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Abstract

Saturn’s rings are rock-poor, containing 90%–95% ice by mass. As a group, Saturn’s moons interior to and
including Tethys are also about 90% ice. Tethys itself contains<6% rock by mass, in contrast to its similar-mass
outer neighbor Dione, which contains>40% rock. Here we simulate the evolution of a massive primordial ice-rich
ring and the production of satellites as ring material spreads beyond the Roche limit. We describe the Roche-
interior ring with an analytic model, and use an N-body code to describe material beyond the Roche limit. We track
the accretion and interactions of spawned satellites, including tidal interaction with the planet, assuming a tidal
dissipation factor for Saturn of ~Q 104. We find that ring torques and capture of moons into mutual resonances
produce a system of ice-rich inner moons that extends outward to approximately Tethys’s orbit in 109 years, even
with relatively slow orbital expansion due to tides. The resulting mass and semimajor axis distribution of spawned
moons resembles that of Mimas, Enceladus, and Tethys. We estimate the mass of rock delivered to the moons by
external cometary impactors during a late heavy bombardment. We find that the inner moons receive a mass in
rock comparable to their current total rock content, while Dione and Rhea receive an order-of-magnitude less rock
than their current rock content. This suggests that external contamination may have been the primary source of
rock in the inner moons, and that Dione and Rhea formed from much more rock-rich source material. Reproducing
the distribution of rock among the current inner moons is challenging, and appears to require large impactors
stochasticity and/or the presence of some rock in the initial ring.

Key words: methods: numerical – planetary systems – planets and satellites: formation – planets and satellites:
rings

1. Introduction

Saturn’s satellites display a diversity of masses and composi-
tions that is challenging to explain. Massive Titan likely formed in
a primordial subnebula surrounding Saturn as the planet
completed its gas accretion (e.g., Canup & Ward 2006). The
small icy moons orbiting close to the rings, from Atlas to Janus,
appear to have formed relatively recently from ring material that
collisionally spread beyond the Roche limit (Charnoz et al. 2010).
The origin of the mid-sized moons exterior to Janus and interior to
Titan—including Mimas, Enceladus, Tethys, Dione, and Rhea—
is less clear. Some or all of them may have accreted directly from
Saturn’s subnebula. Such an origin would generally imply
compositions that are roughly half rock and half ice, reflecting
the expected solar composition of material inflowing to the
subnebula. Instead, the mid-sized moons have a broad range of
densities, with Mimas and Tethys being extremely ice-rich with
little or no rock (Table 1). The rings are continually contaminated
by micrometeoroid bombardment, which has increased their rock
content over time (Cuzzi & Estrada 1998). That they remain so
ice-rich even after this contamination implies that the rings were
essentially pure ice when they formed.

The mass of Saturn’s current rings is about a few ´1019 to
perhaps 1020 kg (Robbins et al. 2010). Traditional models for the
origin of Saturn’s rings envisioned an initial ring mass comparable
to that of the current rings, and invoke either the collisional
disruption of a small, Mimas-sized moon orbiting within the
Roche limit by an external impactor (Harris 1984; Charnoz et al.
2009), or the tidal disruption of a cometary interloper that passed
very close to Saturn (Dones 1991). However, it is now appreciated
that Saturn’s rings could have initially been much more massive.
Local gravitational instabilities within a massive ring produce a
viscosity that is proportional to the square of the ring’s surface

density (Ward & Cameron 1978; Daisaka et al. 2001), so that a
massive ring spreads rapidly at first but then slows as its surface
density decreases. Simulations show that as a massive ring at
Saturn viscously spreads, its mass asymptotically approaches that
of the current rings over 4.5 Gyr (Salmon et al. 2010), with the
overwhelming majority of the ring’s initial mass either accreted by
Saturn or driven outward beyond the Roche limit. The latter
would provide a natural source of material to “spawn” moons
from the outer edge of the rings.
To spawn moons as massive as Tethys, Dione, or Rhea

implies an initial ring containing ∼1021–1022 kg, some 10–102

times more massive than the current rings (Canup 2010; Charnoz
et al. 2011). Collisional disruption of a Roche-interior moon
would be very unlikely to produce such a massive ring, because
a massive moon would remain within the Roche limit for only a
short time due to its rapid tidal evolution (e.g., for only a few
million years for a 1022 kg satellite and slow tidal evolution). A
disruptive collision by an external impactor during such a brief
period would be extremely improbable. A massive ring could be
produced by tidal disruption during the close passage of a Titan-
sized comet by Saturn (Hyodo et al. 2017). However, the
background population of extremely large comets needed to
make such an event probable at Saturn would also imply that
similar encounters at Uranus and Jupiter should have produced
massive ring systems around those planets, too, and no such
massive ring systems exist there today.
Alternatively a massive ring at Saturn can be produced by tidal

stripping from a large primordial satellite (Canup 2010). Models
of satellite accretion within the Saturnian subnebular disk suggest
that Titan-sized satellites spiraled into Saturn due to density wave
interactions with the gas component of the disk (i.e., through Type
I migration; Canup & Ward 2006; Sasaki et al. 2010; Ogihara &
Ida 2012). As it spiraled toward the planet, a Titan-sized moon
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would most likely have a differentiated interior, with an ice mantle
overlying a rocky core, due to the energy of its accretion and
strong tidal heating (Canup 2010). Tidal mass loss would begin
once the satellite migrated within the Roche limit set by its mean
density, located at ♄» R1.75 for a satellite composed of roughly
half rock, half ice, where ♄ =R 58,232 km is Saturn’s current
mean radius. Tides would initially strip material from the
satellite’s outer ice shell. The removal of low-density ice would
cause the satellite’s mean density to increase until the remnant
satellite became marginally stable at a given orbital distance
(Canup 2010). Continued inward migration would then lead to
additional ice removal. Tidal stripping would continue until either
the remnant satellite collided with the planet, or its higher-density
rocky core disrupted as the satellite passed within the Roche limit
for rock, depending on which event occurred first.

The Roche limit for rock of density rrock is at
( )♄ r= -a R1.5 3 g cmR,rock

3
rock

1 3. Planet contraction models
suggest that Saturn’s radius at the time of the dispersal of the solar
nebula would have been between ♄=R R1.5p and ♄=R R1.7p

(e.g., Fortney et al. 2007; Marley et al. 2007; see also Figure 2).
For a RR p,rock , the remnant satellite would collide with the
planet before its rocky core disrupts, and in this case tidal
stripping produces an essentially pure ice ring, in agreement with
the unusually ice-rich composition of the rings today
(Canup 2010). The mass of the ice ring produced depends on
the relative position of the planet’s surface compared to the Roche
limit for rock. In the limiting case that =a RR p,rock , tidal stripping
from a Titan-sized satellite produces an ice ring with ~10 kg22

(Canup 2010); a less massive ice ring results if <a RR p,rock .
Rings produced by tidal stripping while a planet is still

accreting substantial gas through its circumplanetary disk
would likely be lost due to gas drag. This may have been the
fate of massive rings produced at Jupiter from satellites that
spiraled into the planet before the Galilean moons formed.
While Jupiter has massive inner moons that survived (Io and
Europa), Saturn does not. The lack of an inner Titan-sized
moon at Saturn would be expected if large inner moons
spiraled into Saturn as gas accretion by the planet was ending
(Canup & Ward 2006). A massive ring produced at the end of
gas accretion can survive against gas drag because its surface
density is orders of magnitude larger than that of the
dispersing gas disk (Canup 2010). Thus tidal stripping is
consistent with the production of a long-lived massive ring at

Saturn, while similarly produced structures at Jupiter (and
Uranus, if it too accreted gas through a disk) could well have
been lost.
As a massive ring viscously spreads, material driven beyond

the Roche limit can accrete into satellites. The mass and orbital
distribution of satellites spawned from a ring depend on the
ring surface density and the rate of tidal dissipation in Saturn,
because the latter controls the rate of satellite orbital expansion
due to tides raised on Saturn. If Mimas tidally expanded to its
current distance over 4.5 Gyr, a time-average tidal parameter
for Saturn of > ´Q 1.8 104 is implied (Murray & Dermott
1999). For ~Q 104 to 105, initial estimates suggested that a
~10 kg22 ring could spawn analogs to Mimas, Enceladus, and
Tethys (Canup 2010). Subsequent detailed simulations con-
sidered more rapid tidal evolution with ~Q 103, and found
that in this case the masses and positions of all of the mid-sized
moons, including the outermost Rhea and Dione, could be
explained as by-products of a massive ring’s expansion
(Charnoz et al. 2011). Such a low value for Saturn’s Q has
been inferred from astrometric observations of its satellites over
the last 102 years (Lainey et al. 2012, 2015), but it remains
challenging to explain and its applicability to primoridal Saturn
is unclear, because Saturn’s Q may have varied by orders of
magnitude over the age of the Solar System (Wu 2005; Fuller
et al. 2016).
In addition to the masses and orbital spacings of the mid-

sized moons, any origin model must also account for their
varied densities and compositions, which do not follow simple
trends with either satellite mass or orbital distance. Nonetheless
we argue that it is useful to consider two groupings based on
the total mass of rock in each object (Table 1). The inner
three moons (Mimas, Enceladus, and Tethys) each contain
 ´6 10 kg19 in rock. Mimas and Tethys are overwhelmingly
icy. While Enceladus is currently proportionally rock-rich, it
may have lost substantial ice (perhaps comparable to its present
mass) over its history if its current thermal activity has been
typical. Thus Enceladus could have been more ice-rich when it
formed. In contrast the outer two moons, Dione and Rhea,
contain an order-of-magnitude more rock, (∼5–8)×1020 kg
each. The distinction between these two groupings is
particularly notable when comparing neighboring Tethys and
Dione. Despite differing in mass by less than a factor of two,
Tethys contains essentially no rock, while Dione is roughly half
rock. Either Tethys and Dione formed through a similar process
but somehow acquired overwhelmingly different rock masses,
or they represent different formation processes. The former was
advocated in Charnoz et al. (2011); we pursue the latter
possibility here.
In this paper, we simulate the viscous evolution of a massive

ice ring and the accompanying accretion and tidal evolution of
satellites spawned from its outer edge, assuming Q 104. We
consider a ring that is essentially pure ice,1 which would spawn
predominantly icy satellites. We assume that Rhea and Dione
formed separately (e.g., as direct accretional products from the

Table 1
Some Properties of Saturn’s Mid-size Moons

Distance Mass Density
Rock Mass
Fraction

Mass
of Rock

( )♄R ( )♄
- M10 6 ( )-g cm 3 ( )% ( )10 kg19

Mimas 3.18 0.066 1.15 17–29 0.64–1.1
Enceladus 4.09 0.19 1.61 52–61 5.6–6.6
Tethys 5.06 1.09 0.97 0–6 0–3.7
Dione 6.47 1.93 1.48 42–52 46–57
Rhea 9.05 4.06 1.23 25–35 58–81

Note. Distance, mass, density, estimated mass of rock, and rock mass fraction
of Saturn’s mid-size moons. ♄ = ´M 568.46 10 kg24 and ♄ =R 58,232 km
are Saturn’s mass and mean radius. Mimas, Enceladus, and Tethys all have
 ´7 10 kg19 in rock, while the outer two (Dione and Rhea) each have about
an order of magnitude more. Enceladus’s density may have been lower in the
past if it had lost substantial ice through geophysical activity.

1 Tidal stripping from a completely differentiated ice–rock satellite can
produce a pure ice ring. However, the ice mantle of an incompletely
differentiated satellite could contain a component of rock. Rock fragments
descending via Stokes flow have a settling rate proportional to the square of the
fragment radius. Thus large chunks are rapidly lost, while small (less than
kilometer-sized for a Titan-like satellite; Barr & Canup 2008) rocky fragments
could plausibly be embedded within the ice, tidally stripped from a satellite’s
outer layers. The mass fraction of such fragments in the initial ring would be
limited to less than a few to 10 percent, based on the current rock content of
Saturn’s rings.
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Saturnian subnebula, as in Canup & Ward 2006). We first
determine whether a massive ice ring can produce good
analogs to Mimas, Enceladus, and Tethys in terms of satellite
mass and orbital radius. We then estimate the delivery of the
rock to the mid-sized moons by external impactors during a late
heavy bombardment (LHB) to assess whether this process
could supply the inner moon’s rock component, as suggested in
(Canup 2013).

Overall we explore a similar problem as in Charnoz et al.
(2011), with key differences. We consider slow tidal evolution
and an initial ice ring, while they considered rapid tidal
evolution ( ~Q 103) and an initial ring that contains large,
~102 km chunks of rock comprising a substantial portion of its
total mass. We postulate that the inner three mid-sized moons
(or their progenitors) were spawned from the rings, while
Charnoz et al. (2011) propose that all of the mid-sized moons
out to and including Rhea originated in this manner. The
simulation methods are also different, and complementary. The
Charnoz et al. (2011) model describes the ring’s evolution with
a 1D Eulerian hydrodynamical model that evolves the ring’s
radial surface density profile due to viscosity and resonant
torques with exterior moons. Their companion model for the
growth of moons is simple, an analytic treatment that does not
explicitly treat moon–moon interactions. In our simulations, the
ring model is simple and analytic, assuming a uniform surface
density ring whose total mass and outer edge position evolve
with time due to viscosity and resonant torques (Salmon &
Canup 2012). While we include all the same resonances as in
the Charnoz model, our calculation of the resonant torque is
less accurate, because in reality the ring’s surface density
would vary with orbital radius. Instead we focus computational
effort on the accretion process, which we describe by a full N-
body model. This allows us to directly simulate the capture of
moons into mutual mean motion resonances (MMRs) and the
accompanying growth in satellite eccentricities as satellites are
tidally driven outward, which ultimately will affect the stability
of spawned satellite systems (Peale & Canup 2015). We also
consider the early temporal evolution of Saturn’s radius and
synchronous orbit, while Charnoz et al. (2011) assume Saturn’s
current radius and synchronous orbit location.

In Section 2 we describe our numerical model. In Section 3
we present results of our simulations for various initial
conditions, tracking the system’s evolution for 108 years. We
explore the influence of Dione and Rhea on the accretion and
evolution of the inner mid-sized moons, as well as the inclusion
of tidal dissipation within the growing moons. Each 108 years,
simulation involves integration of about ´7 1010 orbits at the
Roche limit, requiring months of CPU time. In Section 4 we
present follow-on integrations that consider an accelerated
evolution to approximate the behavior of the resulting ring-
satellite systems over 109 years. In Section 5 we estimate the
delivery of rock to the mid-sized moons during an LHB
(Gomes et al. 2005), and in Section 6 we discuss the overall
findings.

2. Numerical Model

2.1. Coupled Ring-satellite Accretion Simulation

The core numerical model used here is based on one
developed to study the accretion of the Earth’s Moon from a
protolunar disk (Salmon & Canup 2012, 2014); additional
details are contained in Salmon & Canup (2012), and the

appendices therein. The code couples an analytical model of a
viscous interior ring to the N-body code SyMBA (Duncan
et al. 1998), which is used to simulate the accretion of moons
exterior to the ring. The inner ring extends from the planet’s
surface at radius Rp to an outer edge rout, which is initially set
equal to the Roche limit, ( )r=a M1.524R P

1 3, where MP is
the planet’s mass and ρ is the density of ring material. We
consider ice ring particles with r = -0.9 g cm 3 so that

♄=a R2.24R . The ring’s surface density, σ, is assumed to be
constant across the radial extent of the ring, with

( )
( )s

p
=

-
M

r R
, 1r

pout
2 2

where Mr is the ring’s total mass. We emphasize the distinction
between Saturn’s early radius (Rp) and its current mean radius
(R♄), where in our simulations Rp is larger than R♄ because we
consider a primordial ring and a young Saturn. An initial ice
ring with =M 10 kgr

22 , =r aRout , and ♄=R R1.4p has
s » ´ -3 10 g cm4 2. With time, Mr, σ, and rout vary due to
the ring’s viscosity and interactions with outer moons.
The ring spreads with a viscosity ν that includes the effects

of self-gravity (Ward & Cameron 1978; Salo 1995; Daisaka &
Ida 1999; Daisaka et al. 2001),

( )n
p s

»
W
G

, 2
2 2 2

3

where G=6.67×10−11 m3 kg−1 s−2 is the gravitational
constant and ( )W = GM rP

3 is the orbital frequency at
distance r from the planet’s center. In our calculation of Ω for
the viscosity, we set =r rout. Near the ring’s inner edge, the
viscosity would be lower for a fixed surface density because r
is smaller. More detailed models of the rings’ viscous evolution
predict formation of a inner density peak (Salmon et al. 2010),
which would tend to increase the viscosity through a higher
value of σ. Our model does not resolve the radial structure of
the rings, and applies the same viscosity across the entirety of
the ring. Viscous spreading causes the ring to lose mass
through its inner edge as mass is accreted by the planet and
causes the outer edge of the ring to expand (see Appendix A in
Salmon & Canup 2012 for details).
The N-body portion of the code tracks the orbital and

collisional evolution of discrete objects beyond the Roche
limit. Each outer object interacts with the inner ring at its
strongest Lindblad resonances, resulting in a positive torque on
the object and a negative torque on the ring, which causes rout
to contract. The total torque Tres exerted by the rings on an
exterior satellite per unit satellite mass is found by summing the
torques due to all the 0th order resonances that fall in the disk
(Salmon & Canup 2012),

( ) ( )p
m s=

⎛
⎝⎜

⎞
⎠⎟

T

m
G a C p

3
, 3res

2

where m is the satellite’s mass, ♄m = m M , ( ) =C p
( )*å -= p p2.55 1 1p

p
2

2 , and p* is the highest p for which
resonance (p:p−1) falls in the disk. Once an object is far
enough from the ring that its strongest resonances no longer fall
within the ring, which occurs for orbital radii  r1.6 out, it no
longer interacts directly with the ring. The net change in the
position of the ring’s outer edge at each time step is found by
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considering the combined effect of resonant torques due to all
of the exterior objects and the ring’s viscosity. If the former
dominates, the ring edge contracts, while if the latter
dominates, rout expands.

Ring material that spreads beyond the Roche limit can clump
into tidally stable fragments due to local gravitational
instabilities, which then mutually collide and accrete into still
larger objects. The mass mf of a fragment formed via local
instability is

( )

p x s

s

»

» ´ ´
´ -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

m
r

M

r

a

16

5.8 10 g
3 10 g cm

, 4

f
p

R

4 2 3
out
6

2

13 out
6

4 2

3

where ξ is a factor of order but less than unity (Goldreich &
Ward 1973). This mass is of order 10−13 times Saturn’s mass,
which is too small to be feasibly treated in our N-body
simulations. Small fragments would likely collide and merge
rapidly into bigger objects (Charnoz et al. 2010). In our
simulations, we set the mass of objects spawned at the Roche
limit to mf=10−8M♄, which is about one-tenth Mimas’ mass,
so that the growth of Mimas-sized moons is (marginally)
resolved. When >r aRout , we remove a mass mf from the ring,
and add a new discrete object having this mass to the N-body
code at »r rout. The position of the ring’s outer edge is
then decreased to conserve angular momentum, such that

+ =L L Ld f d,0, where Ld,0 and Ld are the angular momentum
of the ring before and after the formation of the fragment,
respectively, and Lf is the orbital angular momentum of the
newly formed object.

We use tidal accretion criteria (Ohtsuki 1993; Canup &
Esposito 1995) to determine if collisions between objects in the
N-body code will result in a merger or intact rebound, assuming
completely inelastic collisions. The outcome of a collision then
depends on the impact energy, the mass ratio of the colliding
bodies, and the orbital distance of the impact with respect to the
Roche limit. We use a “total accretion” criterion, in which we
assume that collisions occur in the radial direction along the
widest axis of the Hill sphere of the colliding bodies, which is
the most favorable case for accretion.

It is possible that interactions among orbiting bodies can
cause an object to be scattered onto an orbit whose pericenter is
close to the planet. In the limiting case of an inviscid fluid
object on a parabolic orbit, tidal disruption will occur in a
single pass once its pericenter rp satisfies (Sridhar &
Tremaine 1992)

( )
r

< »
⎛
⎝⎜

⎞
⎠⎟r

M
a1.05 0.7 . 5p

p
R

1 3

When an object satisfies this criterion, we remove it from the
N-body code and add its mass and angular momentum to the
ring. In practice, such events occur rarely in our simulations.

2.2. Tidal Evolution

Because the evolution of the ring and the associated growth
of spawned satellites occurs over 10 years8 , evolution of the
satellite orbits due to tidal interaction with Saturn must be
considered. Tides raised on Saturn by a satellite orbiting

exterior (interior) to synchronous orbit produce a positive
(negative) torque on the satellite’s orbit, causing its orbit to
expand (contract). The current synchronous orbit—where the
orbital period equals Saturn’s rotational day—lies within the
Roche limit, with ♄=a R1.9sync . However early Saturn’s
radius was larger, and by conservation of angular momentum,
it would have been rotating more slowly, with async outside the
Roche limit (Canup 2010). Tides raised on a satellite by the
planet also modify the satellite’s orbit, predominantly acting to
decrease its orbital eccentricity.
We include the modification of satellite orbits due to tidal

evolution in the N-body portion of our code by applying an
additional accelerating “kick” to each orbiting object at every
time step (Canup et al. 1999). We utilize the constant time
delay tidal model of Mignard, which has a relatively
straightforward analytic form and is valid for orbits near or
that cross async, and for high orbital eccentricities.

2.2.1. Planetary Tides

The acceleration of a satellite of mass m due to the second-
order distortion it raises on the planet is given by (Mignard 1980;
Touma & Wisdom 1994):

[ ( · ) ( )] ( )w

=- + D

´ + ´ +

⎛
⎝⎜

⎞
⎠⎟

r

r v r r v

d

dt

k GmR

r

m

M
t

r

3
1

2 , 6

p

p

p

2

2

2
5

10

2

where ( )=r x y z, , and ( )=v v v v, ,x y z are the planetocentric
satellite’s position and velocity, k2, is the planet’s second-order
Love number, and w w= uz is the planet’s spin vector that we
assume lies along the z-axis. The early value of k2 is unknown;
we adopt its current value for Saturn, =k 0.322 . The time lag
Dt is defined as the time between the tide raising potential and
when the equilibrium figure is achieved in response to this
potential. The relation between the tidal time lag and the tidal
dissipation factor Q is ( )y~ D -Q t 1 for a system oscillating at
frequency ψ. For the planet, the dominant frequency is

∣ ∣y w= - n2 , where n is the satellite’s mean motion,
with ( ∣ ∣ )wD ~ -t n Q1 2 .

2.2.2. Satellite Tides

The acceleration on a satellite due to tides raised by the
planet on the satellite is (Mignard 1980)

[ ( · ) ( )] ( )



w

=- + D

´ + ´ +

⎛
⎝⎜

⎞
⎠⎟

r

r v r r v

d

dt

k GmR

r

m

M
t

r

3
1

2 , 7s

s

p

p

2

2

2
5

10

2

where ws is the satellite’s spin vector. The factor  reflects the
strength of satellite versus planetary tides, with

( ) =
D
D

-

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

m

M

R

R

k

k

t

t
, 8

p

s

p

s s
2 5

2

2

where k2s, Dts, and Rs are the satellite’s Love number, tidal
time lag, and physical radius.
The appropriate value for  is very uncertain. In our

simulations, ( ) ( ) M m R R10 10p s p
2 5 2. Estimates suggest

 - -k10 10s
3

2
1 for icy satellites (Murray & Dermott 1999,

Table 4.1). For satellite tides, y » n and ( )D ~t Q n1s s ,
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where we consider a satellite tidal dissipation factor ~Q 10s
2.

For ∣ ∣w - ~ -n 1 10 1, the final term in the expression above
for  is of order ( ) D Dt t10 10s

2 for  Q10 104 5.
Thus the plausible range for is of order  -10 101 3. As
such, we perform two sets of simulations that consider limiting
cases: one without satellites tides ( = 0), and one with strong
satellite tides ( = 1000).

When computing ∣rd dt s
2 2 , we make the simplifying

assumption that satellites are rotating synchronously, so that
w » =n GM as p

3 , where a is a semimajor axis. A non-
synchronously rotating, uniform density satellite on a circular,
non-inclined orbit will experience a torque ẇ=N C s, where

( )=C mR2 5 s
2 is the satellite’s moment of inertia and ẇs is the

time rate of change of its rotation rate, given by (Peale &
Canup 2015)

( )

( ) ( )

w
w

w

=- D -

=- -

d

dt

k GM R

Ca
t n

k
M

m

R

a

n

Q
n

3

15

2
. 9

s s p s
s s

s
p s

s
s

2
2 5

6

2

3

3

If n is nearly constant, the quantity ( )w - ns decays exponen-
tially with a time constant

( )
♄

t = »

´

-
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

k

m

M

a

R

Q

n

Q k m M

a

R R

2

15

1
2

10 10

3

250 km
years. 10

s p s

s s s p

s

despin
2

3

3
2

3 7

9 2 3

Thus ws will likely approach a synchronous value on a
timescale short compared to orbital migration timescales.

2.3. Saturn’s Early Radius and Synchronous Orbit Location

We consider the evolution of a ring formed soon after the end
of Saturn’s gas accretion, at which time the planet will still be
substantially larger than its current size due to the energy of its
formation. To estimate the physical radius of Saturn, we use
results from Fortney et al. (2007). The green dotted–dashed line in
their Figure 5(B) represents the evolution of a 0.3 Jupiter mass
planet, which is about the mass of Saturn, assuming a ÅM25 core.
A fit to this data is shown as the green line in Figure 1. A core
mass of ~ ÅM20 (Hubbard et al. 2009) results in the red curve
(data provided by W. Fortney for Canup 2010), an approximate fit
to which is ( ) ( ) ( ) ( )= + + +R t A A t A t A tlog log log0 1 2

2
3

3 ,
where R is in units of R♄, t is in years, »A 9.5760 ,

» -A 2.4181 , »A 0.2312 , and » -A 0.00753 .
From conservation of its spin angular momentum, one can

estimate Saturn’s early spin rate as a function of its physical
radius and moment of inertia. We assume an early moment
of inertia constant comparable to that of current Saturn,

♄ »K 0.23 (Helled 2011; Nettelmann et al. 2013; see the
Appendix). The resulting predicted evolution of the synchro-
nous orbit with time is shown in Figure 2. While currently async
lies well inside the Roche limit, for the first ~10 years9 of
Saturn’s history, synchronous orbit is shifted outward due to
the slower rotation of the planet. For moons near the Roche
limit, there will thus be a competition between the negative
torque due to tides (causing orbital contraction) and the positive
torque due to resonant interactions with the rings (causing
orbital expansion). For Q 104 and s 103 g cm−3, the latter

are much stronger, allowing spawned satellites to evolve away
from the rings.

2.4. Simulation Parameters

Table 2 lists parameters for our 12 baseline cases. We
consider Rp=1.3, 1.4, or ♄1.5 R , with corresponding
planetary rotational periods of 17.9, 20.7, and 23.8 hr,
respectively. For orbits far beyond synchronous, ∣ ∣ w n and
Saturn’s tidal time lag is approximately ( ∣ ∣ )wD »t Q1 2 . We
set Dt using this expression so that =Q 104. We consider
initial ring masses between ´3 10 kg21 and ´1.1 10 kg22 ,
motivated by models of tidal stripping from a Titan-sized
satellite (Canup 2010). We consider ice ring particles with
density r = -0.9 g cmr

3, which sets the Roche limit at
aR≈2.24R♄. Our initial ring extends from the planet’s
physical radius Rp to the Roche limit. It is possible that the
ring may have been more concentrated initially, but it would
rapidly viscously spread (Salmon et al. 2010).

Figure 1. Radius of a Saturn-equivalent planet, as a function of time since the
planet’s formation, for an assumed core of ÅM25 (green line) and ÅM20 (red
line). Data for the ÅM25 has been extracted from Figure 5(B) of Fortney et al.
(2007). Data for the ÅM20 was provided by W. Fortney for Canup (2010).

Figure 2. Position of the synchronous orbit (red line) and physical radius of the
planet (black line) as a function of time since Saturn’s formation. The
horizontal black dashed line is the position of the Roche limit. While today the
synchronous orbit lies at ♄» R1.89 (red dashed line), it was exterior to the
Roche limit for ~10 years8 , and remains exterior to its current position
for ~10 years9 .
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We complete four sets of 12 baseline simulations. The first
and second sets assume no pre-existing exterior satellites, and
consider either no satellite tides ( = 0; “Set A”) or strong
satellite tides ( = 10 ;3 “Set B”). The third and fourth sets
include Dione and Rhea at their current locations, intended to
represent the earlier formation of these outer moons as direct
accretional products from the Saturnian subnebula, both with
no satellite tides (“Set C”) and with strong satellite tides
(“Set D”).

3. Results

3.1. General Accretion Dynamics

Figure 3 shows the system at different evolution times for the
first 10 years8 for Run 6A. As the ring spreads, it starts
producing new moonlets that, through resonant interaction,
confine the ring inside the Roche limit. In turn, they recoil and
the ring is progressively freed to viscously spread again. When
a moonlet reaches �3.56R♄, its 2:1 Lindblad resonance lies
beyond aR, and it thus stops directly interacting with the ring.

When a moonlet is spawned at the Roche limit in the
presence of exterior satellites, it will encounter their MMRs as
it recoils outward due to ring torques. Initially, the ring is
massive enough that its torques typically cause moonlets to
recoil too rapidly for capture into resonance. As a result, as
inner moonlets expand outward, they can have close encounters
with outer satellites that can result in a merger and the growth
of increasing massive moons. Figure 4 shows the masses of
various objects in Run 6A, as a function of time. Colors
correspond to indexes in our output mass array: black for
moonlet #1 (which formed first and is the oldest), red for
moonlet #2, green for moonlet #3, and purple for moonlet
#4. Other bodies may be present at times, but have not been
plotted for readability. Color changes occur when two objects
merge. For example, at »t 10 years6 , moonlet #3 (in green)
merges with #2 (in red), and then moonlet #4 becomes the
new moonlet #3, changing color from purple to green.

Our simulations display the general behavior predicted in
Crida & Charnoz (2012). Initially a moon spawned near the
Roche limit directly accretes small ring material as it spreads
across the Roche limit; this is defined as the “continuous

regime” of growth (Crida & Charnoz 2012). As the moon
rapidly recoils outward due to ring torques, its separation from
the ring edge becomes large enough that a second inner satellite
can begin to grow near the Roche limit. This second satellite
also recoils outward and is eventually accreted by the outer
satellite. This process repeats so long as the first satellite is
relatively close to the ring’s edge, with the first satellite
growing at the same average rate as in the continuous regime,
only through larger discrete steps; accordingly this mode of
growth is called the “discrete regime” (Crida & Charnoz 2012).
Finally, as the first satellite continues to evolve outward, it can
become distant enough that it can no longer directly accrete a
moon spawned from the ring, and a system of three or more
moons results. Mergers are then characterized by collisions
between similar-mass bodies in the so-called pyramidal regime
(Crida & Charnoz 2012). The transition between the discrete
and pyramidal regimes is predicted to occur when a moonlet of
mass m reaches a distance r such that - >r r r2 H c, where

( ( ))♄=r r m M3H
1 3 is the moonlet’s Hill radius and

( )♄= +r a M M8.4 1c R disk (Crida & Charnoz 2012). In our
simulations, ♄ ~ -M M 10disk

5 such that moonlets should
transition to the pyramidal regime after only little outward
migration. This is indeed observed, but at somewhat larger
distances than predicted by the previous expression. We find
that several moonlets can be in the discrete regime at the same
time (e.g., black and red curves before 105 years on Figure 4).

Table 2
Simulation Parameters

Run Rp T async aR Dt Md

( )♄R (hr) ( )Rp ( )Rp (s) ( )♄
- M10 5

1 1.5 23.8 2.19 1.50 0.68 0.5
2 1.5 23.8 2.19 1.50 0.68 1
3 1.5 23.8 2.19 1.50 0.68 1.5
4 1.5 23.8 2.19 1.50 0.68 2
5 1.4 20.7 2.14 1.60 0.59 0.5
6 1.4 20.7 2.14 1.60 0.59 1
7 1.4 20.7 2.14 1.60 0.59 1.5
8 1.4 20.7 2.14 1.60 0.59 2
9 1.3 17.9 2.09 1.73 0.51 0.5
10 1.3 17.9 2.09 1.73 0.51 1
11 1.3 17.9 2.09 1.73 0.51 1.5
12 1.3 17.9 2.09 1.73 0.51 2

Note. Rp is the planet’s mean physical radius in units of Saturn current mean
radius ♄ =R 58,232 km. T is the spin period of the planet. async and aR are the
position of the synchronous orbit and of the Roche limit, respectively, in units
of the planet’s physical radius.Dt is the tidal lag. Md is the disk’s initial mass.

Figure 3. Snapshot of the system in Run 6A at different times of evolution. The
vertical dashed line at ♄» R2.24 is the Roche limit. The thick black horizontal
line is the Roche-interior ring, whose inner edge is at the planet’s surface at

♄=R R1.4p . The black dots represent the satellites formed from the disk, with
the thin horizontal lines representing their pericenter and apocenter.
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Also, we find that a younger moonlet can grow larger than an
older one (e.g., black and red curves around 105 and 106 years
in Figure 4). Configurations with an inner moon that is larger
than an outer one are, however, generally only transient, as
merging events between large objects eventually produce a
system with larger satellites at larger distances, consistent with
the Crida & Charnoz (2012) expectations.

As the ring mass decreases due to mass loss on the planet
and by formation of moonlets at the Roche limit, two things
can be noted. First, the ring’s viscosity decreases and the time
needed for the ring to spread back out to the Roche limit
increases, such that the time between the spawning of new
moonlets lengthens. Second, the Lindblad resonant torque
becomes weaker and the orbital expansion of inner bodies
slows, such that they can be captured into MMRs with outer
bodies. When this happens, the inner object continues to recoil
outward as it is torqued by the ring, and in turn it drives the
outer object outward, as well due to the resonant configuration.
This process allows for a transfer of angular momentum from
the ring to outer objects that do not themselves have direct
resonant interactions with the ring. This is a key process not
included in the Charnoz et al. (2011) and Crida & Charnoz
(2012) models.

The black line in Figure 5 shows the evolution of an object’s
semimajor axis in Run 6A. The object is initially spawned at
the Roche limit at ~t 10 years4 and moves outward due to
resonant interactions with the rings. This object is not massive
enough to confine the rings, such that secondary objects are
subsequently spawned and also recoil (red and green curves in
Figure 5). As they catch up with the outer object, mergers can
occur and cause the outer object’s semimajor axis to decrease
somewhat due to the accreted object having a lower specific
angular momentum (Salmon & Canup 2012). At 108 years, the
two most massive satellites in Run 6A have masses of

♄´ - M2.18 10 6 and ♄´ - M8 10 8 , and semimajor axes of
♄R3.94 and ♄R2.78 , respectively. They are similar to Tethys

and Enceladus in mass, but their semimajor axes are smaller.
Further expansion will be achieved over longer timescales due

to tides and/or MMR interactions. This run did not produce a
Mimas-equivalent satellite within 10 years8 .
Close encounters between satellites do not always result in a

merger, as assumed in Crida & Charnoz (2012), but can instead
lead to scattering, inward or outward. Such an event can be
seen at 10 years4 in Run 6A (Figures 4 and 5, black and red
lines). This leads to an orbital architecture in which the
outermost body is less massive than the one immediately
inside. This situation is transient, as the two moons re-exchange
orbits (at ~ ´3 10 years5 in this case).
Figure 6 shows the evolution of the rings in Run 6A:

position of the outer edge (solid line), mass (dashed line), and
mass fallen on the planet (dotted line). When a satellite is
spawned at the ring’s outer edge, resonant interactions cause
the latter to slightly contract inside the Roche limit. Early on,
the ring is still massive enough that its viscous torque is greater
than the resonant torque from outer satellites, and the ring
viscously spreads outward. As satellites grow larger through
mutual collisions, and as the ring’s mass decreases, the
resonant torque can at times overwhelm the viscous torque,
resulting in a prolonged contraction of the ring’s outer edge
(Figure 6, solid line at, e.g., 10 years6 ). As the confining
satellite’s orbit expands due to the resonant torque (Figure 5),
the torque decreases both because the distance between the
satellite and disk edge increases and because resonances with
the satellite move outward with it and migrate out of the ring.
Eventually, the ring viscously spreads outward again.
Whenever the ring is confined inside the Roche limit, it

continues to lose mass onto the planet through its inner edge,
while not providing any additional mass to outer satellites. As a
result, in this simulation more than 70% of the ring’s mass is
lost onto the planet. Mimas, Enceladus, and Tethys’s masses
total ♄´ - M1.35 10 6 , so that a ring initially at least three times
as massive with ♄> ´ - M4 10 6 would be necessary to
produce these objects. In this run the rings still contain

♄~ ´ - M2.5 10 7 at 108 years, which is about four times the
mass of Mimas. Formation of a Mimas-equivalent may thus
occur on longer timescales (see Section 4).

Figure 4. Evolution of the masses of multiple bodies in Run 6A. For
readability, only the four oldest bodies at any given time are shown. Colors
correspond to an index in our output mass array (see text for details). Satellites
grow initially by direct accretion of moonlets spawned at the Roche limit
(similar to the “discrete regime” of Crida & Charnoz 2012), and later by a
merger of grown satellites (the “pyramidal regime” of Crida & Charnoz 2012).
After about 104 years, there are between one and seven mid-sized moons at any
given time.

Figure 5. Evolution of the semimajor axis of a satellite (black curve), and
position of some of its MMR (black dashed lines) in Run 6A. The red and
green curves represent the semimajor axis of secondary bodies spawned at the
Roche limit. Moonlets stop interacting with the disk when they reach ♄~ R3.5 ,
as their 2:1 Lindblad resonance lies outside the Roche limit. However, by
capturing into MMR inner objects which are themselves still interacting with
the disk, outer objects can reach larger distances on timescales that are short
compared to what could be achieved by tidal interactions with the planet.
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3.2. Set A: No Satellite Tides

Figure 7 shows the distribution of satellites obtained in our
108 year simulations without satellites tides and without pre-
existing Dione and Rhea at different times of evolution.
Spawned satellites have masses broadly comparable to those of
Mimas, Enceladus, and Tethys. After~10 years8 , some objects
have nearly reached the position of Tethys’s orbit, primarily
due to ring torques and capture into MMRs. The evolution of
the semimajor axis of a satellite of mass m due to tides can be
estimated by Burns (1977),

( )
♄

♄=
⎛
⎝⎜

⎞
⎠⎟

da

dt

k

Q

m

M

GM

R

R

a

3
, 11

p

p2
11 2

which can be integrated to give

( ) ( )
♄

♄= +
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥a t R

k

Q

m

M

GM

R
t

a

R

13

2

3
, 12p

p p

2
3

0
13 2 2 13

where a0 is the satellite’s initial semimajor axis. Panel (d) in
Figure 7 shows a(m) from Equation (12) for the three values
assumed for Rp, with =Q 104 and =t 108 years; the satellites
produced in our simulations are shown with the same color
scheme. Most satellites are to the right of their corresponding
curve, indicating that they have orbits larger than expected due
solely to tides. Satellites beyond ♄~ R3.55 have no resonances
in the rings, and their orbital expansion beyond the dashed
curves has been achieved by trapping the inner satellites into
MMRs (i.e., by indirect angular momentum transport from
the ring).

Table 3 shows results from the Set A simulations. On
average, they yield 2.6±0.7 final satellites at10 years;8 at that
time, the rings have an average mass of ♄´ - M3.83 10 7 ,

♄´ - M4.78 10 7 , and ♄´ - M5.96 10 7 , for the runs with a
planet radius of 1.5, 1.4, and ♄R1.3 , respectively. Runs with
larger planets have a lower ring mass at a given time because
the flux onto the planet has been larger for a given initial ring
mass. For each value of Rp, the ring mass is very similar at
=t 108, even though the initial ring masses vary by a factor of

4. We find that about 20% of the ring’s initial mass is
incorporated into satellites, with a slightly higher fraction for
smaller values of Rp. The average angular momentum of our
satellites is higher than that of current Mimas, Enceladus, and
Tethys (although standard deviation is important), mostly
because our Enceladus and Tethys analogs tend to be a factor
of a few times more massive than the current moons.
In all cases, sufficient mass and angular momentum remains

in the rings to spawn additional satellites over longer
timescales. The average angular momentum left in the rings
is ´ -4.4 10 kg m s32 2 1, ´ -5.49 10 kg m s32 2 1, and ´6.74

-10 kg m s32 2 1 for the runs with a planet radius of 1.5, 1.4, and
♄R1.3 , respectively. This is a few times larger than the angular

momentum necessary to bring a Tethys-mass satellite from 4 to
♄R5 ( ´ -2.2 10 kg m s32 2 1). It appears then likely that the

distribution of satellites will continue to evolve significantly on
longer timescales, a point we return to in Section 4.
Eccentricities and inclinations of objects trapped in MMRs

increase as the inner object is driven outward by the disk. The
run shown in Figure 3 shows satellites with small eccentri-
cities, but is a bit of an outlier in this regard compared to the
satellites formed in the whole set. Damping of eccentricities
occurs when objects collide, but significant values are
generally reached in the absence of satellite tides. Bigger
objects have on average smaller eccentricities and inclina-
tions, since these objects have experienced more collisions,
and it is more difficult to excite e and i for a bigger satellite.
At =t 10 years8 , satellites with masses smaller than ♄

- M10 6

have á ñ ~ e 0.073 0.05 (the median is 0.068), while those
with masses larger than ♄

- M10 6 have á ñ ~ e 0.022 0.02
(median is 0.018). Inclinations of satellites also become
substantial, with an average of á ñ ~   i 3.32 3.62 (median is
1.95°) for small satellites, and á ñ ~   i 2.71 5.14 (median is
0.23°) for large satellites.

3.3. Set B: Strong Satellite Tides

We perform a second set of simulations with the same initial
parameters as in Table 2, but including satellite tides with
 = 1000. Figure 8 shows a system at different times of
evolution. This case’s evolution is similar to that in Figure 3,
the main difference being the smaller eccentricities at all times,
a direct consequence of satellite tides. Compared to the case
without satellite tides, the largest satellite is smaller. This is due
to a factor of 2 difference in the mass of the disk, which results
in less massive satellites being formed and weaker orbital
expansion rates, which overall decreases the delivery rate of
material beyond the Roche limit.
The overall results at =t 10 years8 for the Set B runs are

given in Table 4. Figure 9 shows the distribution of satellites at
different times of evolution. The lower eccentricities of the
satellites noted in Run 5B (Figure 8) can be observed across all
runs. While without satellites tides some moons in Set A also
have low eccentricities at =t 10 years8 , they went through a
phase of high values before they were damped by accretional
collisions (Figure 7).
Figure 10 shows the mean eccentricities of the satellites as a

function of time, weighted by the mass of the satellites, for the
Set A versus Set B runs. The initial eccentricities of a fragment
spawned at the Roche limit in our simulations is set to be
approximately the ratio of the fragment’s escape velocity to the
local orbital velocity (Lissauer & Stewart 1993), which is
~ -10 3 for a ♄

- M10 8 mass fragment. Set B runs with tidal

Figure 6. Ring’s outer edge (solid line), mass (dashed line), and mass fallen
onto the planet (dotted line), for Run 6A. Masses are normalized to the initial
mass of the ring Mring,0. Due to the constant confinement of the ring by growing
satellites, about 70% of the ring’s material is lost onto the planet. At times, a
satellite’s torque can surpass the ring’s viscous torque, resulting in a prolonged
contraction of the ring’s outer edge.

8

The Astrophysical Journal, 836:109 (19pp), 2017 February 10 Salmon & Canup



dissipation in the satellites (dashed line); efficient damping
occurs on a 106 year timescale, resulting in much smaller
average eccentricities at 10 years8 , compared to our runs
without satellites tides (solid line).

Compared with Set A, there is a somewhat higher average
fraction of the ring’s initial mass incorporated into satellites,
which in Set B approaches 30%. On average, the Set B
simulations have 3.75±1.05 satellites at 10 years8 . A larger

final number of spawned moons is a consequence of the
satellites’ lower eccentricities: their pericenter is larger, and
they do not “sweep” the region close to the rings as efficiently,
allowing more small moons to form and survive. The
combination of more mass put into satellites and lower
eccentricities contributes to a higher total angular momentum
in spawned moons compared with Set A.

3.4. Set C: Simulations with Dione and Rhea and No Satellite
Tides

For a traditional Saturn tidal parameter of ~Q 104, mid-
sized moons spawned from a Roche-interior ring do not reach
distances consistent with those of Dione and Rhea. We assume
Dione and Rhea formed from a different process, which we
argue is the most straightforward way to explain the much
larger total mass of rock in these moons compared to that in
Mimas, Enceladus, and Tethys. If Dione and Rhea were present
as the inner mid-sized moons (or their progenitors) were
spawned from the rings, the inner moons would have
encountered MMRs with the outer satellites as the spawned
moons recoiled outward due to ring interactions. For example,
Dione’s 2:1 MMR currently lies near ♄R4.08 and Rhea’s 3:1
MMR currently lies around ♄R4.35 , positions that a Tethys

Figure 7. Distribution of satellites in our Set A simulations at evolution times of 105, 106, 107, and10 years8 . The red squares represent Mimas, Enceladus, and Tethys.
Horizontal lines show pericenter and apocenter for each satellite. In panel (d), colors separate satellites based on the assumed radius of the planet. Dashed lines
represent the distance that a satellite of a given mass, originating at the Roche limit, would have reached solely due to tides per Equation (12). Nearly all satellites lie to
the right of these lines, because they have also orbitally expanded due to disk torques and MMRs.

Table 3
Set A Data at t=108 Years

♄=R R1.5p ♄=R R1.4p ♄=R R1.3p

á ñM Mring MET 0.28±0.01 0.36±0.01 0.44±0.001

á ñL Lring MET 0.18±0.01 0.22±0.01 0.27±0.002

á ñM Msats MET 1.85±0.96 2.03±1.1 2.11±1.1

á ñM Msats ring,0 0.2±0.01 0.22±0.01 0.23±0.01

á ñL Lsats MET 1.7±0.89 1.88±1.04 1.98±1.02

Note. Average values for our Set A runs at =t 108 years. Mring is the rings’
mass; MMET is the total mass of Mimas, Enceladus, and Tethys; Lring is the
rings’ angular momentum; Msats is the total mass of the satellites in a given run;
Mring,0 is the rings’ initial mass; Lsats is the angular momentum of the satellites
in a given run; and LMET is the total angular momentum of Mimas, Enceladus,
and Tethys.
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analogue would need to cross to reach Tethys’s current orbit
at ♄R5.06 .

In the Set C runs, we include Dione and Rhea, with their
current masses and positions with  = 0 (no satellite tides);
results are shown in Table 5 and Figure 11.

The inclusion of Dione and Rhea does not dramatically alter
the distribution of spawned satellites, and most results here are
similar to those in Set A. The average number of satellites per
run at 108 years is 2.08±0.3 (not including Dione and Rhea).
No spawned moon collides with either Dione or Rhea in any of
the set C runs. However, some of the spawned satellites do

become captured into MMR with Dione and Rhea, as expected.
These resonant configurations can be transient or still present at
108 years. This has two effects. First, the inner satellites
transfer some angular momentum to Dione and Rhea, resulting
in Tethys analogs that have somewhat smaller semimajor axes
at 108 years compared to Sets A and B.Second, in some cases,
Dione and Rhea experience substantial eccentricity growth, a
result of MMRs with inner moons in the absence of tidal
dissipation in the satellites. At 108 years, Dione and Rhea
have mean eccentricities of 0.02±0.01 and 0.01±0.01,
respectively.

3.5. Set D: Simulations with Dione, Rhea, and Satellite Tides

Set D simulations begin with Dione and Rhea in their current
positions, and include tidal dissipation in the satellites with
 = 103. Table 6 and Figure 12 show results at =t 10 years8 .
Set D simulations produce 3.4±0.5 spawned satellites at
10 years8 (excluding Dione and Rhea). Compared with the case
without satellites tides (Set C), we find that less mass from the
ring is placed into satellites by 108 years, and the spawned
satellites have lower total angular momentum. In Set D, tidal
damping of eccentricities keeps the eccentricities of Dione and
Rhea lower (of order 10−3 on average), and maintains some of
the spawned moons in MMRs with Dione and Rhea. We find
that the largest spawned moon is captured in Dione’s 2:1 MMR
in 9 of the 12 runs from Set D, with the resonance configuration
still present at 108 years. As inner spawned moons transfer
more of the ring’s angular momentum to Dione and Rhea, the
spawned moon orbits do not expand as far as in the case
without satellite tides, resulting in greater confinement of the
rings and somewhat less total mass incorporated into the
spawned moons.
Figure 12 shows the obtained distribution of satellites, at

different times of evolution. As with the case without Dione
and Rhea, the inclusion of tidal dissipation in the satellites
efficiently damps the eccentricities of the growing moons. As a
consequence, the radial “feeding” zone of each satellite is
narrower, as they remain on quasi-circular orbits, which allows
on average a larger number of satellites to survive, in particular
Mimas progenitors lying close to the rings.

4. Simulations Over 109 Years

Each of the 48 simulations described previously required
about 1.5 months of computational time to track the system
evolution for 108 years. It is clear that these systems would
continue to evolve over longer timescales, given the mass and
angular momentum still in the rings at 108 years time and
expected further tidal evolution. We wish to track the system’s
evolution over an order-of-magnitude longer 109 years time-
scale to determine whether the resulting distribution of
spawned moons will approach that of the current inner moons.
Billion-year simulations of circumplanetary material require

a modified numerical approach to be computationally feasible.
Thus we develop an accelerated version of our model to
approximate the evolution in this regime, wherein we multiply
the disk’s viscosity, and the strength of tides and resonant
interactions, all by a factor of 10. In the accelerated code, the
relative rates of viscous spreading, ring torques, and tidal
evolution are thus the same as in our default simulations.
However, the absolute rates of these processes are an order-of-
magnitude faster compared to the orbital frequency at a

Figure 8. Snapshot of the system in Run 5B at different times of evolution. The
vertical dashed line at ♄» R2.24 is the Roche limit. The thick black horizontal
line is the Roche-interior ring, whose inner edge is at the planet’s surface at

♄=R R1.4p . The black dots represent the satellites formed from the disk, with
the thin horizontal lines representing their pericenter and apocenter.

Table 4
Set B Data at t=108 Years

♄=R R1.5p ♄=R R1.4p ♄=R R1.3p

á ñM Mring MET 0.22±0.07 0.33±0.04 0.45±0.005

á ñL Lring MET 0.13±0.04 0.20±0.02 0.27±0.004

á ñM Msats MET 2.19±1.48 2.47±1.69 2.69±1.86

á ñM Msats ring,0 0.22±0.04 0.25±0.05 0.27±0.06

á ñL Lsats MET 2.01±1.4 2.29±1.59 2.51±1.78

Note. Average values for our Set B runs at =t 108 years. Mring is the rings’
mass; MMET is the total mass of Mimas, Enceladus, and Tethys; Lring is the
rings’ angular momentum; Msats is the total mass of the satellites in a given
Run; Mring,0 is the rings’ initial mass; Lsats is the angular momentum of the
satellites in a given Run; and LMET is the total angular momentum of Mimas,
Enceladus, and Tethys.
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particular radius in the disk. Because in general the orbital
timescales are much shorter than the timescales associated with
the other processes, the overall evolution of the system may be
well-approximated by such an accelerated treatment. However,

the accelerated approach may miss some aspects of the
dynamics (e.g., it is possible that in the accelerated code an
object’s orbit may evolve too quickly to become captured into a
MMR when that same object would have been captured with a
slower orbital evolution).

Figure 9. Distribution of satellites in our Set B simulations, including satellite tides with = 1000 at evolution times of 105, 106, 107, and10 years8 . The red squares
represent the current Mimas, Enceladus, and Tethys. Horizontal lines show pericenter and apocenter of the satellites. Compared to Set A, here satellite tides efficiently
damp eccentricities.

Figure 10. Mean eccentricity of formed satellites weighted by the satellite’s
mass, as a function of time, in the case of no satellites tides (solid line; Set A)
and including satellites tides (dashed line; Set B).

Table 5
Set C Data at t=108 Years

♄=R R1.5p ♄=R R1.4p ♄=R R1.3p

á ñM Mring MET 0.28±0.01 0.36±0.01 0.45±0.01

á ñL Lring MET 0.17±0.01 0.22±0.01 0.27±0.01

á ñM Msats MET 1.88±1.0 2.02±1.05 2.15±1.16

á ñM Msats ring,0 0.2±0.01 0.22±0.01 0.23±0.01

á ñL Lsats MET 1.72±0.94 1.87±1.01 1.99±1.1

áD ñL LDR MET 0.02±0.01 0.01±0.01 0.01±0.01

Note. Average values for our Set C runs at =t 108 years. Mring is the rings’
mass; MMET is the total mass of Mimas, Enceladus, and Tethys; Lring is the
rings’ angular momentum; Msats is the total mass of the spawned satellites in a
given run (excluding Dione and Rhea); Mring,0 is the rings’ initial mass; Lsats is
the angular momentum of the spawned satellites in a given run (excluding
Dione and Rhea); LMET is the total angular momentum of Mimas, Enceladus,
and Tethys; and áD ñL LDR MET is the variation of angular momentum of Dione
and Rhea.
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4.1. Test of the Accelerated Code

We ran the 12 Set A simulations for 10 years6 with the
accelerated code and compared the obtained distribution of
satellites with that obtained over 10 years7 with the standard
code. The results are shown in Figure 13. The average number

of satellites per run is 3.17±1.03 with the accelerated code,
compared to 2.42±0.79 with the standard code. This is
mainly due to a greater number of small satellites in the
accelerated code. If we consider only satellites with a mass

♄ ´ - M2 10 8 , thereby removing the stochasticity of newly
spawned moonlets, then the average number of satellites per
run is 2.25±0.96 with the standard code, and 2.58±0.79
with the accelerated code. The average eccentricity of satellites
is 0.05±0.066 for the accelerated runs, and 0.05±0.058 for
the normal ones. Thus the overall distribution of spawned
satellites produced by our accelerated code is similar to those
obtained with the normal code.

4.2. Contraction of the Planet

For our initial runs, we have assumed that the planet radius
remained constant over 10 years8 , with a value of 1.3, 1.4, or
1.5R♄. For our billion-year runs, we use as our starting
condition the outputs of Runs 5 to 12 in Sets A through D.
Thus the initial planetary radius is either 1.3 or ♄R1.4 . We then
include the contraction of the planet and increase its spin
(which moves the synchronous orbit inward) in the 109 year
runs. This is done by first estimating the initial age tev of the
planet, given its radius (i.e., inverting Figure 1), and then by
computing the new planetary radius at time t given by

( )+R t tev . To save computational time, we do not update the

Figure 11. Distribution of satellites in our Set C simulations with Dione and Rhea at evolution times of 105, 106, 107, and 10 years8 . The red squares represent the
current Mimas, Enceladus, Tethys, Dione, and Rhea. Horizontal lines show the pericenter and apocenter of each satellite.

Table 6
Set D Data at t=108 Years

♄=R R1.5p ♄=R R1.4p ♄=R R1.3p

á ñM Mring MET 0.26±0.05 0.34±0.03 0.4±0.05

á ñL Lring MET 0.16±0.03 0.21±0.02 0.24±0.03

á ñM Msats MET 1.66±0.94 1.84±1.01 2.04±1.12

á ñM Msats ring,0 0.18±0.01 0.19±0.01 0.22±0.01

á ñL Lsats MET 1.49±0.86 1.67±0.95 1.85±1.05

áD ñL LDR MET 0.03±0.01 0.02±0.01 0.02±0.02

Note. Average values for our Set D runs at =t 108 years. Mring is the rings’
mass; MMET is the total mass of Mimas, Enceladus, and Tethys; Lring is the
rings’ angular momentum; Msats is the total mass of the satellites in a given run
(excluding Dione and Rhea); Mring,0 is the rings’ initial mass; Lsats is the
angular momentum of the satellites in a given run (excluding Dione and Rhea);
LMET is the total angular momentum of Mimas, Enceladus, and Tethys; and
áD ñL LDR MET is the variation of angular momentum of Dione and Rhea.
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radius at every time step. We find that updating the radius every
~10 years4 gives a good approximation of our analytical
derivation from Section 2.3.

4.3. Results

Figure 14 shows the later evolution of the system from Run
6A on the left panel and for Run 5B on the right panel. In both
cases the largest satellite spawned in the first 108 years does not
accrete additional mass but keeps evolving away due to tides
and capture of inner moons in MMRs. The second largest
satellite has continued growing, and reaches its final mass after
a few 108 years. The formation of a Mimas-equivalent satellite
is not complete in Run 6A. In Run 5B, there are two moons
around the position of current Mimas, and they will likely
merge over longer timescales. This is also seen in the other runs
where we get good Enceladus and Tethys equivalent satellites.
On the other hand, cases where we form a good Mimas
analogue at 109 years have either too many moons outside
Mimas, or two moons that are much more massive than
Enceladus and Tethys.
In Run 6A, the rings still contain ♄~ ´ - M1.4 10 7 and

should be able to provide enough material to complete the
formation of a Mimas-type satellite over longer timescales. A
similar conclusion can be made for the other runs that have
good Enceladus and Tethys equivalents at 109 years. However,
this implies that Mimas may be at least a billion years younger
than Tethys. A similar point was made by Charnoz et al.

Figure 12. Distribution of satellites in our Set D simulations with Dione and Rhea, including satellite tides with  = 1000 at evolution times of 105, 106, 107, and
10 years8 . The red squares represent the current Mimas, Enceladus, Tethys, Dione, and Rhea. Horizontal lines represent the pericenter and apocenter of each satellite.
Tidal dissipation in the satellites efficiently damps their eccentricities.

Figure 13. Distribution of satellites obtained with the standard code at
10 years7 (black crosses) and with the accelerated code at 10 years6 (green
crosses). Horizontal lines represent the pericenter and apocenter of the object.
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(2011), who claimed that “a Mimas-like satellite could be about
1–1.5 Gy younger than a Rhea-like satellite.”

Figure 15 shows the distribution of satellites at 10 years9 for
all cases considered previously (with/without Dione and Rhea,
and with/without satellite tides). For the cases without Dione
and Rhea (panels a and c), the distribution of satellites obtained
in our various runs agrees reasonably well with the masses and
positions of current Mimas, Enceladus, and Tethys. The runs
that include tidal dissipation in the satellites (panels c and d) are
better at producing Mimas equivalents. This is due to the fact
that tidal dissipation keeps the eccentricity of the outer satellites
small, such that their pericenter lies further from the edge of the
rings, preventing them from “sweeping” this area. The average
number of satellites per run at 109 years is 3.25±0.7 for Set
A, 4.87±0.64 for Set B, 2.12±1.13 for Set C, and
3.75±0.71 for Set D. As expected, the number of satellites
per run is larger in cases that include tidal dissipation in the
satellites, as the latter keeps eccentricities low and limits the
feeding zone of a given satellite, allowing more satellites to
coexist.

For the set of runs that include Dione and Rhea (panels b and
d), the match to Mimas, Enceladus, and Tethys is best when we
include satellite tides (Set D). Through capture into MMR, the
inner satellites have transferred some of their angular
momentum to Dione and/or Rhea, and have thus experienced
weaker orbital migration. On some cases, Dione and Rhea have
migrated away significantly. As for the runs without Dione and
Rhea, the inclusion of tidal dissipation into the satellites allows
the survival of Mimas-like satellites.

Table 7 lists average quantities for the rings and produced
satellites at 109 years across our four sets of simulations. The
average mass of the rings at 10 years9 is ´ -1.5 10 7

♄´ - M2 10 8 across all our runs. Despite a factor of six

variation in the initial mass, all rings have roughly the same
mass at the end of our simulations, in good agreement with the
expected asymptotic evolution of the ring mass (Salmon et al.
2010). The average ring mass at10 years9 is only slightly larger
than the mass of Mimas, in good agreement with current
estimates of the mass of Saturn’s rings (Esposito et al. 1983;
Salmon et al. 2010).
Figure 16 shows the range of satellites formed across all our

simulations. We plot the average mass and semimajor axis of
our Tethys, Enceladus, and Mimas analogs. For the latter, we
sum the masses of the third largest bodies with any other
moonlets present inside its orbit, as they will likely collide
and merge on longer timescales, and we compute a mass-
weighted mean for the semimajor axis. For our outermost
satellite, the mass range is similar in sets A, B, and C, and a
little lower for set D. For the outermost satellite, sets not
including tidal dissipation in the satellites (A and C) have
consistently larger average semimajor axes than the corresp-
onding set that includes them (B and D). Our Enceladus
analogs are systematically larger than current Enceladus,
which is consistent with later mass loss from this body (e.g.,
Hansen et al. 2008).
For the innermost satellite there is a clear separation between

sets that do not include satellite tides, which produce smaller
and closer moons, and sets that include strong satellite tides,
which produce larger and more distant satellites. While we
have in this study explored extreme cases (no satellite tides or
very strong ones), this suggests that moderate satellite tides
could produce an innermost satellite more similar to Mimas.
We find that many of our produced satellite systems show

resonant configurations at 109 years: three runs in Set A, five
runs in Set B, three runs in Set C, and six runs in Set D. For Set
C and D, a resonant configuration between Dione and Rhea

Figure 14. Snapshots of the system in Run 6A (left) and 5B (right) at different times of evolution. The vertical dashed line at ♄» R2.24 is the Roche limit. The thick
black horizontal line is the Roche-interior ring, whose inner edge moves inward as the planet’s contracts from its initial radius of ♄R1.3 . The black dots represent the
satellites formed from the disk, with the thin horizontal lines representing their pericenter and apocenter. The red squares show the current Mimas, Enceladus, and
Tethys.
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occurs in two and five runs, respectively. In Set D, the largest
moon formed from the rings (i.e., our Tethys equivalent) is
captured in a Dione’s 2:1 MMR in five runs. Despite efficient

capture into MMRs in all our cases, survival of the system of
Saturn’s moons through their formation appears likely over 1
billion years. Some tidal dissipation into the growing satellites
seems a prerequisite to allow the formation of the innermost
satellites, in particular Mimas.

5. External Delivery of Rock to Saturn’s Inner Moons

Mimas, Enceladus, and Tethys as a group contain between
´6 1019 to 1020 kg rock, about 8%–15% of their combined

current masses (Table 1). Enceladus is currently about half
rock, although its initial proportion of rock may have been
much lower if it has lost ice over its history at a rate comparable
to that occurring currently as a result of its endogenic activity.
Clearly if Saturn’s inner moons (or their progenitors) were
spawned from an essentially pure ice ring as we consider here,
the moons would have initially been nearly pure ice as well.
Here we consider how external bombardment onto these moons
might have altered their initial compositions and possibly
supplied the rock in these objects.

Figure 15. Distribution of satellites at 10 years9 . (a) Without Dione and Rhea nor satellites tides. (b) With Dione and Rhea but without satellite tides. (c) Without
Dione and Rhea but including satellite tides. (d) With Dione and Rhea and including satellite tides.

Table 7
Data for All 4 Sets at t=109 Years

Set A Set B Set C Set D

á ñM Mring MET 0.12±0.02 0.12±0.01 0.12±0.02 0.11±0.02

á ñL Lring MET 0.07±0.01 0.07±0.01 0.07±0.01 0.06±0.01

á ñM Msats MET 2.12±1.02 2.62±1.66 2.13±1.02 1.95±1.01

á ñM Msats ring,0 0.22±0.01 0.25±0.05 0.22±0.01 0.2±0.01

á ñL Lsats MET 2.18±1.1 2.67±1.78 2.2±1.13 1.87±1.03

áD ñL LDR MET N/A N/A 0.09±0.1 0.11±0.08

Note. Average values at 109 for the four sets of simulations. Mring is the rings’
mass; MMET is the total mass of Mimas, Enceladus, and Tethys; Lring is the rings’
angular momentum; Msats is the total mass of the spawned satellites in a given run
(excluding Dione and Rhea); Mring,0 is the rings’ initial mass; Lsats is the angular
momentum of the spawned satellites in a given run (excluding Dione and Rhea);
LMET is the total angular momentum of Mimas, Enceladus, and Tethys; and
áD ñL LDR MET is the variation of angular momentum of Dione and Rhea.

15

The Astrophysical Journal, 836:109 (19pp), 2017 February 10 Salmon & Canup



5.1. An LHB in the Outer Solar System

In the so-called Nice model for the origin of the dynamical
structure of the outer solar system (Tsiganis et al. 2005), the
giant planets are initially in a compact orbital configuration.
Their orbits slowly migrate and diverge due to dynamical
interactions with a planetesimal disk of initial mass Mdisk. When
Jupiter and Saturn cross their mutual 2:1 MMR, their orbital
eccentricities increase. This leads to a period of dynamical
instability, during which Uranus and Neptune (and perhaps a
fifth outer planet as well; Nesvorný & Morbidelli 2012) are
scattered outward to their current positions and planetesimals are
scattered across the solar system. The scattered planetesimals
become a population of impactors, which could, for example,
account for the spike in the impact rate believed by many to be
necessary to explain the formation of the large lunar impact
basins at ∼3.9 Gyr during a so-called late heavy bombardment
on the Moon (Tera et al. 1974; Cohen et al. 2000; Stöffler &
Ryder 2001; Kring & Cohen 2002; Gomes et al. 2005; Levison
et al. 2011). The total mass of scattered planetesimals scales
roughly with Mdisk. The disk must be massive enough to
decrease the eccentricities of Uranus and Neptune to their current
values through friction effects, but not so massive as to
cause excessive migration. Forming a planetary system like
ours appears most likely for  Å ÅM M M20 50disk (Batygin
& Brown 2010; Nesvorný & Morbidelli 2012). For

= ÅM M35disk , ~10 kg19 of planetesimals are scattered onto
the Moon, consistent with that needed to explain the lunar LHB
(Gomes et al. 2005). If the instability was responsible for the
lunar LHB, the timing of the event is constrained to occur some
700Myr after the origin of the solar system.

A Nice-like instability consistent with our specific solar
system structure may be a relatively improbable case among
the broad range of possible outcomes (Nesvorný & Morbidelli
2012). However, the Nice model remains the most detailed
dynamical history available for the early outer solar system,

and it has been remarkably successful in explaining a variety of
solar system features, including the giant planet eccentricities
(Tsiganis et al. 2005), the structure of the Kuiper Belt (Levison
et al. 2008), the capture of Jupiters Trojans (Morbidelli
et al. 2005), the capture of the irregular satellites (Nesvorný
et al. 2007), and the Ganymede/Callisto dichotomy (Barr &
Canup 2010). While we consider predictions of the specific
Nice model as a guide, the existence of an enhanced
bombardment period in the outer solar system probably applies
more generally. It has long been recognized that the structure of
the Kuiper Belt requires that Neptune migrated outward via
planetesimal scattering (Malhotra 1995), and that this implies
both an initially more compact giant planet configuration
and a planetesimal disk containing between 10 and 100M⊕

(Fernandez & Ip 1984; Hahn & Malhotra 1999). The
interaction of the giant planets with such a massive disk would
have produced an enhanced bombardment period, even if the
details of the evolution differed from that of the Nice model.
The composition of the impactors originating from the

planetestimal disk is uncertain. Jupiter Trojans are thought to
be captured bodies that originated in the region beyond
Neptune (Nesvorný et al. 2013). These bodies show a diversity
of densities: -0.8 g cm 3 for 617 Patroclus (Marchis et al. 2006),
and -2.5 g cm 3 for 624 Hektor (Lacerda & Jewitt 2007).
Jupiter-family comets are also thought to originate from the
Kuiper Belt (Fernandez 1980; Duncan et al. 1988), and show
densities lower than -0.6 g cm 3 (Lowry et al. 2008). These low
densities indicate high porosities. The rock fraction of these
objects would be between about 40% and 70% if they reflected
a bulk solar composition of outer solar system solids (Simonelli
et al. 1989). Observations from the Deep Impact mission imply
that the rock-to-ice ratio in comet 9P/Tempel 1 is larger than 1,
suggesting that comets are “icy dirtballs” rather than “dirty
iceballs” (Küppers et al. 2005). The size distribution of
impactors is also uncertain, but constraints can be derived
from the cratering rate on Iapetus, and the observed size
distribution of comets and KBOs (Charnoz et al. 2009).

5.2. Mass of Rock Delivered to Inner Spawned Moons at
Saturn

An LHB in the outer solar system would have affected any
satellite of Saturn that existed at that time. We here consider a
bombardment that occurs at 700Myr, and estimate the mass of
rock that would have collided with Saturn’s inner moons as a
function of the assumed mass of the transneptunian disk,
assuming that the LHB impactors contain between 40% and
60% rock by mass.
For an initial disk mass = ÅM M35d,0 , the Moon accretes an

average of ( ) ´8.4 0.3 10 kg18 (Gomes et al. 2005), which is
~ ´ - M4 10 8

d,0. Levison et al. (2001) found that during and
LHB-type event, Callisto and Ganymede are respectively
impacted 40 and 110 times more than the Moon. Using the
impact probabilities from Table 1 of Zahnle et al. (2003), this
implies that a mass ~ ´ - M3.14 10 2

d,0 collides with Jupiter,
while ~ ´ - M1.32 10 2

d,0 collides with Saturn, where these
values assume the planets have their current mean radii.
Given the probability of impact with Saturn, P♄, the impact

probability onto a Saturnian satellite, Ps, can be approximated

Figure 16. Average mass and semimajor axis of satellites formed in our four
sets of simulations. For the innermost satellite, we use the total mass of the
third most massive satellite, plus any other moonlets inside its orbit, and
compute a mass-weighted semimajor axis. The dotted line is the analytical
prediction from Crida & Charnoz (2012; their Equation (25S)). Without
satellite tides (Sets A and C), the innermost satellite is less massive than Mimas
and inside its current orbit, while with strong satellite tides (Sets B and D), it is
more massive and outside its orbit. Moderate satellite tides would likely
produce a better fit to current Mimas. Our Enceladus-equivalent is always
significantly more massive than the current one, consistent with later mass loss
(e.g., Hansen et al. 2008)
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where Rs and as are the satellite’s physical radius and its
semimajor axis.

We apply this formula to the the distribution of moons in
each of our simulations at t=700Myr to determine the
probability of impact with each moon. For the spawned moons,
we calculate Rs, assuming a density appropriate for pure ice; for
Dione and Rhea, we use their current physical radii. We
estimate the total mass of rock delivered to the satellites during
the LHB by computing the total of these probabilities times
Md,0. Figure 17 shows results as a function of Md,0. The points
indicate the average mass of rock (and its standard deviation)
by satellites spawned from the rings (left panel), and by Dione
and Rhea in runs that included them (right panel). The vertical
dashed lines represent variations for impactors containing
40%–60% rock.

The mass of rock that impacts the satellites spawned from
the rings is consistent with the total mass of rock in Mimas,
Enceladus, and Tethys (shown as the horizontal dashed lines in
Figure 17) for > ÅM M20d,0 . Thus if an LHB in the outer solar
system occurred at roughly the same time as the lunar LHB, it
would have delivered a rock mass comparable to the total rock
in Saturn’s inner moons. This suggests that these moons were
initially much more rock-poor than they are today. In contrast,
the LHB delivers a mass in rock to Dione and Rhea that is
about an order-of-magnitude less than the current rock content
in these moons (Figure 17, right panel), suggesting that they
were already (relatively) rock-rich when they formed.

In the above we estimate the total mass of rock from external
impactors that collides with the spawned satellites as a group,
but we have not calculated the rock mass that would ultimately
be accreted by each satellite. Using the mean values for each
equivalent satellite (Figure 16), we can estimate the expected
rock mass to collide with each object. We find that “Mimas”
and “Tethys” would be impacted by their currently estimated
mass of rock, provided the initial mass of the transneptunian
disk was> ÅM20 , but that “Enceladus” would be impacted by

about a factor of two, with too little rock mass. We envision
several possibilities to explain this discrepancy. First, most of
the mass was delivered by large impactors with radius
~100 km or larger (Charnoz et al. 2009). We estimate that
stochastic variations could then produce the observed rock
distribution in the system with a probability up to 10%. Second,
Enceladus may have initially formed with more rock due to the
presence of some large chunks in the rings, as suggested by
Charnoz et al. (2011). Third, the amount of rock colliding with
each moon was different than the rock ultimately retained by
each moon.
Per the third possibility, impact velocities onto the spawned

moons will be dominated by gravitational focusing by Saturn, and
so will greatly exceed each moon’s escape velocity. For a typical
impact velocity ∼20 km s−1, the impactor will be destroyed and
its rock shock heated to temperatures ∼2000–8000K, implying a
primarily melt-vapor state for all but the most highly oblique
impacts (Pierazzo & Melosh 2000). While much of the ejecta in a
hypervelocity cratering event (e.g., that originated from the target
in the“far field”) has ejection velocities comparable to the target’s
escape velocity (Alvarellos et al. 2005), the impactor material
itself will have an ejection velocity within a factor of several of the
impact velocity (Melosh 1989; Pierazzo & Melosh 2000).
Thus most or all of the impacting material will initially escape
the satellite, although most will still be in bound Saturn orbit
(Movshovitz et al. 2015). For small ejecta sizes, as would be
expected for droplets condensing from vapor, ejecta–ejecta
collisions may occur on much smaller timescales than re-accretion
onto the target, allowing ejecta to collisionally damp to a ring that
overlaps the orbits of neighboring satellites. Thus while collisions
with Saturn’s inner satellites should effectively capture rock from
external impactors into the inner satellite region, where the rock
ultimately accretes will depend on the ejecta’s size and velocity
distribution and on its post-impact evolution. This will require
follow-on models for assessment.
External impactors would have also encountered the rings.

Large impactors would pass through the rings, while those small
enough to encounter a ring mass comparable to their own during a
single passage could be directly captured. For a ring at 700Myr
with a surface density ∼few -10 g cm2 2, this corresponds to

Figure 17. Average mass of rock accreted by the satellites as a function of the initial mass of the transneptunian disk. We assume that the LHB occurs at 700 Myr and
that impactors contain 50% of rock in mass. Left: points show the average total mass accreted by satellites spawned from the rings in our simulations; vertical lines
indicate standard deviation. The horizontal dotted lines show the range of total rock mass in Mimas, Enceladus, and Tethys today. The vertical dashes represent
variations in the accreted mass for impactors containing 40% to 60% rock. Right: points show the mass of rock accreted by Dione and Rhea (when present) as a second
group, which is much less than the total rock contained in these two moons, as indicated by the horizontal dashed lines.
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impactor radii smaller than about 2 m. The size distribution of
small impactors during the LHB is uncertain, but it is inferred to
be quite shallow, with a cumulative size index of −1.5, based on
the cratering record on Iapetus (Charnoz et al. 2009; Movshovitz
et al. 2015). With 0.002 times the total impactor population
expected in objects1 km in radius (Movshovitz et al. 2015), the
fraction in objects smaller than 2 m would be~ -10 7. This implies
a relatively small total rock mass captured by the rings,
comparable to or smaller than the upper limit on the rock in the
rings today (Nicholson et al. 2008).

6. Discussion

We have simulated the spawning of inner moons at Saturn
from a massive primoridal ice ring as it viscously evolves. Our
model includes the viscous spreading of the rings driven by the
effects of self-gravity, interaction between the rings and the
satellites at Lindblad resonances, an explicit treatment of
mutual interactions between the spawned moons including
capture into MMR, and the evolution of spawned moon orbits
due to tidal dissipation in Saturn. For the latter we assume a
tidal dissipation parameter for Saturn of ~Q 104, consistent
with traditional estimates (Murray & Dermott 1999), but
implying a slower rate of primordial orbital expansion than
may apply to Saturn over recent decades (Lainey et al. 2017).
We investigate the effects of the initial ring mass, the planet’s
early radius, the presence or absence of Dione and Rhea (which
we assume formed separately from the rings), and the strength
of tidal dissipation within the satellites.

We find that by 109 years, the distribution of spawned moon
masses and semimajor axes resembles that of current Mimas,
Enceladus, and Tethys. Spawned satellites grow initially by
accreting moonlets just as they are spawned from the rings, and
later, when their orbits have expanded away from the ring edge,
by accreting larger objects, themselves the result of accretion of
moonlets spawned from the rings. We therefore observe a
behavior comparable to the discrete and pyramidal regimes
described in the analytical work of Crida & Charnoz (2012). We
find that capture of inner spawned moons into MMR with outer
moons acts to expand the orbits of the satellites beyond those
expected if each object only interacts with its own strong
resonances in the rings, as has been assumed in prior work
(Charnoz et al. 2011). Thus the outermost spawned moons in our
simulations may reach distances comparable to that of Tethys in
109 years, even though we consider relatively slow tidal evolution.

Inner moons spawned from an ice ring would initially
contain little-to-no rock. Using the mass and semimajor axis
distributions of spawned moons from our simulations, we
estimate the mass of rock that would have been delivered to
these inner moons during an LHB in the outer solar system. We
find that external bombardment of the inner moons is expected
to deliver a mass in rock comparable to the total rock in Mimas,
Enceladus, and Tethys today. In contrast, the same bombard-
ment would have delivered a mass in rock to Dione and Rhea
that is much smaller than the mass of rock in those moons
today. The overall implication is that Saturn’s inner moons
were predominantly ice when they formed, while outer Dione
and Rhea were already relatively rock-rich when they formed.
We argue that this is most simply explained if the inner moons
are a by-product of a massive early ice ring, while outer Dione
and Rhea formed separately, presumably from the circumpla-
netary disk that produced Titan.

Some individual impacts during the LHB may have been
energetic enough to catastrophically disrupt Saturn’s inner
moons, with rapid re-accretion then likely (Movshovitz
et al. 2015). Thus the spawned moons in our simulations
may be best viewed as the progenitors to Mimas, Enceladus,
and Tethys. In our simulations that include pre-existing Dione
and Rhea (Sets C and D), we find at 109 years many resonant
configurations (involving mostly 2:1 and 3:1 MMRs) between
Dione or Rhea and inner satellites spawned from the rings.
These configurations are found more frequently in cases that
consider strong tidal dissipation in the satellites, because this
tends to stabilize the resonant configurations.
The integrations we perform are numerically intensive, and

as such they involve several simplifications. The principal one
is the simplicity of our Roche-interior disk model, which does
not resolve its radial structure and assumes that it maintains a
flat surface density profile at all times. This is a much simpler
treatment than the model of Charnoz et al. (2011), but it allows
us to explicitly model the dynamical evolution of the spawned
satellites and their mutual interactions, which in particular
allows for capture into MMRs, a feature absent from the
Charnoz et al. (2011) model that proves important in our
results. Further, we utilize an accelerated version of our code in
simulating the system evolution from 108 to 109 years.
We find the total mass of external rock that collides with the

inner spawned moons during the LHB to be compatible with
the estimated total mass of rock in the inner moons. Explaining
the actual rock distribution in each of these three satellites (or
their progenitors) is challenging, potentially requiring either a
stochastic component of large impactors and/or some rocks in
side the initial rings. In the case of the former, we estimate a
few to 10% likelihood of reproducing the observed rock
distribution for impacts 100 km in the radius (e.g., Charnoz
et al. 2009), in the limit that all the rock that collides with a
moon is retained by the moon. This is likely a poor assumption
for high-velocity impacts, and where the ejected material for
each collision will ultimately be accreted should be considered
by future work.

This work has been supported by NASA’s Planetary
Geology and Geophysics program. The authors would like to
thank the anonymous referee for reviewing the manuscript.

Appendix
Moment of Inertia of a Shell with Variable Density

Saturn’s current moment of inertia constant is estimated to
be ♄ »K 0.23 (Helled 2011; Nettelmann et al. 2013). We can
approximate this moment of inertia by considering that Saturn
is a core surrounded by a gaseous shell with a density

( ) ( )♄r r=r R r0
2. The moment of inertia of the core of mass

= ÅM M20core and radius Rcore is ( )=I M R2 5core core core
2 . We

need to compute the moment of inertia of a shell with inner
radius R1 and outer radius R2, and a density variation with
distance r̂ such that ( ˆ) ( ˆ)r r=r R r0 2

2. In spherical coordi-
nates, a point of the shell has coordinates r̂ , θ, and f. Let r
denote the distance of the point to the axis of inertia. Then,

( ) ( )r r q=r R rsin0 2
2 . The moment of inertia is then

computed using

( ) ( ˆ ˆ ˆ ) ( )
ˆò ò ò r q q f=

q

p

f

p

= = =
I r r drrd r dsin 14

r R

R

0 0

2
2

1

2
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The mass of the shell is

( ˆ)( ˆ ˆ ˆ ) ( )
ˆò ò ò r q q f=

q
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f
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r R
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ˆ ( )
ˆò ò òr q q f=

q

p

f

p

= = =
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r R
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2
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The moment of inertia of the shell can then be written as

( ) ( )= + +I M R R R R
2

9
. 20shell shell shell

2
core shell core

2

The moment of inertia constant of the whole planet is then

( )
♄

=
+

K
I I

M R
. 21p

core shell

shell
2

For current Saturn, using a core with density r =core
-10 g cm 3, we get Kp=0.234, in very good agreement with

the value quoted previously. For our largest planet,
♄=R R1.5shell and then Kp=0.211, close to the value for

current Saturn.
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