convective-adiabatic equilibrium,
n = 1/ (γa − 1) ; γa = Cp/Cv, where γa is the adiabatic
index and Cp,Cv are the specific heats at constant pressure
and volume. For a diatomic gas, γa = 7/5, n = 5/2; for a
monoatomic species, γa = 5/3, n = 3/2. Obviously, since a
contracting giant planet is not actually a polytrope, no index
will be completely satisfactory. However, we do expect in the
early stage of giant planet contraction that the predominant
form of hydrogen will be molecular, with m ∼ 2 g mol−1, and
our calculations will employ an n = 2.5 polytrope throughout
much of the evolution. For the luminosity Equation (63),
a = 20/7, b = 2/7, and in terms of the opacity, κ, this implies
τKHJ = 2.2 × 107(κ/10−2 cm2 g−1)8/7 yr.

5.4. Collapse Phase

Our choice of an n = 2.5 polytrope is predicated on the
assumption that molecular hydrogen is the dominant species.
On the other hand, as the planet contracts, its temperature
rises and hydrogen dissociation will occur at temperatures of
∼3−4×103 ◦K depending on the pressure (e.g., Guillot 2005).
The temperature of a polytrope, from Equation (61), can be
written as

T = Nn

m

	
(

GM

R

)(
3ρ

4πρ̄

)1/n

= 2.3 × 105 ◦K mNn

(
3ρ

4πρ̄

)1/n (
M ′

R′

)
, (75)

where ρ̄ ≡ 3M/4πR3 is the average density, and the mass and
radius have been normalized to Jupiter values in the last expres-
sion. For n = 2.5, the structure is quite centrally condensed,
with a central density ρc = 23.4ρ̄ (Chandrasekhar 1958). This
implies a central temperature Tc = 3.2 × 105

(
M ′/R′) ◦K. We

will see in the next section that for a planet that has attained
more than a few tenths of a Jovian mass by the time it contracts
within the satellite zone, dissociation can commence near its
center, and an n = 2.5 polytrope begins to lose validity.

Dissociation of hydrogen could cause important structural
changes. Absorbing molecular kinetic energy by breaking hy-
drogen bonds enables the body to contract without having to
wait for luminosity losses. Early models, e.g., Bodenheimer
(1974), predicted that envelope collapse occurred on a time
scale, τcol,of only a few years, which would lead to a massive
disk similar to that discussed in Section 2.3.1. However, more
recent work, e.g., Lissauer et al. (2009), finds a more gradual col-
lapse over centuries to millenia. The longer of these timescales is
marginally within the quasi-steady state regime, τcol ≈ τν, and
can be roughly followed by replacing the polytrope contraction
rate (Equation (74)) with Ṙ/R ≈ 1/τcol between the radius
when Tc ≈ 3500 ◦K until the collapse halts near R ≈ 1.75RJ

(Lissauer et al. 2009). Past this point, there is little change in R
and we can set Ṙ ≈ 0 for the duration of the disk.

6. RESULTS AND DISCUSSION

We are now in a position to examine circumplanetary
disks for the above models at various points in their evolu-
tion and start again with the numerical model of Papaloizou
& Nelson (2005) followed in turn by the polytropic and
polytropic+collapse+post-collapse models. In each case, a vis-
cosity law will be required to infer the surface density from the
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couple. For an alpha model, ν = αc2/Ω = αγ	T/μmolΩ,
which depends on temperature as well as distance, where
Ω = (GM/r3)1/2 now refers to the orbital frequency of disk
material around the planet. If it is assumed that viscous dissipa-
tion per unit area, ∼ (9/4) σνΩ2, is the primary heat source
in the disk and that this is balanced against the radiation
losses from both of the disk surfaces, ∼2σSBT 4, one can set
T 4 ≈ 9Ω2σν/8σSB = (3/8π ) (Ω2/σSB)g/j to derive (e.g.,
Canup & Ward 2002)

σ ≈ m

3παγ	
(

8πσSB

3

)1/4 (
GM

r3

)1/4 (
g

j

)3/4

. (76)

6.1. Numerical Model

Figures 5(a) and 5(b) show the planet mass and radius as
functions of time from a Papaloizou & Nelson (2005) model.
Since we know M, Ṁ,R, Ṙ, Equation (39) can be used to deduce
an appropriate inflow F. Equation (45) is then used to find
3πσν as a function of time and combined with Equation (77).
Figure 5(c) shows the resulting behavior of σ as a function of
r at various times during the evolution assuming � = 1/3 and
α = 3 × 10−3. Typical surface densities throughout the satellite
zone are of order ∼103 g cm−2. With time, the inflow slows
and the planet contracts, causing the inner disk edge to move
inward and the peak value for 3πσν to decrease. For the case
shown here, once the planet contracts to a radius smaller than
about 13RJ , the flux at the planet becomes negative (Fp < 0)
and the disk is increasingly well approximated as an accretion
disk. Figure 5(d) shows an estimated temperature profile, T (r) ,
at the same time intervals. Temperatures in the outer part of the
satellite zone become low enough to permit ice condensation.
At late times in a gas giant’s growth, the circumplanetary disk
model approaches that of a pure accretion disk (see also Canup
& Ward 2009).

6.2. The Polytropic Model

6.2.1. Final Planet Mass

For a polytropic model, the inflow (Equation (53)) is specified
along with the luminosity, and M(t) and R(t) are to be derived. To
a good approximation, the planet’s mass as a function of time can
be found by simply integrating the inflow model, although this
ignores the mass in the disk and that lost from its outer boundary.
However, Equation (53) is only applicable after the planet has
detached from its Hill sphere boundary. To follow the planet
as it separates, its mass, Mo (and spin rate, ωo, for subcritical
rotation) at that time are needed as initial conditions for the
evolutionary equations. Separation of the polytrope radius from
its Hill radius does not require that the body actually contract,
but only that it expands less rapidly than RH , i.e., Ṙ − ṘH < 0.
For simplicity, we ignore Fp and set Ṁ = F in Equation (65).
Comparing the resulting Ṙ with ṘH = (RH/3) (Ṁ/M) leads to
a criterion for separation

LRH/pGM2 � 5F/3M. (77)

This can be cast in terms of a mass, Mo at separation using either
Fdiff or Facc, i.e.,

M ′
d = 56M ′

o
16/7/M ′

vτKH6 for Fdiff, (78)

M ′
d = 0.91M ′

o
34/21eMo/Mv/τKH6 for Facc, (79)

(a)

(b)

Figure 7. Planet mass as a function of time. (a) Growth curves for various
values of Md/MJ , assuming a fixed viscous mass, nebular lifetime (3 Myr),
and final planet contraction timescale (10 Myr). Substantial changes in the
initial disk mass produce more modest differences in the final planet mass.
For the moderate viscosity disk considered here (α ∼ 10−3), a final planet with
approximately a Jovian mass requires a small initial disk mass, implying that the
planet’s final growth is diffusion-limited. (b) Growth curves for a fixed disk mass
(Md/MJ = 1) and varied disk viscosities. As the disk viscosity is decreased, the
final planet mass decreases. For Mν/MJ = 0.1, an approximately Jupiter-mass
planet results whose final growth is torque-limited.

where again the primes denote normalization to MJ , and
solutions to both are included in Figure 6 as dot-dashed and
dashed curves. Self-consistency then dictates that only those
portions of each curve that fall in the proper domain are valid;
namely, if Mo (Fdiff) [Mo (Fshear)] lies in (out of) the diffusion-
limited domain. If neither of these conditions are satisfied, the
separation mass is set equal to Misol.

Integrating the inflow model from Mo onward gives the mass
versus time dependences shown in Figures 7(a) and 7(b), where
the angular momentum has been omitted to obtain a base-
line case. In Figure 7(a), the surface density of the disk is
varied though the parameter Md. Also shown is Mtq for the
viscosity corresponding to M ′

ν = 0.3, i.e., α = 2.4 × 10−3

for h/a = 0.07. For small disks, the final planet mass is
limited by MD, the amount of material that can be delivered
before the disk is dissipated. A Jupiter mass is reached for
Md = 0.02MJ for which MD = 0.95MJ . At large disk mass,
it is gap opening that limits the planet’s growth. Figure 7(b)
illustrates the effect of lowering the viscosity, which makes
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gap formation easier. A Jupiter mass can become the limit for
Md = 1MJ , MD = 15.7MJ if M ′

ν = 0.1, α = 8.4 × 10−4,
and it is clear that there are a continuum of possible disk
masses and viscosities that could produce a one Jupiter mass
end state. In what follows, we will follow two specific cases as
representatives of diffusion-limited and torque-limited growth
scenarios.

6.2.2. Contraction Phase

Figures 8(a), 8(b) and 9(a), 9(b) show M(t) and R(t) curves
for diffusion-limited and torque-limited examples respectively,
assuming τneb = 3 × 106 yr and τKHJ = 107 yr. These now
take into account the difference between the mass delivery rate
obtained by integrating the inflow and the M(t) that occurs
because of the presence of the disk physics. This requires a
slight adjustment to the conditions described in Section 6.2.1 to
reach a final state of M = MJ . In the diffusion-limited case,
we require M ′

d = 0.028,M ′
ν = 0.3 to get a full Jupiter mass for

the planet (Figure 8(a)); for the torque-limited case, we obtain
a Jupiter mass by adopting M ′

d = 1, M ′
ν = 0.118 (Figure 9(a)).

An angular momentum bias � = 1/3 is employed for both
cases. For this value, the n = 2.5 polytrope is rotating critically
as it first separates from RH . The polytrope radii are shown in
Figures 8(b) and 9(b), along with the evolving boundaries of the
inflow pattern, ri, ro and the Hill sphere RH . The stages whose
boundaries occur as the planet radius contracts first below ro

and then below ri are labeled by C1, C2, and C3. Note that
the polytrope contracts to the scale of a giant planet satellite
system while the planet’s mass is only a modest fraction of its
final value. This is reasonably consistent with the numerical
modeling results of Papaloizou & Nelson (2005) as well as a
more recent work of Lissauer et al. (2009). Figures 8(c) and
9(c) show the time variations of total inflow, F (black solid),
the portion, Fp (black dashed), falling directly on the planet, the
planet’s accretion rate, Ṁ (green dashed), and the in-plane disk
fluxes at the planet, Fp (red dashed), and outer disk boundary,
Fd (red solid). At first (stage C1, when R > ro), Fp = Fd > 0,
and material is shed by the planet and then migrates outward at
a constant flux to escape from the outer disk edge, rd . As the
system enters stage C2 (r1 � R � ro) , an increasingly larger
fraction of the infall lands directly on the disk and the flux rate
at the planet, Fp, starts to decrease, eventually switching sign
to indicate that material is now being accreted from the disk.
Early fluxes in the torque-limited case (Figure 9(c)) are much
higher than for the diffusion-limited one (Figure 8(c)) because
of the higher accretion rate. However, this period is short lived,
and the precipitous drops in F and Ṁ in the torque-limited case
signals that gap opening has commenced. Figures 8(d) and 9(d)
plot the effective and central temperatures of the polytropes.

6.2.3. Circumplanetary Disk Profile

In Figures 10 and 11, the disk structure is examined for
the diffusion-limited and torque-limited polytropic models,
respectively. Figures 10(a) and 11(a) plot the ratio of the
couple to the specific angular momentum, g/j = 3πσν.
The curves are labeled by time and terminate at the surface
of the planet, which becomes smaller as time elapses. In
Figures 10(b) and 11(b), the behavior of the in-plane flux,
F(r), throughout the disk is exhibited. At the earliest times,
it is positive throughout, but as the planet contracts, the flux
becomes negative at the planet while remaining positive at
the outer disk edge. Once it appears, the stagnation point

where F(r) = 0 remains relatively fixed. Figures 10(c), 10(d),
11(c), and 11(d) illustrate the resulting gas surface density
and disk temperature profiles. These curves are determined
assuming a viscosity strength of α = 3 × 10−3. For this α,
the surface density of the disk in the satellite region spanning
5.9 < r/RJ < 26.4 is only a few hundred g cm−3 or less by
the time the planet has contracted within this region in both the
diffusion-limited and torque-limited examples. This is far less
that the typical MMSN surface densities of O(105–106) g cm−2

estimated by augmenting satellite masses to solar composition
(e.g., Pollack & Consolmagno 1984), but is comparable to
the values employed in the more recent starved disk models
of Canup & Ward (2002, 2009). Along with low surface
densities, one finds cool disk temperatures, because of the
smaller viscous dissipation rate compared to an MMSN surface
density, although the reader is cautioned that contributions from
the planet’s luminosity and nebular insolation have not been
included in the graphs. Cool temperatures favor ice condensation
late in the accretion process, perhaps helping to explain the
progressively higher ice content and lower bulk densities with
distance of the Galilean satellites’ compositions. This issue is
discussed in more detail in Canup & Ward (2002, 2009).

6.3. Collapse Phase

The central temperatures of the polytropes are plotted in
Figures 8(d) and 9(d) and exceed the dissociation temperature
when R′/M ′ � 102. Here we consider the effects of an envelope
collapse phase once this occurs. If the collapse phase is fast
compared to the viscous time scale, the resulting disk is similar
to the inviscid case of Section 2.3.1 and will contain a fair
fraction of the total planet’s mass. This is dictated by the large
angular momentum content of the critically rotating body. For
solar composition material, this would be enough solids to form
much larger and/or more numerous satellites than observed for
the giant planets in our solar system. One could postulate a much
lower solid-to-gas ratio in the planet’s outer layers, perhaps
due to settling, so that only the appropriate amount of satellite
forming material was actually present. But in this case, the low
solids-to-gas ratio in the disk leads to a satellite accretion time
scale that is too slow to prevent the rapid loss of satellites from
type I orbital decay before they reach their requisite size (Canup
& Ward 2002, 2006).

If τcol is comparable to the disk viscous time scale, a
disk mass that is intermediate to the no-collapse and the
rapid collapse cases results. A detailed description of the disk
density and temperature would require the full solution of the
time-dependent diffusion equation rather than a quasi steady-
state approach, but we can venture an order of magnitude
estimate of the amount of mass shed by the planet by the
following argument: from Equations (6) and (13) we infer
that (1 − 3λ/2) Ṁ = (λ/2) MṘ/R + gp/ (GMR)1/2 . Recall
that in an inviscid disk, the couple is zero and the mass of
the spin-out disk is given in Equation (8). The presence of
a viscous torque, gp �= 0, exerted by the disk on the planet
drains angular momentum from the planet so that less mass
needs to be shed to maintain the planet at the edge of rotational
stability. If gp is given by Equation (12), then gp/ (GMR)1/2 =
−Ṁ[(rd/R)1/2 − 1], which leads to Equations (14) and (16).
However, this assumes that changes in the physical state of the
planet are viscously communicated all the way to rd on a time
scale τν that is short compared to changes in Ṙ/R, Ṁ/M. But for
small τcol < τν, the collapse will be over before this can happen.
This suggests that we replace rd with an effective distance, reff,to
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(a) (b)

(c) (d)

Figure 8. Planet growth and inflow history for a diffusion-limited planet modeled as a polytrope with Md/MJ = 0.028, MD/MJ = 1.30, Mν/MJ = 0.3, τneb = 3Myr,
τKHJ = 107 yr, and the inflow angular momentum bias, � = 1/3. (a) Planet mass vs. time in units of the nebular dissipation timescale. The time t = 0 is when the
planet first separates from its Hill sphere. (b) Planet radius vs. time. The planet’s Hill radius is indicated by the dashed line. Dash-dotted and dotted curves show the
outer and inner radii of the inflow pattern. (c) The in-plane fluxes in the disk (Fd, Fp, red solid and dashed curves), total inflow rate (F, solid black curve), inflow rate
onto the planet (Fp, dashed black curve), and rate of change Ṁ of the planet’s mass (green dashed curve) due to both inflow and accretion from the disk shown as a
functions of time. All fluxes are normalized to MJ /τneb. Dotted vertical lines indicate the boundaries between stages labeled C1, C2, C3 as defined in Figure 1. (d)
The polytrope’s central, Tc (upper curve) and effective, Teff ,(lower curve) temperatures as functions of time.

(a) (b)

(c) (d)

Figure 9. Same quantities as in Figure 8, only for a torque-limited planet modeled as a polytrope with Md/MJ = 1, MD/MJ = 18.6, Mv/MJ = 0.118, τneb = 3 Myr,
and τKHJ = 107 yr.
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(a) (b)

(c) (d)

Figure 10. Circumplanetary disk quantities shown at various times for the diffusion-limited planet history considered in Figure 8. The solid, dotted, dashed, and
dot-dashed lines correspond to t/τneb = 0.1, 0.5, 1, and 2, respectively. (a) Ratio of the viscous couple to the specific angular momentum is shown scaled to MJ /τneb.

(b) The disk in-plane flux as a function of the distance from the planet normalized to MJ /τneb. (c) Disk surface density, assuming α = 0.003. (d) Disk temperature as
a function of distance, assuming a vertically isothermal disk and that viscous dissipation is the only source of disk heating.

(a) (b)

(c) (d)

Figure 11. Same quantities as in Figure 11, only for the torque-limited planet history considered in Figure 9. The solid, dotted, dashed, and dot-dashed lines correspond
to t/τneb = 0.03, 0.1, 0.5, and 1, respectively.

which the collapse information has diffused in estimating the
couple at the planet, i.e., gp/ (GMR)1/2 ≈ −Ṁ[(reff/R)1/2 − 1],
which then leads to ΔM/M = O[λ (Rcol/reff)1/2] instead of
Equation (16). (This effective “edge” can be found by replacing
τν with τcol and rd with reff in Equation (81) of the next section.)
Assuming a roughly constant aspect h/r, we conclude that
reff/rd ≈ (τcol/τν)2/3 and ΔM/M ≈ λ (Rcol/rd )1/2 (τν/τcol)1/3 .
Setting Rcol/rd ∼ O(10−1) yields a total disk mass reminiscent

of the MMSN approach if τν/τcol ∼ O(1), i.e., ΔM/M ∼
3.5 × 10−2. However, there is an important difference between
this situation and the traditional MMSN disk. The regulation
of the spin-out mechanism by the viscous couple applies to
both gas and solids, but once shed, the solids may coagulate
and decouple from the gas, remaining in the vicinity of where
they were spun out. The gas, on the other hand, must spread
out to nearly the disk edge to maintain the couple. Thus, the
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(a) (b)

(c) (d)

Figure 12. Alternative history of the diffusion-limited model of Figure 8, but including a collapse phase, Ṙ/R = −1/τcol of a comparable characteristic time to the
viscous time τν of the disk, once the central temperature reaches 3500 K. This is followed by a post-collapse evolution where Ṙ = 0. A higher resolution version of
the collapse interval is shown in 12 (d). The collapse causes a positive spike in both Fp and Fd as material is spun out from the planet (red curves), and there is a
corresponding loss, Ṁ < 0, in the mass of the planet (green curve).

(a) (b)

(c) (d)

Figure 13. Alternative history of torque-limited case including collapse and post-collapse phases.

amount of gas remaining in the vicinity of the solids is more
like ∼ΔM (Rcol/reff)2 ∼ 3.5×10−4M, resulting in comparable
gas and solid surface densities of order ∼103 g cm−2.

We examine this situation in Figures 12 and 13, which repeat
the planet/disk evolutions of Figures 8 and 9, but include a
collapse phase, Ṙ/R = −1/τcol on a time scale comparable to
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(a) (b)

(c) (d)

Figure 14. Surface densities and temperatures of circumplanetary disks are shown in Figures 12 and 13. Panels (a) and (b) are for the diffusion-limited case and the
times sampled, t/τneb = 0.1, 0.323, 0.5 are chosen to fall before collapse (solid line), at the moment of peak Fp (dot-dashed line), and in the post-collapse period
(dotted line). Panels (c) and (d) are corresponding curves for the torque-limited case with t/τneb = 0.03, 0.063, 0.1 chosen with the same sampling criteria.

the viscous time, τcol ≈ τν, that is initiated when the planet’s
central temperature reaches ∼3500 ◦K. The viscous time is
∼104 yr for α = 0.003 (see Equation (81)), which would require
a more protracted collapse than seen in recent models (Lissauer
et al. 2009). The timing of this is displayed in Figures 12(b)
and 13(b) where it is apparent that the planet passes through
the C2 stage very quickly. Figures 12(d) and 13(d) display the
various flux behaviors during the collapse episode on a finer
resolution. (The artificially sharp discontinuities are artifacts
of abruptly switching the Ṙ prescription from the polytrope
description to the collapse description and then again to the
post-collapse state.) At the onset of collapse, there is a sudden
spike in the outward flux, while at the same time the planet’s
mass accretion rate, Ṁ, goes negative. The effect of this is just
discernable on the M versus t plots shown in Figures 12(a) and
13(a). The structure during the collapse is primarily a renewed
spin-out disk with a sudden increase in Fp > 0 that temporarily
interrupts the disk’s transition to that of an accretion disk. These
rates then decay over the duration of the collapse, with Fp going
negative again at about its mid-point. There is a second point of
discontinuity in the Ṙ prescription that starts the post-collapse
epoch, and over time scales much in excess of τcol, the accretion
disk behavior resumes except that the flux at the planet disk
boundary Fp < 0, is more negative than was found in Figures 8
and 9. This is because the radius of the planet is already near
its final value and has cleared the satellite zone having passed
stage 2 quickly. The inflow now falls directly on the disk and
must diffuse to the planet to be accreted. Figure 14 contrasts
the resulting surface density and temperature profiles of the
disk at three separate times selected to be prior to, during, and
after the collapse for the diffusion-limited case (Figures 14(a)
and 14(b)) and the torque-limited case (Figures 14(c) and
14(d)). The surface density reaches somewhat higher values,

∼103 g cm−2, during collapse, but the condition persists for an
only relatively brief period. Were satellites to form during the
collapse interval, their survival during the post-collapse phase
would seem unlikely since several tenths of the planet mass has
yet to be accreted.

7. CONCLUSION

We have developed a self-consistent model for the growth
of a gas giant planet and the development of an accompanying
circumplanetary disk. The model is composed of three elements:
(1) an inflow model describing the properties of the material
inflowing to the planet, primarily the inflow rate and its specific
angular momentum, (2) a viscous quasi steady-state disk model
that describes the in-plane flux, surface density and temperature
of the circumplanetary disk at any given time, and (3) a planet
growth and contraction model that can follow the evolution of
its mass and radius. These components perform as modules that
are linked through appropriate boundary conditions and evolved
in concert. Each could be swapped out for alternative versions
if and when improvements in them become available.

The specific angular momentum of inflowing gas is estimated
using both a heuristic analytical model and results from recent
3D hydrodynamical simulations. We describe the planet’s con-
traction history both with published numerical works and with
an analytical model that treats the planet as a uniformly rotat-
ing polytrope. To describe the time-dependent mass inflow rate
in our analytical model, we consider three regimes of gas gi-
ant planet growth: shear-limited, diffusion-limited, and torque-
limited. The accretion rates associated with these regimes and
the conditions when each predominates are themselves functions
of the planet’s mass and the circumstellar disk mass, viscosity,
and lifetime.
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A suite of planet and nebula histories can yield a Jupiter-
mass planet before the nebula dissipates and gas inflow ends.
We consider two limiting cases in our polytropic model that
both produce a final planet with M ∼ MJ . The first involves a
circumstellar disk with a moderate viscosity and a relatively low
initial mass. In this “diffusion-limited” case, the final stages of
the planet’s growth are regulated by the rate at which material
can diffuse into its local region. The second case involves a
circumstellar disk with a higher mass and somewhat smaller
viscosity. This case results in a planet whose final growth is
“torque limited”, regulated by the strength of its gap-opening
torques on the surrounding nebula.

The coupled evolution of the planet and its circumplanetary
disk displays common features for a numerical planet contrac-
tion model from Papaloizou & Nelson (2005) and for both the
diffusion-limited and torque-limited histories in our polytropic
model. These include:

1. As a critically rotating planet contracts, an initial circum-
planetary disk is produced via spin-out from the planet’s
equatorial region. Once the planet contracts enough that
some of the inflowing gas contains too much angular mo-
mentum to fall directly onto the planet, the disk begins to be
supplied by a combination of spin-out from the planet and
direct inflow from the nebula. Eventually the disk transi-
tions to an accretion disk supplied solely by the inflow and
material flows from the disk onto the planet at the disk’s
inner edge.

2. For a circumplanetary disk viscosity parameter α ∼
10−3 and a final planet contraction timescale �107 yr
(corresponding approximately to a planet opacity �10−2

cm2 g−1), peak gas surface densities in the circumplanetary
disk throughout most of its history are ∼102–103 g cm−2.
Higher viscosities and/or larger planet opacities typically
yield even less massive circumplanetary disks by the time
the planet contracts to a radius smaller than the satellite
zone. These low densities are similar to those invoked in
“gas-starved” disk models (Canup & Ward 2002, 2006,
2009), and are orders-of-magnitude lower than that of the
canonical MMSN, in which σ ∼ 105–106g cm−2. To reach
MMSN disk densities, either a very small circumplanetary
disk viscosity (e.g., α � 10−6) compared to the circum-
stellar disk is required, or else a fairly massive solar nebula
must be invoked, although in this latter situation, the high
disk densities occur when the planet is only a small fraction
of its final mass (see below).

3. Temperatures in the circumplanetary disk as the planet
nears its final mass are typically low enough for ices
at orbital radii greater than about 10–20 planetary radii,
consistent with the formation of ice-rich satellites in these
regions.

4. The history of the system may contain a relatively brief
collapse phase during which the radius of the planet shrinks
through the satellite zone to nearly its final radius. Such an
event is punctuated by a somewhat higher density spin-out
disk, but this decays to the more typical long-term densities
on the viscous time scale of the disk. For the models
considered here, the collapse phase occurred well before
the planet had achieved its final mass, which is consistent
with recent numerical modeling, for instance Lissauer et al.
(2009).

The basis for the prevailing low circumplanetary disk surface
densities can easily be identified using the polytropic model.

From Equation (45), it is apparent that the magnitude of 3πσν
scales with F. It follows that if the inflow rate is diffusion-
limited, Fdiff = 3πΣνneb,and σ will be of order Σ (νneb/ν) .
For comparable alpha values, νneb/ν = Tneb/Tdisk × Ωp/Ω (r) ,
where Ωp is the planet’s heliocentric orbit frequency and Ω (r)
is the circumplanetary orbit frequency of the disk material.
Evaluating the circumplanetary disk frequency at the centrifugal
radius gives Ωp/Ω (rc) = 9/�3. For � = 1/3, this reads
2.4 × 102 while the temperature of the cicumplanetary disk
is a factor of 2 or more higher than the nebula implying that
σ ≈ 102Σ ≈ 104M ′

d g cm−2 At first, it might appear that
setting M ′

d ∼ 10–102 would give MMSN-type values, but
there is a constraint on this choice. If the planet’s mass is
diffusion-limited, we must also satisfy MD = 3πΣoνnebτneb ≈
MJ − Mo (Fdiff) . Using this to eliminate Fdiff, and assuming
Mo � MJ leads to

σ ≈ MJ e−t/τneb

3πvτneb

≈ 1

3

(
MJ

πr2
d

) (
τν

τneb

)
e−t/τneb

≈ 102

(
3 × 10−3

α

)( r

10h

)2
(

e−t/τneb

M ′2/3

)
g cm−2, (80)

where in evaluating (80) we have set

τν ≡ r2
d

ν
≈ 1

α

( rd

h

)2 1

Ω (rd )
= γ 3/2

31/3α

( rd

h

)2 1

Ωp

≈ 104
( γ

0.5

)3/2
(

3 × 10−3

α

) ( rd

10h

)2
yr. (81)

Because σ varies inversely with the viscosity of the circumplan-
etary disk, lowering its alpha value compared to the circumstel-
lar disk would increase the circumplanetary disk surface density,
but values as low as α � O

(
few × 10−6

)
would be necessary

to achieve MMSN values. This would imply quite different tur-
bulence properties for the circumplanetary environment versus
those typically assumed for circumstellar disks. Even then, the
disk is not really equivalent to the more or less static MMSN
paradigm because it is continuously being accreted by the planet
and supplied by the inflow.

If, on the other hand, the inflow rate is shear/torque-limited,
we would instead expect

σ ≈ Σ
(νneb

ν

) Facc

Fdiff

=
[

4

3π

(
MJ

πa2

)
(Ωpτν)

]
M ′

dγ
−2e−M/M ′

ν e−t/τneb . (82)

The bracketed quantity has a value of 2.4 × 105(τν/104 yr)
g cm−2 so again one could seemingly pick values of M ′

d ,M
′
ν

for which the resulting circumplanetary disk surface density is
of order the MMSN values except that these parameters are still
constrained by the requirement that the final planetary mass be
MJ . Let us assume that the disk mass is great enough that the
diffusion-limited regime is completely avoided during accretion.
Integrating Ṁ = Facc to t → ∞, and requiring the final mass
be MJ leads to the constraint

M ′
d

M ′
ν

= π

4

(
3M�

MJ

)2/3
M−1

ν

Ωpτneb

∫ MJ −Me

0
M−2/3e−M/Mν dM

= π

4

(
3M�

MJ

)2/3 exf I
(
xf

)
Ωpτneb

, (83)
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where I
(
xf

) = x
2/3
f

∫ xf

0 e−(xf −x)x−2/3dx is a slowly varying
function of xf = (

1 − M ′
o

)
/M ′

ν whose value ranges from 1.03
to 1.68 over 1 < xf < 25 during which exf changes by several
orders of magnitude. Substituting Equation (83) into (82) gives

σ ≈
(

M�

πa2

) (
MJ

3M�

)1/3 (
τν

τneb

)
M ′

νe
xI (xf )e−M/Mν e−t/τneb

≈ 300M ′
νe

1/M ′
v e−(M+Mo)/Mν g cm−2 (84)

where we have set α = 3 × 10−3, r/10h = 1, and γ = 1/2.
This can still get quite large for small enough M ′

ν, namely,
300M ′

νe
1/M ′

ν = (6.7 × 105, 6.4 × 106) for M ′
ν = (0.1, 0.08)

respectively. However, these peak surface density values occur
early in the accretion, when the planet mass is still rather small.
Indeed, it is likely that the planet has not yet contracted within
the satellite zone. As the planet approaches it final mass, the
inflow wanes and the circumplanetary disk density decreases
with the factor e−(M+Mo)/Mν . For a planet at 50% of its final mass,
these densities have dropped to (4.4 × 103, 1.2 × 104) g cm−2;
at M +Mo = 0.9MJ , the densities are only of order 102 g cm−2.
Thus, low circumplanetary disk gas surface densities are an
inevitable consequence of the progressive decay of the inflow
rate near the planet’s terminal mass in either the diffusion-
limited or torque-limited regimes.

Is there a potential to create an MMSN-style disk through the
onset of a rapid collapse phase? We remarked in Section 6.3
that hydrogen dissociation temperatures are reached at the
center of a polytrope when M ′/R′ = 102. If this occurs
when the planet’s radius is comparable to the satellite system
(R′ ∼ 25), the planet would have achieved only a fraction
of its final mass at the time of the collapse generated spin-
out disk. The later arrival of several tenths of the planet’s
mass onto the disk would completely alter the outcome, with
structure relaxing back to an accretion disk in its post-collapse
stage. If, on the other hand, the opacity of the planet was so
high that its contraction occurred subsequent to its accretion,
i.e., M ′ ∼ O (1) , the collapse would ensue when R′ ≈
102, which is rather large compared to the observed scale of
the satellite systems. In addition, we find that the polytropic
model requires a contraction time scale parameter, τKHJ, some
∼ 300 times τneb, for accretion to be ∼97% complete before
collapse. This implies such high planet opacities, i.e., κ ∼
O (few) cm2 g−1, that it is problematic as to whether the
planet could form within the nebula’s lifetime (Hubickyj et al.
2005). Thus, while a spin-out disk of sufficient solids to form
the satellites appears just attainable for rather extreme values of
the model’s parameters, the range of parameter space resulting
in a gas starved environment at the end of planet formation
is much larger. In addition, the only partially differentiated
states of Callisto (Anderson et al. 2001) and Titan (Iess et al.
2010) argue against their formation in an environment where
all the necessary solids are supplied in a collapse time scale,
because this would allow their accretion to proceed very quickly,
resulting in their complete differentiation.

A key parameter throughout the modeling of the evolution
of the planet–disk system is the angular momentum of the
inflowing material. A prior estimate (Lissauer 1995) for a
purely Keplerian flow predicted an angular momentum bias of
� = 1/4, corresponding to centrifugal radii at Jupiter and Saturn
of 15RJ and 23RS, respectively. Based on results of recent
hydrodynamic simulations (D’Angelo et al. 2003; Machida et al.
2008; Ayliffe & Bate 2009) and a heuristic model described

here that roughly accounts for both pressure forces and the
planet’s gravity, we estimate an average bias in the range of
� = 1/3–2/5 for a fully formed Jupiter, and l = 1/4–1/3 for a
fully formed Saturn. Such values would imply centrifugal radii
at Jupiter between 28 and 40RJ , and between 23 and 40RS

at Saturn. These radii are vastly smaller than the Hill radius
of either planet, and are roughly comparable to the compact
scale of the regular satellite systems. Determination of the
centrifugal radius is a challenging calculation: it is a sensitive
function of the inflow specific angular momentum, which in
turn depends on somewhat uncertain local nebular conditions
(e.g., the nebular scale height and temperature). Future high-
resolution hydrodynamical simulations that explore a wider
range of conditions are needed to provide improved constraints
on this quantity.

Finally, the coupled planet–disk evolution model described
here assumes that the viscous torque between the disk and the
surface of the planet will maintain the planet’s rotation rate at the
limit of rotational stability as the planet contracts. Yet ultimately,
Jupiter and Saturn must be left with less angular momentum than
this to account for their current ∼10 hr rotational days, which
are about a factor of 3 longer than their critical rotation periods.
Accounting for sub-critical rotation is a well-known issue for
Jupiter and Saturn, as well as for protostars. Protostars, also
believed to grow through mass delivered via a viscous accretion
disk, have observed rotation rates that are often much slower
than breakup (e.g., Herbst et al. 2002). Proposed solutions to
account for protostar angular momentum loss may also apply
to gas giant planets, including (1) “disk-locking”, or magnetic
coupling between the central object and its disk that results
in angular momentum transferred to the disk beyond the co-
rotation radius (where the Kepler velocity equals the primary
rotational velocity; e.g., Koenigl 1991; Takata & Stevenson
1996) and (2) magnetocentrifugally driven “X-winds” that
originate from the inner accretion disk, diverting mass and
angular momentum that would otherwise be delivered to the
primary (e.g., Shu et al. 2000). A full treatment of this issue in
the context of the current model will involve, e.g., modifying
the disk profile to include the magnetic torque and assessing
the expected degree of ionization in the disk, which are planned
topics of future work.

This work was supported by grants from NASA’s Outer
Planets Research Program and NSF’s Astrophysics Program
(WRW) and by a grant from NASA’s Origins of Solar Systems
Program (RMC).

APPENDIX A

ROTATIONAL FLATTENING

A rapidly spinning object will flatten into the form of a
spheroid. The general form for the potential of a spheroid in
its midplane is (e.g., Murray & Dermott 1999)

U = −GM

r

[
1 − Σ∞

j=1J2j

(
R

r

)2j
]

, (A1)

where R is the equatorial radius of the body and the coefficients,
J2j involve integrations over the mass distribution. The orbital
frequency of the disk material is given by

Ω2 = 1

r

dU

dr
= GM

r3

[
1 − Σj=1 (2j + 1) J2j

(
R

r

)2j
]

(A2)
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where the lead term gives the Keplerian value, while the other
terms arise from the non-sphericity of the object. Evaluating at
the radius r = R, gives an expression for the critical rotation
frequency, ωc = (GM/R3)1/2[1 − Σj=1 (2j + 1) J2j ]1/2. How-
ever, the values of J2j depend on the rotation rate so the solution
has to be done self-consistently. The expression for the viscous
couple in the disk, g = −2πσνr3dΩ/dr would also be altered
for non-Keplerian rotation, modifying the implied surface den-
sities somewhat. These changes are strongest in the vicinity of
the planet, but are minor corrections in the satellite zone. On the
other hand, the mass exchange rates between planet and disk
and the strength of the couple at the interface, gp, should still be
comparable to those used in the text because the critical angular
momentum of the planet continues to scale with M (GMR)1/2 .
Furthermore, if there is a magnetic coupling with the disk (see
Section 6.3) the rotation may actually be sub-critical anyway.
Since we are not interested in the planet per se, but rather in
its role of providing an inner boundary condition for the disk,
we chose to not include rotational flattening in our analysis.
Nevertheless, it is interesting to estimate how much the critical
frequency might differ from (GM/R3)1/2.

To estimate this, we can employ a rotating polytrope. The
equation of hydrodynamic equilibrium reads

∇
[
ϕ + η − ω2

2
r2 sin2 θ

]
= 0, (A3)

where ϕ is the gravitational potential, η = (n + 1) Kρ1/n is the
enthalpy, and ω is the rotation rate. Taking the divergence of
Equation (A3) yields

∇2η + ∇2ϕ − 2ω2 = (n + 1) K∇2ρ1/n + 4πGρ − 2ω2 = 0,
(A4)

where Poisson’s equation ∇2ϕ = 4πGρ has been used to
eliminate ϕ. Setting ρ = ρcSn, where ρc denotes the central
density of the polytrope and defining a radial scaling factor
ξ = r/a where a2 = (n + 1) Kρ

1/n−1
c /4πG, Equation (A4) can

be rewritten as

∇2
ξ S + Sn = ω2

2πGρc

= α. (A5)

For a non-rotating object, α → 0, there is no angular
dependence and ∇2S − ξ−2∂/∂ξ (ξ 2∂σ/∂ξ ), reducing Equa-
tion (A5) to the Lane–Emden equation for the density of a
polytrope of degree n. For a rotating polytrope, α remains
small even near rotational instability, ∼O(GM/R3),because
the central density is significantly larger than the average den-
sity ρ̄, namely, ρc/ρ̄ = 6.0, 11.4, 23.4 for n = 1.5, 2, 2.5,
using non-rotating models as a guide. Thus, perturbation
techniques can be used to construct rotating models (e.g.,
Chandrasekhar 1933; Monaghan & Roxburgh 1965). It is gen-
erally found that αc = 0.36ρ̄/ρc is the maximum value corre-
sponding to equatorial breakup, regardless of polytrope index, so
that αc ≈ 0.060, 0.032, 0.015 for n = 1.5, 2, 2.5. This implies
a critical rotation rate of ωc = (2πGρcαc)1/2 ≈ 0.85 (πGρ̄)1/2

compared to (GM/R3)1/2 = (4πGρ̄)1/2 = 1.16 (πGρ̄)1/2 used
in the text.

APPENDIX B

SOLAR TIDES

We have used the escape of material at the outer disk boundary
as the primary mechanism of angular momentum loss. However,

our model of the outer edge of the disk, rd, is not well defined
other than it be much further out than the centrifugal radius,
rc of the inflow. R. Nelson (2009, private communication) has
suggested to us that solar tides may also contribute to the angular
momentum loss. If the solar tides could remove all of the excess
angular momentum, it would obviate the need for an outward
flux at rd . This would not change the disk profile too much
because the edge flux is only a small fraction of the inflow
anyway. However, we have envisioned the disk as not extending
to RH because as long as accretion is ongoing, incoming material
that penetrates the Hill sphere in the near equatorial region
interferes with the disk’s expansion. Rather, we have assumed
that disk material is entrained in a portion of this heliocentric
flow that passes into and then exits the Hill sphere. Under these
conditions, the solar tidal torque should be less important and we
have not included it in this initial model. Nevertheless, models
including the solar torque could be constructed and will be
pursued in future work.
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