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ABSTRACT

We use a hybrid numerical approach to simulate the formation of the Moon from an impact-generated disk,
consisting of a fluid model for the disk inside the Roche limit and an N-body code to describe accretion outside
the Roche limit. As the inner disk spreads due to a thermally regulated viscosity, material is delivered across the
Roche limit and accretes into moonlets that are added to the N-body simulation. Contrary to an accretion timescale
of a few months obtained with prior pure N-body codes, here the final stage of the Moon’s growth is controlled
by the slow spreading of the inner disk, resulting in a total lunar accretion timescale of ∼102 years. It has been
proposed that the inner disk may compositionally equilibrate with the Earth through diffusive mixing, which offers
a potential explanation for the identical oxygen isotope compositions of the Earth and Moon. However, the mass
fraction of the final Moon that is derived from the inner disk is limited by resonant torques between the disk and
exterior growing moons. For initial disks containing <2.5 lunar masses (M�), we find that a final Moon with mass
>0.8 M� contains �60% material derived from the inner disk, with this material preferentially delivered to the
Moon at the end of its accretion.
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1. INTRODUCTION

The generally accepted scenario for the formation of the
Moon involves the oblique impact of a roughly Mars-sized
object with the proto-Earth (Hartmann & Davis 1975; Cameron
& Ward 1976; Stevenson 1987; Canup 2004b). Numerical
simulations of such an impact, using primarily smoothed particle
hydrodynamics methods, have shown that the impactor is
destroyed (either during the impact, or via post-impact tidal
disruption), and that a circumterrestrial disk is formed that
contains up to ∼2 M� of iron-depleted material (Benz et al.
1986, 1987, 1989; Cameron & Benz 1991; Cameron 1997;
Canup & Asphaug 2001; Canup 2004a, 2008). The silicate disk
is initially a mixture of vapor and melt, containing ∼O(10%)
vapor by mass (Canup 2004a). Typically about ∼20%–50% of
the disk material is predicted to have initial orbits exterior to the
Roche limit for lunar density material, aR, with aR ≈ 2.9 R⊕
where R⊕ is Earth’s radius.

Prior works have used direct N-body simulations to model
the accumulation of the Moon from such an impact-generated
disk, describing the disk with N = 103 to 104 particles that
are each of order 102 km in radius (Ida et al. 1997; Kokubo
et al. 2000). The N-body models depict an extremely rapid disk
evolution, with material interior to the Roche limit spreading
outward on a timescale of order one month. Typically a single
massive moon accretes in a year or less at an average distance
of 〈a〉 ≈ 1.3aR (Ida et al. 1997; Kokubo et al. 2000). That
a particulate protolunar disk would spread so rapidly was
anticipated by earlier estimates of Ward & Cameron (1978), who
pointed out that a disk of particles containing sufficient mass to
produce the Moon would be prone to gravitational instability
and local clumping. Exterior to the Roche limit, instability-
produced clumps would form permanent aggregates and seed
the growth of the Moon. But interior to the Roche limit, such
clumps are continually sheared apart by planetary tidal forces,
and this process generates a large viscosity that drives a ∼ lunar
mass Roche-interior disk of particles to spread in less than a year
(Ward & Cameron 1978; Takeda & Ida 2001; see Section 2.1.1).

Both processes can be seen directly in the N-body simulations
(Kokubo et al. 2000).

N-body protolunar disk models assume a disk of condensed
particles, neglecting the presence and creation of vapor as the
disk evolves. This is probably a reasonable approximation for
material orbiting outside the Roche limit. Immediately after the
impact, disk material is primarily in a condensed state (Canup
2004a). Outside the Roche limit, collisions between orbiting
particles lead to accretional growth. A rough estimate of the
heat liberated by accreting the Moon is its gravitational binding
energy, which implies an energy released per unit mass of the
Moon of Eb ∼ (3/5)GM�/R� ∼ 2 × 1010 erg g−1, where
G = 6.67 × 10−8 cm3 g−1 s−2 is the gravitational constant, and
M� = 7.35 × 1025 g and R� = 1738 km are the Moon’s mass
and radius. Even in the limit that all of this energy is retained by
the Moon, the expected extent of vapor production as the Moon
accretes is small because Eb is much smaller than the latent heat
of vaporization of silicate, lv ≈ 2 × 1011 erg g−1.

However, there is an inherent inconsistency in describing
the Roche-interior disk with an N-body particulate model. An
approximately lunar mass disk of condensates (solid or melt)
interior to the Roche limit will be subject to the instability-
induced viscosity described above. Such a disk spreads so
rapidly and the viscously generated heat is so large that the disk
would likely substantially vaporize as it evolves (Thompson
& Stevenson 1988), invalidating the model’s assumption of a
particulate disk. A vapor disk would be gravitationally stable,
and therefore not be subject to the instability-induced viscosity
seen in the N-body simulations. Thompson & Stevenson (1988)
were the first to recognize this important point, and proposed
that the protolunar disk would instead evolve in a two-phase,
vertically mixed vapor–melt state, with a viscous dissipation
rate regulated by the rate at which a ∼2000 K silicate vapor
photosphere could cool. This thermally regulated viscosity
implies a much longer disk spreading timescale of ∼102 years
(Thompson & Stevenson 1988; see Section 2.1.2).

Recently Ward (2012) has derived an analytical description
for the vertical structure of a two-phase protolunar disk inside
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the Roche limit, including both the vertically well-mixed case
explored by Thompson & Stevenson (1988), in which the
vapor mass fraction is very low, and a new alternative class
of solutions in which the vapor initially contains the majority
of the disk’s initial mass. The latter implies a stratified disk
structure, in which a portion of the disk’s mass settles to the
mid-plane as melt and undergoes rapid viscous spreading, while
the remainder of the disk is contained in a gravitationally stable
vapor atmosphere. The vapor component of the disk requires
∼102 years to deplete itself through condensation, and material
is ultimately supplied to the Roche-exterior region over this
timescale. Thus both the well-mixed and stratified disk models
imply a similarly protracted timescale for the inner disk’s overall
evolution that is ∼102 years.

We here develop a new lunar accretion model that describes
the Roche-interior region as a fluid disk, while material outside
the Roche limit is tracked using direct N-body simulation.
The inner disk evolves viscously and interacts with outer
bodies through resonant torques at the strongest Lindblad
resonances. Material from the inner disk that viscously spreads
beyond the Roche limit accretes to form new moonlets that
are added to the N-body simulation, while inner disk material
spreading onto the Earth is removed from the disk. This hybrid
construct allows us to model a slowly evolving inner disk
that spreads in ∼102 years as suggested by thermodynamical
models (Thompson & Stevenson 1988; Ward 2012), while
also directly simulating the rapid accretion expected among
condensed material orbiting outside the Roche limit.

Our overall objective is a more physically motivated model of
the Moon’s accretion, and improved estimates of its formation
timescale and initial orbital position. These quantities are
related to several outstanding issues, including the Moon’s
initial thermal state, the potential for chemical equilibration
between the protolunar disk and the Earth prior to the Moon’s
accumulation (Pahlevan & Stevenson 2007), and the initial disk
mass and angular momentum required to produce a lunar mass
Moon. In Section 2 we describe in detail our numerical model.
In Section 3 we use our code to reproduce results from pure
N-body simulations by Ida et al. (1997). In Section 4 we perform
hybrid model simulations with an inner fluid disk, and study
the influence of the disk’s initial parameters. Results are then
discussed in Section 5.

2. THE MODEL

Our numerical model is built around the symplectic integrator
SyMBA (Duncan et al. 1998). We have paired it with a simple
analytical model for a Roche-interior fluid disk that evolves
under the influence of viscous spreading and resonant torques
due to interactions with orbiting objects at their zeroth-order
Lindblad resonances. The inner disk mass decreases as material
spreads onto the planet or outward beyond the Roche limit; mass
spreading beyond the Roche limit is assumed to accrete into new
moonlets that are then added to the N-body code. We assume
that the inner disk has a uniform surface density σ = σ (t) and
viscosity ν = ν(t) with radius. The inner disk’s evolution is
computed by estimating the rate of change of its edges due to
the viscous and resonant torques. These simplified inner disk
treatments are detailed in Appendices A and C.

2.1. Viscosity Model

We characterize the inner disk by a single, time-dependent
viscosity that is a function of the disk’s surface density σ .

We envision a silicate disk that is initially two-phase
(vapor/melt), and we assume that both components co-evolve.
We adopt the argument of Thompson & Stevenson (1988) that
the inner disk’s viscosity will be limited by the rate at which
a ∼2000 K disk photosphere can radiatively cool, so long as
there is vapor present. Once the disk mass and the associated
rate of viscous dissipation is low enough that all of the vapor
can condense, we assume that the inner disk’s viscosity will be
comparable to that of a purely condensate disk subject to local
gravitational instabilities (Ward & Cameron 1978).

2.1.1. Instability-induced Viscosity

For a ∼ lunar mass, Roche-interior disk composed of melt or
solids, local patch instabilities strongly increase the collision
rate among disk particles through the formation of clumps
that are continuously sheared apart by planetary tides (Ward
& Cameron 1978). By introducing coherent particle motions,
instabilities modify the transport of angular momentum in the
disk and produce a characteristic viscosity (Ward & Cameron
1978)

νWC ∼ π2G2σ 2

Ω3
, (1)

where σ is the disk surface density and Ω is the orbital frequency.
This process and the resulting rate of angular momentum
transport are observed in N-body numerical simulations of the
protolunar disk (Takeda & Ida 2001) and dense planetary rings
(Salo 1995; Daisaka & Ida 1999; Daisaka et al. 2001). The
associated disk spreading timescale for a disk of radial scale r,
r2/ν, is then

τWC = r2Ω3

π2G2σ 2
∼ 0.8

(
Md

M�
)−2 (

rd

aR

)3/2

years. (2)

The dissipation rate per unit area is Ėν = (9/4)σνWCΩ2

(Ẋ denotes the time derivative of X), implying a total energy
per area dissipated as the disk spreads for a time τWC of
ĖντWC ∼ (9/4)σrΩ2. For a uniform surface density disk,
this represents a total liberated energy per unit disk mass of
∼(9/4)(rΩ)2 ∼ 5 × 1011(aR/rd )erg g−1.

2.1.2. Thermally Regulated Viscosity

The estimated energy released as an ∼ lunar mass disk spreads
is thus comparable to the latent heat of vaporization for silicate
(lv ∼ 2 × 1011 erg g−1). If the inner disk spreads in <1 year
as implied by Equation (2), it is probable that it will retain any
viscously dissipated heat, because the timescale for the disk
to radiatively cool from its surfaces is much longer, of order
decades (Thompson & Stevenson 1988; Pritchard & Stevenson
2000). This implies that a substantial fraction of a condensate
disk would vaporize as it spreads due to an instability-induced
viscosity.

While a condensate disk would be subject to instabilities, a
typical silicate vapor disk is gravitationally stable. Indeed, its
Toomre parameter is (Toomre 1964)

Q = csΩ
πGσ

≈ 52

(
rd

R⊕

)−3/2(
T

2000 K

)1/2(
σ

107 g cm−2

)−1

,

(3)

where T is the disk’s temperature and cs = √
γRT/μ, γ = 1.4

is the adiabatic index, R is the universal gas constant and
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μ = 30 g mol−1 is the molecular weight. Thus, a protolunar
disk composed of silicate vapor with a photosphere temperature
near the condensation point (T ∼ 2000 K) would have Q > 1,
and would not be subject to the instability-induced viscosity.

In the absence of strong dissipation, a vapor disk could cool
and condense, with gravitational instabilities then re-developing
in the condensed phase. This in turn would heat the disk
through increased dissipation. This feedback suggests that the
dissipation rate in the inner disk will be limited by the rate at
which the disk can radiatively cool from its surfaces (Thompson
& Stevenson 1988), with

9

4
σνΩ2 = 2σSBT 4

p , (4)

and an associated viscosity (Thompson & Stevenson 1988)

νTS ≈ σSBT 4
p

σΩ2
, (5)

where σSB is the Stefan–Boltzmann constant and Tp is the
disk’s photospheric temperature. The corresponding spreading
timescale is

τTS ≈ 50

(
rd

aR

)−3 (
Tp

2000 K

)−4 (
Md

M�
)

years. (6)

2.1.3. Model Used

Following the Thompson & Stevenson (1988) disk model
in which the liquid and vapor phases remain vertically well
mixed, our model assumes that both the vapor and condensed
phases viscously evolve as a single unit. At each time step in our
simulation, we compute both the instability-induced viscosity
νWC and the radiation-limited viscosity νTS (with Tp = 2000 K)
at r = rd . If νWC > νTS, we assume that the disk self-regulates
to a radiation-limited viscosity and set ν = νTS. If νWC < νTS,
the disk can lose energy via radiative cooling at a faster rate than
it is generated by instabilities. At this point we assume that the
disk would condense, and therefore set ν = νWC.

The ratio between the two viscosities is

νTS

νWC
∼ σSBT 4

p Ω
σ 3π2G2

∼ 5 × 10−3

(
Tp

2000 K

)4 (
rd

aR

)−3/2

×
(

σ

107 g cm−2

)−3

. (7)

For reference, a uniform one lunar mass disk extending from R⊕
to aR has a surface density of ∼8 × 106 g cm−2. Our initial disks
have νTS/νWC < 1 and evolve with a radiation-limited viscosity.
As the disk spreads and loses mass, its surface density decreases,
and since (νTS/νWC) ∝ σ−3, at some point νWC ∼ νTS. This
transition occurs for

σtrans ∼
(

σSBT 4
p Ω

π2G2

)1/3

∼ 1.7 × 106

(
Tp

2000 K

)4/3

×
(

r

aR

)−1/2

g cm−2. (8)

This is equivalent to an inner disk mass of Md = 1.6 × 1025 g ≈
0.2 M� for a uniform surface density between r = R⊕ and
rd = aR .

We assume that the inner disk maintains a uniform surface
density with radius as it viscously expands. Viscous expansion
leads to mass transfer from the disk onto the planet, and to the
outward expansion of the disk’s outer edge (see Appendix A for
details).

2.2. Spawning of Moonlets

As disk material viscously spreads outward beyond the
Roche limit, accretion becomes increasingly probable and the
continuous nature of the disk is disrupted as discrete large
objects form (e.g., Kokubo et al. 2000). Our model approximates
this transition by removing mass from the inner disk and adding
new moonlets to the N-body simulation once the disk’s outer
edge expands beyond the Roche limit. Once rd � aR , we
compute the characteristic fragment mass that would form from
local gravitational instability, and assume that since it is at or
beyond the Roche limit, it will be stable and not be tidally
disrupted. This mass, and its corresponding angular momentum,
is removed from the inner disk and added to the N-body code as
a new discrete particle.

The mass mf of the fragment that would form from instabili-
ties is (Goldreich & Ward 1973)

mf = 16π4ξ 2σ 3r6
d

M2⊕
, (9)

where ξ is on the order of, but less than, unity. We set ξ = 0.3.
If the disk’s outer edge is at the Roche limit (rd = 2.9R⊕), then
inner disks containing 1.5 and 0.01 M�will form fragments of
≈3 × 10−3 M� and 10−9 M�, respectively. This is comparable
to the aggregate mass seen in the direct “rubble pile” N-body
simulations of Kokubo et al. (2000). To improve computational
efficiency, we set the minimal mass of spawned fragments to
≈10−5 M�. Smaller fragments would be formed by an inner
disk containing <0.3 M�. As we will later see, this only affects
the very last stages of a given simulation, so we expect it to be
of little influence on the outcome of a given simulation. We test
the influence of this parameter in Section 5.3.

At each time step, we check whether the disk’s outer edge
lies beyond the Roche limit. When this occurs, we compute the
mass of a spawned fragment as per the equation above as a
function of σ . The mass of the spawned moonlet is removed
from the inner disk. To conserve angular momentum, we first
set the new body’s semi-major axis to rd, and then we compute
the new disk’s outer edge r ′

d so that L′
d +Lf −Ld = 0, where Ld

and L′
d are the inner disk’s angular momentum before and after

adding the new body, and Lf is the added fragment’s angular
momentum. Additional details are in Appendix B.

2.3. Disk–Satellite Interactions

We include resonant interactions between the disk and the
growing moonlets, which lead to a positive torque on the
exterior moonlets (whose orbits expand), and a negative torque
on the inner disk (whose outer edge contracts). Such interactions
are important because, e.g., sufficiently massive moonlets can
initially confine the disk edge within the Roche limit and delay
the spawning of additional moonlets (Charnoz et al. 2010).

As a first approximation, we consider only the strongest
zeroth-order inner Lindblad resonances, in which the ratio of
the mean motion at a location in the disk to that of an exterior
moonlet is a ratio of integers with (m : m − 1). To compute the
resonant torque, we use the formalism of Goldreich & Tremaine
(1980).
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The total torque Ts exerted by the inner disk on an exterior
satellite per unit satellite mass is found by summing the torques
due to all the zeroth-order resonances that fall in the disk (see
Appendix C),

Ts

Ms

=
(

π2

3
μsGσas

)
C(m), (10)

where Ms is the satellite’s mass, μs = Ms/M⊕, C(m) =∑m∗
m=2 2.55m2(1 − 1/m) and m∗ is the highest m for which

resonance (m : m − 1) falls in the disk. When m∗ < 2, the
satellite is far enough from the disk that its 2:1 resonance (which
is the most distant zeroth-order resonance) is no longer in the
disk, and in this case Ts = 0. For a satellite orbiting close
to the disk, we impose an upper limit on m∗ by considering
only those resonances that are radially separated from the
satellite’s orbit by a distance greater than the satellite’s Hill
radius (RH = as(Ms/3 M⊕)1/3), or those resonances for which
(1−1/m)2/3 � 1−(Ms/3 M⊕)1/3. This excludes from the torque
calculation the approximate region immediately surrounding
the satellite’s semi-major axis within which particles undergo
horseshoe orbits.

To compute the resulting orbital evolution of the satellite
we adopt the approach of Papaloizou & Larwood (2000). We
define an orbital migration timescale, tm, due to the torque on the
satellite associated with all of its zeroth-order resonances that
fall in the disk, tm = Ls/Ts , where Ls is the satellite’s orbital
angular momentum. We then apply an additional acceleration
to the satellite, given by amig = (v/tm), where v is the satellite’s
velocity. We include this as an additional “kick” of duration τ/2
(where τ is the time step) at the beginning and end of each step
in the N-body code.

The total torque on the disk due to N orbiting moonlets
is Td = −∑N

s=1 Ts . We assume that moonlet torques cause
a change in the disk’s outer edge rd, with ṙd |moon < 0
(see Appendix C) because external moons remove angular
momentum from the disk.

2.4. Model for Roche-exterior Particulate Disk

Beyond the Roche limit, we model the protolunar disk
material by a collection of individual particles, with an initial
power-law size distribution N (m)dm ∝ m−pdm, where N (m)
is the number of particles with a mass between m and m + dm.
In this section we describe our treatments of collisions between
particles, and the tidal disruption of moonlets scattered close to
the Earth.

2.4.1. Tidal Accretion Criteria

In the default version of SyMBA, all collisions result in
inelastic mergers. However this is too simplified for objects
orbiting near the Roche limit. We modified the code to include
tidal accretion criteria (Ohtsuki 1993; Canup & Esposito 1995),
which near the Roche limit are a function of the impact energy,
the mass ratio of the colliding objects, and the collision location
relative to the Roche limit. We use either an “angle-averaged”
criterion, that assumes randomly oriented collisions, and a “total
accretion” criterion, in which collisions are assumed to occur
in the radial direction along the widest axis of the Hill sphere.
These are the same accretion criteria as those used in Ida et al.
(1997), and in some of the simulations in Kokubo et al. (2000).
Additional details can be found in Appendix D.

While an improvement over the assumption of perfect merg-
ers during every collision, our tidal accretion criteria are still

idealized. They ignore the potential for fragmentation or sub-
stantial deformation when calculating whether a given collision
results in accretion, and assume that an accreted pair merges
into a new spherical body. Kokubo et al. (2000) considered
three different accretion models: the two described above, and
a “rubble pile model”, in which individual N-body particles are
never merged but allowed to form gravitationally bound ag-
gregates of irregular shapes that can, e.g., be tidally disrupted
when they pass within the Roche limit. Kokubo et al. (2000)
find similar overall outcomes for all three treatments (e.g., their
Figure 1); this is probably because the Moon’s final position is
affected more by its resonant interactions with the inner disk
in their simulations than the exact position at which it begins
to grow, so long as the latter is outside the Roche limit. We
use the angle-averaged criterion for direct comparison with Ida
et al. (1997) in our Section 3 simulations, and the total accretion
criterion in our hybrid simulations in Section 4.

2.4.2. Tidal Disruption of Moonlets

Close encounters between particles can lead to some of
them being scattered toward the planet on high eccentricity
orbits, where they may suffer tidal disruption and be effectively
absorbed by the inner disk. We expect objects accreting in the
outer disk to be molten or partially molten (e.g., Section 5.4).
An inviscid fluid object on a parabolic orbit will tidally disrupt
in a single pass if its pericenter distance Q satisfies

Q < 1.05

(
Mp

ρ0

)1/3

, (11)

where Mp is the mass of the disrupting body and ρ0 is the
density of the orbiting body (Sridhar & Tremaine 1992). For the
Earth–Moon system, this yields Q < 2R⊕.

At each time step, we compute the distance of each object
to the primary. If this distance is smaller than 2R⊕, we remove
the body from the N-body code and add its mass and angular
momentum to that of the inner disk. The latter is done by finding
the disk’s new outer edge r ′

d so that Ld − L′
d + Lc = 0, where

Ld and L′
d are the disk’s angular momentum before and after

capture, and Lc is the angular momentum of the captured body.
The disk mass after capture is M ′

d = Md + mc, where mc is the
mass of the captured body. This yields

4

5
Md

r
5/2
d − R5/2

r2
d − R2

− 4

5
M ′

d

r
′5/2
d − R5/2

r ′2
d − R2

+ mc

√
ac

(
1 − e2

c

) = 0,

(12)

where R = R⊕ is the disk’s inner edge (see Appendix A
for details) and ac and ec are the captured body’s semi-major
axis and eccentricity. We solve this numerically so that angular
momentum is conserved to a 10−8 precision.

To prevent the inner disk’s outer edge from expanding too
far beyond the Roche limit in a single time step due to the
tidal disruption of a large object, we implement a tidal stripping
mechanism for large objects. If a body’s mass is greater than
10−5 M⊕, we remove 20% of its mass at each time step once
its distance to the primary is r < 2 R⊕, so that large bodies are
entirely disrupted over a few time steps. Since the time step in
SyMBA is 1/20th of the orbital period at one Earth radius,
large bodies are then effectively disrupted over a timescale
<30 minutes, which is much shorter than their orbital period.
On some runs, this still leads to the outer disk edge temporarily
expanding to ∼2.93 R⊕, but then new bodies are formed from
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Table 1
N-body Simulation Parameters

Run Ld/Md Ld Md amax p q N εn εt

(
√

GM⊕aR) (LEM) (M�) (aR)

1 0.670 0.295 2.44 0.95 1.5 5 1500 0.01 1
2 0.670 0.295 2.44 0.95 1.5 5 1500 0.5 1
3 0.690 0.304 2.44 0.95 1.5 4 1000 0.01 1
4 0.692 0.305 2.44 0.95 1.5 4 2000 0.01 1
5 0.722 0.318 2.44 1.25 1.5 3 1000 0.01 1
6 0.722 0.318 2.44 1.25 1.5 3 1000 0.5 1
7 0.767 0.338 2.44 1.25 1.5 3 1500 0.01 1
8 0.794 0.350 2.44 1.25 1.5 3 2700 0.01 1
9 0.813 0.358 2.44 1.50 1.5 2 1500 0.01 1
10 0.823 0.363 2.44 1.50 1.5 2 1000 0.5 1
11 0.834 0.367 2.44 1.80 1.5 2 1000 0.01 1
12 0.891 0.393 2.44 2.00 1.5 2 1000 0.01 1
13 0.958 0.422 2.44 2.00 1.5 1 1000 0.01 1
14 0.977 0.430 2.44 2.00 1.5 1 1000 0.01 1
15 0.738 0.325 2.44 1.25 0.5 3 1000 0.01 1
16 0.757 0.443 3.24 1.25 1.5 3 1000 0.5 1
17 0.767 0.449 3.24 1.25 1.5 3 1500 0.01 1
18 0.768 0.338 2.44 1.25 1 3 1000 0.01 1
19 0.778 0.228 1.62 1.25 1.5 3 1000 0.01 1

Notes. Input parameters for our pure N-body simulations, adapted from Ida
et al. (1997). Md , Ld , and amax are the disk’s initial mass, angular momentum,
and outer edge. Ld/Md is the so-called specific angular momentum (in units of√

GM⊕aR). p and q are the exponents for the initial particle-size distribution
(N (m) ∝ m−p) and surface density distribution (σ (a) ∝ a−q ), and N is the
initial number of particles in the disk. εn and εt are the normal and tangential
coefficients of restitution (see the text for discussion). Units of mass, distance,
and angular momentum are the present lunar mass M�, the Roche limit for
silicates aR ≈ 2.9 R⊕, and the angular momentum of the Earth–Moon system
(LEM = 3.5 × 1041 g cm2 s−1).

fragmentation (see previous section), and the disk outer edge
returns to close to the Roche limit in a few tens of orbits.
Generally this happens late in simulations, when the disk mass is
�10−1 M�, so we believe it does not greatly affect the outcome
of our simulations.

We note that the orbits of bodies passing through the inner
disk would also be affected by drag interaction with inner
disk material. For example, an object that encounters a mass
comparable to its own during a single passage through the inner
disk would be captured by the inner disk. We neglect this process
here, since it depends sensitively on the disk properties (notably
its scale height and radial surface density profile), which are
treated in a simplified fashion by our model.

3. TESTS WITH PURE N-BODY SIMULATIONS

We begin by performing pure N-body simulations, using the
angle-average accretion criterion, for direct comparison with
previous results of Ida et al. (1997), using initial disk parameters
given in Table 1 of that paper and summarized in our Table 1.

For Runs 1–14, the initial disk mass is Md = 2.44 M� and
the index of the particle-size distribution (N (m)dm ∝ m−pdm)
is p = 1.5. Different values are used for the disk’s outer edge
amax, the surface density distribution exponent q (σ (a) ∝ a−q),
and the number of particles N. For Runs 15–19, the disk’s outer
edge and exponent of the surface density distribution q are held
constant, while Md and p are varied. We run each simulation
for 5000TK , where TK is the orbital period at one Earth radius.
This timescale is equivalent to that of Ida et al. (1997), who use

Figure 1. Ratio of the mass of the largest body at t = 5000TK to the initial disk
mass, as a function of the disk’s initial specific angular momentum, for pure
N-body simulations comparable to those in Ida et al. (1997). Squares correspond
to runs with εn = 0.01 and triangles to those with εn = 0.5. Small symbols are
cases where the mass of the second largest body is at least 30% that of the largest
one, in which cases we plotted the mass of the combined bodies. The solid and
dashed lines correspond to Equation (13) with M∞ = 0 and M∞ = 0.05Md ,
respectively.

a simulation time of 1000T ′
K , with T ′

K being the orbital period
at aR.

Particles are distributed randomly throughout the disk, with
initial eccentricities and inclinations (in radians) of order
O(10−1) as in Ida et al. (1997). We use their values for the normal
and tangential coefficients of restitution, with εn = 0.01 or 0.5
and εt = 1. Damping only the normal component of the rela-
tive velocity of colliding particles can lead to situations in which
two particles remain in close physical contact but do not actually
merge by our accretion criteria, since the tangential component
of their relative velocity remains unchanged. When we detect
such a situation, which can cause the simulation’s time step to
become prohibitively small, we force the merging of the two par-
ticles. In practice, in a simulation with ≈2000 initial particles,
this occurs between 0 and 2 times.

The most common outcome of the Ida et al. (1997) simula-
tions was a single large Moon with an average semi-major axis
of 〈a〉 ≈ 1.3aR . Because inner disk particles spread rapidly and
are strongly scattered by the forming Moon, all or nearly all of
the disk material interior to the Roche limit in their simulations
was removed in less than a year (through collisions with the
Earth or Moon, or by escape from the system). A primary find-
ing of Ida et al. (1997) (see also Kokubo et al. 2000) was that
the fraction of the initial disk’s mass incorporated into the final
Moon is a function of the initial specific angular momentum of
the disk (Ld/Md ) and the fraction of the disk that escapes dur-
ing the Moon’s accretion (M∞/Md ). They used conservation of
mass and angular momentum to analytically estimate the mass
of the largest Moon as:

M

Md

≈ 1.9Ld

Md

√
GM⊕aR

− 1.15 − 1.9
M∞
Md

, (13)

where they assumed that the Moon forms at a = 1.3aR (see also
Section 4.3.2).

Results from our pure N-body simulations are shown in
Table 2. They generally reproduce the findings of Ida et al.
(1997). In Figure 1 we plot the ratio of the mass of the largest
orbiting body at t = 5000TK to the initial disk mass for our
simulations, as a function of the disk’s initial specific angular
momentum. The results we obtain are similar to those shown
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Table 2
N-body Simulation Results

Run a e M a2 M2 M ′ Mpl M∞ L L′ Lpl L∞
(aR) (M�) (aR) (M�) (M�) (M�) (M�) (LEM) (LEM) (LEM) (LEM)

1 1.54 0.02 0.238 0.60 0.011 0.239 2.160 0.000 0.053 0.054 0.236 0.000
2 0.91 0.06 0.120 1.99 0.047 0.286 2.152 0.002 0.021 0.062 0.233 0.001
3 1.43 0.04 0.367 0.57 0.019 0.369 2.036 0.002 0.079 0.079 0.222 0.001
4 1.21 0.07 0.162 2.06 0.149 0.322 2.045 0.000 0.032 0.074 0.221 0.000
5 1.44 0.03 0.424 6.54 0.017 0.442 1.956 0.005 0.092 0.097 0.216 0.002
6 0.81 0.16 0.139 1.45 0.081 0.416 2.012 0.012 0.022 0.095 0.222 0.003
7 1.23 0.06 0.605 0.61 0.072 0.612 1.693 0.052 0.121 0.123 0.186 0.015
8 1.32 0.06 0.734 0.63 0.058 0.737 1.613 0.031 0.152 0.153 0.176 0.010
9 1.50 0.14 0.545 0.58 0.179 0.611 1.588 0.061 0.119 0.140 0.176 0.020
10 1.19 0.07 0.654 8.93 0.015 0.774 1.591 0.065 0.128 0.165 0.179 0.021
11 1.38 0.04 0.827 3.84 0.002 0.830 1.558 0.051 0.175 0.176 0.176 0.017
12 0.78 0.28 0.517 2.25 0.505 1.045 1.277 0.119 0.079 0.222 0.144 0.035
13 1.57 0.07 0.828 0.96 0.381 0.845 1.096 0.118 0.187 0.192 0.125 0.040
14 1.52 0.04 1.315 0.66 0.077 1.315 0.982 0.066 0.292 0.292 0.111 0.023
15 1.33 0.04 0.537 0.66 0.013 0.551 1.850 0.013 0.111 0.116 0.202 0.004
16 1.25 0.02 0.525 0.67 0.016 0.663 2.487 0.063 0.106 0.146 0.275 0.020
17 1.40 0.05 0.768 0.56 0.093 0.768 2.321 0.056 0.164 0.164 0.256 0.018
18 1.65 0.05 0.496 0.84 0.029 0.504 1.885 0.010 0.115 0.117 0.213 0.004
19 1.56 0.06 0.411 0.89 0.018 0.413 1.165 0.000 0.092 0.093 0.129 0.000

Notes. a, e, M, and L are the semi-major axis, eccentricity, mass, and angular momentum of the largest moon at the end of the simulation
(t = 5000TK ). a2 and M2 are the semi-major axis and mass of the second largest body. M ′ and L′ are the mass and angular momentum
of the largest body plus all bodies outside of its orbit. Mpl and Lpl are the mass and angular momentum of particles that were scattered
onto the planet. M∞ and L∞ are the mass and angular momentum of ejected particles. Units of mass, distance, and angular momentum
are the present lunar mass M�, the Roche limit for silicates aR ≈ 2.9 R⊕, and the angular momentum of the Earth–Moon system
(LEM = 3.5 × 1041 g cm2 s−1).

in Figure 5 of Ida et al. (1997). For the most extended disks
(Runs 13 and 14) we find somewhat larger objects than in Ida
et al. (1997), although our results for these cases are similar to
those obtained by Kokubo et al. (2000) for comparable initial
Ld/Md values. Analytical estimates from Equation (13) with
M∞ = 0 (solid line) and M∞ = 0.05Md (dashed line) are also
plotted in Figure 1. As in Ida et al. (1997) and Kokubo et al.
(2000), we find that M∞ increases for initially more radially
extended disks (i.e., for disks with larger Ld/Md ). The ratio of
the Moon’s escape velocity to the local escape velocity from the
Earth is (2GM�/R�)1/2/(2GM⊕/a)1/2 ≈ 0.4(a/aR)1/2, so that
lunar-sized objects are increasingly effective at gravitationally
scattering particles into escaping orbits as their orbital radii
increase.

The average semi-major axis, eccentricity, and mass of the
final largest moons in our simulations are 〈a〉 = 1.32aR ,
〈e〉 = 0.07, and 〈M〉 = 0.54 M�, in good agreement with
〈a〉 = 1.27aR , 〈e〉 < 0.1, and 〈M〉 = 0.48 M� from Ida et al.
(1997).

4. SIMULATIONS WITH A ROCHE-INTERIOR
FLUID DISK

We here describe our hybrid simulations that model the
Roche-interior disk as a fluid and material exterior to the Roche
limit with individual particles. For these simulations we adopt
the total accretion criterion, for which accretion is possible
between like-sized objects for a � aR (see Appendix D).

4.1. Simulation Parameters

Recent impact simulations suggest that the protolunar disk
had a mass of 1.5–2.1 M�and a specific angular momentum of
0.8–1.1, in units of

√
GM⊕aR (Canup et al. 2012). Since we

adopt a uniform surface density for the Roche-interior disk, the
minimum specific angular momentum we can achieve, corre-
sponding to a case with only an inner fluid disk extending from
1 to 2.9 R⊕ is Ld/Md ≈ 0.845

√
GM⊕aR from Equation (A3).

Simulation parameters are shown in Table 3. We consider cases
with initial total disk masses Md = 2, 2.4, 2.5, and 3 M�; inner
disk masses, Min, that contain between 50% and 100% of the
total disk mass; outer disk edges (global) amax = 2.9, 4, 6, 7, and
8aR; and exponents for the surface density distribution in the
outer disk of q = 1, 3, and 5. We fix the particle-size distribu-
tion exponent at p = 1.5, the normal and tangential coefficients
of restitution εn = 0.01 and εt = 1, and the number of parti-
cles N = 1500, as those proved to be of little influence in pure
N-body simulations. An example of the initial setup is plotted
in Figure 2(a), for Run 34.

4.2. Accretion Dynamics

4.2.1. A Three-stage Accretion

Figure 3 shows the evolution of the mass of the largest body in
Run 34 (solid line), as well as the fraction of its mass that consists
of material accreted from the Roche-interior disk (dashed
line). Figure 4 shows the evolution of the number of orbiting
bodies.

The accretion of the Moon occurs in three consecutive phases:
(1) Roche-exterior bodies rapidly collide, accrete, and scatter
one another until only a few massive bodies remain after ∼1 year
(Figures 2(b) and (c), and Figure 3). (2) The inner disk is
confined due to resonant interactions with outer bodies, which
in turn recede away as the inner disk slowly viscously spreads
outward. During that time, the growth of the Moon is stalled, but
the inner disk loses mass on the planet. (3) After ∼20 years, the
inner disk spreads back out to the Roche limit, and new moonlets
are spawned (Figure 2(d)). These new objects either collide with
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Table 3
Hybrid Simulation Parameters

Run Ld/Md Ld Md Min Mout q amax

(
√

GM⊕aR) (LEM) (M�) (M�) (M�) (R⊕)

1 0.843 0.304 2.00 2.00 0.00 N/A 2.9
2 0.843 0.365 2.50 2.50 0.00 N/A 2.9

3 0.955 0.345 2.00 1.00 1.00 5 4
4 0.960 0.347 2.00 1.00 1.00 3 4
5 0.965 0.348 2.00 1.00 1.00 1 4
6 0.955 0.414 2.40 1.20 1.20 5 4
7 0.960 0.416 2.40 1.20 1.20 3 4
8 0.965 0.418 2.40 1.20 1.20 1 4
9 0.899 0.325 2.00 1.50 0.50 5 4
10 0.901 0.326 2.00 1.50 0.50 3 4
11 0.904 0.326 2.00 1.50 0.50 1 4
12 0.899 0.390 2.40 1.80 0.60 5 4
13 0.901 0.391 2.40 1.80 0.60 3 4
14 0.904 0.392 2.40 1.80 0.60 1 4
15 0.888 0.401 2.50 2.00 0.50 5 4
16 0.890 0.402 2.50 2.00 0.50 3 4
17 0.892 0.403 2.50 2.00 0.50 1 4
18 0.880 0.477 3.00 2.50 0.50 5 4
19 0.882 0.478 3.00 2.50 0.50 3 4
20 0.884 0.479 3.00 2.50 0.50 1 4

21 0.986 0.356 2.00 1.00 1.00 5 6
22 1.009 0.365 2.00 1.00 1.00 3 6
23 1.036 0.374 2.00 1.00 1.00 1 6
24 0.986 0.427 2.40 1.20 1.20 5 6
25 1.009 0.437 2.40 1.20 1.20 3 6
26 1.036 0.449 2.40 1.20 1.20 1 6
27 0.914 0.330 2.00 1.50 0.50 5 6
28 0.926 0.335 2.00 1.50 0.50 3 6
29 0.940 0.339 2.00 1.50 0.50 1 6
30 0.914 0.396 2.40 1.80 0.60 5 6
31 0.926 0.401 2.40 1.80 0.60 3 6
32 0.940 0.407 2.40 1.80 0.60 1 6
33 0.900 0.406 2.50 2.00 0.50 5 6
34 0.909 0.411 2.50 2.00 0.50 3 6
35 0.920 0.416 2.50 2.00 0.50 1 6
36 0.890 0.482 3.00 2.50 0.50 5 6
37 0.898 0.487 3.00 2.50 0.50 3 6
38 0.907 0.492 3.00 2.50 0.50 1 6

39 1.068 0.386 2.00 1.00 1.00 1 7
40 1.068 0.463 2.00 1.20 1.20 1 7
41 0.998 0.361 2.00 1.00 1.00 5 8
42 1.043 0.377 2.00 1.00 1.00 3 8
43 1.099 0.397 2.00 1.00 1.00 1 8
44 0.998 0.433 2.40 1.20 1.20 5 8
45 1.043 0.452 2.40 1.20 1.20 3 8
46 1.098 0.476 2.40 1.20 1.20 1 8

Notes. Simulation parameters with a Roche-interior fluid disk and Roche-
exterior individual particles. Md , Ld , and amax are the disk’s total initial mass,
angular momentum, and outer edge. Min and Mout are the masses of the
fluid disk, and of the solid bodies, respectively. Ld/Md is the disk’s total
specific angular momentum (in units of

√
GM⊕aR). q is the exponent for

the initial surface density distribution (σ (a) ∝ a−q ) of the Roche-exterior disk.
Units of mass, distance, and angular momentum are the present lunar mass
M�, Earth radius R⊕, and angular momentum of the Earth–Moon system
(LEM = 3.5 × 1041 g cm2 s−1). The normal and tangential coefficients of
restitution εn and εt are set to 0.01 and 1, respectively. The particle-size
distribution index p is set to 1.5, and the number of orbiting particles N is
set to 1500. Runs 1 and 2 start with only a Roche-interior fluid disk.

the Moon to continue its accretion, or get ejected or scattered
close to the planet where they are absorbed by the inner disk.
When the Moon accretes spawned moonlets, its semi-major axis

Figure 2. Snapshots of the protolunar disk, projected on the R − z plane, at
t = 0, 0.03, 1, 30, 200, and 1000 years, for Run 34 using the hybrid model with
a fluid inner disk. The size of circles is proportional to the physical size of the
corresponding particle. The horizontal thick line is the Roche-interior disk. The
vertical dashed line is the Roche limit at 2.9 R⊕.

tends to decrease slightly, since the specific angular momentum
of the spawned moonlets is typically smaller than that of the
Moon. However interactions between the Moon and moonlets
that are scattered into the inner disk cause the Moon’s semi-
major axis to increase, as the Moon generally gains angular
momentum from the inner scattered bodies (Figures 2(e) and
(f), see also next section). The latter effect dominates the end of
the system’s evolution.

Contrary to accretion timescales of less than a year found
with pure N-body simulations, here the initial confinement of
the inner disk by outer bodies and the slow spreading of the
Roche-interior disk back out to the Roche limit delay the final
accretion of the Moon by several hundreds of years. We can
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Figure 3. Mass of the largest body in Run 34 (solid line), and fraction of its
mass composed of material derived from the Roche-interior disk (dashed line).
First Roche-exterior bodies collide and accrete until only a few massive bodies
remain (1). These bodies confine the inner disk due to resonant interactions,
and in turn they recede away (2). Eventually, the inner disk viscously spreads
back out to the Roche limit, and new moonlets are spawned that collide with
the Moon and complete its growth (3).

Figure 4. Number of orbiting bodies in Run 34. Most bodies initially present in
the outer disk merge or get scattered in ≈1 year. After ≈20 years, the Roche-
interior disk has respread back out to the Roche limit and starts producing
new moonlets as material spreads beyond aR. After ≈200 years, the disk
produces fragments that are very small, get captured in the 2:1 mean motion
resonance with the Moon, and are mostly scattered onto the planet (see details
in Section 4.2.2).

estimate the minimum mass of an outer object capable of
strongly confining the inner disk by setting a moon’s resonant
torque on the disk equal to the disk’s viscous torque, assuming
that a single object confines the inner disk via its 2:1 inner
Lindblad resonance. The disk’s viscous torque at its outer edge
reads

Γν = 3πνσr2
d Ω. (14)

Assuming that the inner disk contains ∼1 M�, it will evolve
with the radiation-limited viscosity ν = νTS (see Section 2.1.3).
The confining satellite’s torque reads

Γm = π2M2
s Gσascm

3 M⊕
. (15)

Assuming that the confining body’s 2:1 resonance lies at the
inner disk’s outer edge, we have rd = (1−1/m)2/3as ≈ 0.63as ,

Figure 5. Mass and semi-major axis (SMA) of the largest body, and cumulative
mass of objects that were tidally disrupted and absorbed into the inner disk after
being scattered close to the planet.

and setting Γm = Γν requires

(
Ms

M⊕

)
≈

[(
m

m − 1

)1/3 1

m2

(
ν

r2
d Ω

)]1/2

. (16)

Strongly confining a 1 M� disk with rd = aR and ν = νTS
requires an outer moon with a mass Ms � 0.07 M�. Thus
initially, relatively small moonlets can confine the disk because
the radiation-limited viscosity is not very strong. Because this
viscosity is inversely proportional to the disk’s surface density, it
becomes increasingly difficult to confine the disk as it becomes
less massive over time so long as the disk is radiation limited.
However once the disk mass drops to �0.2 M�, the viscosity
changes to an instability-induced viscosity with ν = νWC ∝ σ 2,
and the disk then becomes progressively easier to confine as it
dissipates.

4.2.2. Moonlet-driven Orbital Migration

Figure 5 shows the evolution of the mass and semi-major axis
of the largest body, and the cumulative mass of particles tidally
disrupted and absorbed by the inner disk as they are scattered
close to the planet, for Run 34. While the average semi-major
axis of the Moon is ∼1.3aR in pure N-body simulations, with
a Roche-interior fluid disk this value is increased to ∼2.15aR

(see also Table 4).
The Moon formed here in phase (1) by accretion of the initial

outer bodies lies at ∼4.8 R⊕. During that phase the inner disk’s
outer edge has been confined within ∼2.8 R⊕, so that the Moon
does not have any resonant interactions with the disk. The latter
then slowly viscously spreads outward, until it reaches the Roche
limit at t ≈ 20 years, at which point new moonlets are spawned.

Initially, the Moon efficiently accretes these moonlets, caus-
ing its mass to increase and its semi-major axis to decrease
slightly (Figure 5, solid and dotted lines). This is due to a change
in the Moon’s angular momentum. Before accreting an object,
the latter reads

L = M
√

aGM⊕(1 − e2), (17)

where M, a, and e are the Moon’s mass, semi-major axis, and
eccentricity. After accreting a fragment of mass mf , the Moon’s
angular momentum reads

L′ = (M + mf )
√

a′GM⊕(1 − e′2), (18)
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Table 4
Hybrid Simulation Results

Run a M e f a2 M2 f2 Morb M∞ Mcap L Lorb L∞
(aR) (M�) (aR) (M�) (M�) (M�) (M�) (LEM) (LEM) (LEM)

1 2.43 0.231 0.370 100% 3.88 0.198 100% 0.430 0.027 0.330 0.060 0.130 0.011
2 2.30 0.660 0.016 100% 1.39 0.004 100% 0.663 0.011 0.483 0.180 0.181 0.004

3 1.83 0.865 <10−3 3.6% 1.13 0.001 100% 0.866 0.017 0.409 0.211 0.211 0.006
4 2.44 0.714 0.004 10.4% 1.17 0.001 100% 0.716 0.043 0.473 0.201 0.201 0.015
5 1.87 0.921 0.001 4.4% 1.16 0.001 100% 0.922 0.012 0.472 0.227 0.227 0.004
6 1.97 1.007 0.001 5.8% 1.22 0.001 100% 1.008 0.026 0.625 0.255 0.255 0.009
7 1.99 1.066 0.000 11.5% 1.22 0.002 100% 1.068 0.025 0.745 0.271 0.272 0.008
8 2.07 0.682 0.142 76.4% 8.46 0.144 0.8% 0.826 0.035 0.753 0.175 0.244 0.012
9 2.02 0.703 0.001 43.8% 1.24 0.002 100% 0.705 0.034 0.549 0.180 0.180 0.012
10 2.05 0.702 0.001 44.5% 1.29 0.002 100% 0.704 0.020 0.558 0.181 0.182 0.007
11 2.72 0.412 0.026 15.2% 1.71 0.211 100% 0.623 0.027 0.321 0.122 0.171 0.011
12 2.20 0.798 0.001 30.6% 1.33 0.003 100% 0.801 0.015 0.501 0.213 0.214 0.005
13 2.18 0.667 0.007 31.2% 1.36 0.004 100% 0.671 0.127 0.563 0.177 0.178 0.041
14 1.94 0.920 0.002 38.1% 1.20 0.001 100% 0.921 0.022 0.634 0.231 0.231 0.008
15 1.94 0.925 0.001 51% 1.21 0.001 100% 0.926 0.030 0.675 0.232 0.232 0.011
16 1.90 0.397 0.314 100% 3.09 0.392 19.8% 0.789 0.021 0.422 0.093 0.217 0.008
17 2.02 0.928 0.001 56.3% 1.22 0.001 100% 0.930 0.019 0.689 0.238 0.238 0.007
18 2.09 0.988 0.002 52.1% 1.29 0.002 100% 0.989 0.047 0.725 0.257 0.258 0.016
19 2.19 0.998 0.004 53.8% 1.35 0.003 100% 1.002 0.028 0.734 0.266 0.267 0.010
20 1.84 0.532 0.308 100% 2.96 0.354 27.6% 0.886 0.046 0.703 0.124 0.230 0.017

21 2.23 0.869 0.001 8.4% 1.23 0.001 100% 0.870 0.022 0.457 0.234 0.234 0.008
22 2.19 0.865 0.001 8.6% 1.41 0.003 100% 0.868 0.040 0.595 0.231 0.232 0.015
23 2.20 0.933 0.004 7.2% 1.34 0.002 100% 0.935 0.069 0.546 0.250 0.250 0.024
24 2.01 0.974 <10−3 6.9% 1.25 0.002 100% 0.975 0.118 0.633 0.249 0.249 0.040
25 2.01 1.054 0.001 6.6% 1.25 0.002 100% 1.056 0.113 0.697 0.270 0.270 0.041
26 2.02 1.078 0.010 7.6% 4.54 0.015 0% 1.094 0.107 0.709 0.276 0.282 0.038
27 2.08 0.721 0.004 37.6% 1.31 0.002 100% 0.723 0.021 0.575 0.188 0.188 0.008
28 2.01 0.770 0.001 44.9% 1.23 0.002 100% 0.772 0.036 0.592 0.197 0.197 0.013
29 2.78 0.478 0.059 17.5% 1.73 0.216 100% 0.694 0.022 0.220 0.143 0.192 0.009
30 1.98 0.923 0.001 45.9% 1.22 0.002 100% 0.925 0.044 0.664 0.234 0.234 0.015
31 1.94 0.919 0.001 40.2% 1.22 0.001 100% 0.920 0.055 0.653 0.231 0.231 0.019
32 2.96 0.559 0.126 15.6% 1.86 0.284 100% 0.843 0.021 0.290 0.172 0.235 0.008
33 1.92 0.404 0.316 100% 3.04 0.384 15.9% 0.788 0.037 0.420 0.096 0.216 0.015
34 1.97 0.951 0.000 56.6% 1.22 0.001 100% 0.952 0.034 0.691 0.241 0.241 0.012
35 1.99 0.932 0.000 50% 1.22 0.002 100% 0.933 0.050 0.684 0.237 0.237 0.018
36 2.86 0.517 0.062 14.3% 1.75 0.397 100% 0.913 0.056 0.441 0.157 0.249 0.019
37 2.13 1.010 0.002 56.1% 1.33 0.003 100% 1.013 0.077 0.735 0.265 0.266 0.027
38 2.05 1.107 0.001 58.2% 1.27 0.002 100% 1.109 0.038 0.773 0.286 0.286 0.014

39 2.05 0.795 0.002 19.3% 4.27 0.012 0.2% 0.809 0.215 0.657 0.205 0.210 0.077
40 2.33 1.067 0.002 7% 1.10 <10−3 100% 1.068 0.097 0.536 0.293 0.294 0.038
41 2.63 0.750 0.050 13% 1.64 0.058 100% 0.808 0.015 0.297 0.219 0.231 0.006
42 2.02 0.910 0.007 12.1% 4.14 0.038 0.3% 0.949 0.080 0.624 0.233 0.247 0.027
43 2.00 0.656 0.014 18.2% 9.02 0.012 0% 0.669 0.292 0.828 0.167 0.173 0.106
44 2.29 1.021 0.001 8.8% 1.45 0.003 100% 1.024 0.060 0.652 0.278 0.279 0.021
45 1.93 0.897 0.070 10.7% 4.45 0.221 0.2% 1.119 0.058 0.847 0.224 0.304 0.020
46 2.51 1.051 0.002 9.3% 1.19 0.001 100% 1.052 0.122 0.368 0.300 0.300 0.048

Notes. a, e, M, f, and L are the semi-major axis, eccentricity, mass, mass fraction of inner disk material, and angular momentum of the largest Moon
at the end of the simulation (t = 1000 years). a2, M2, and f2 are the semi-major axis, mass, and mass fraction of inner disk material of the second
largest body. Morb and Lorb are the mass and angular momentum of all orbiting bodies at t = 1000 years. M∞ and L∞ are the mass and angular
momentum of ejected particles. Mcap is the total mass of bodies that where tidally disrupted and captured in the inner disk. Units of mass, distance,
and angular momentum are the present Lunar mass M�, Roche limit for silicates aR ≈ 2.9R⊕, and angular momentum of the Earth–Moon system
(LEM = 3.5 × 1041 g cm2 s−1).

where a′ and e′ are the post-accretion semi-major axis and
eccentricity of the Moon. Finally, the fragment’s angular
momentum is

Lf = mf

√
af GM⊕

(
1 − e2

f

)
. (19)

Conservation of angular momentum gives L + Lf = L′. Since
the Moon’s eccentricity is generally of order 10−2 − 10−3,

we can set e2 ≈ e′2 ≈ 0, which gives

a′ ≈
⎛
⎝M

√
a + mf

√
af

(
1 − e2

f

)
M + mf

⎞
⎠

2

. (20)

Since 1 − e2
f < 1 and af < a, we get a′ < a. The Moon’s

inward migration is however stopped at ∼4.6 R⊕, since when
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Figure 6. Fraction of bodies spawned at the Roche limit that merge with the
Moon (solid line), get tidally disrupted (dotted line), or get ejected from the
system (dashed line). Initially most bodies merge with the Moon, but as
the torque from the inner disk decreases due to its decreasing mass, progressively
more bodies get scattered toward the planet and are tidally disrupted (see the
text for details). After ≈150 years the total of the three curves is not equal to 1
because many bodies are trapped in the 2:1 Moon’s resonance, at which point
their “fate” has not yet been decided.

it goes inside that distance its 2:1 resonance falls into the
disk, reactivating its disk torques and resulting in an outward
migration of the Moon.

In order for a new moonlet to collide with the Moon, their or-
bits must cross. This can be done by an increase in the moonlet’s
semi-major axis and/or its eccentricity. However, if the latter
occurs then the object can have a pericenter close enough to the
planet that it would be tidally disrupted before encountering the
Moon. A rapid increase of the moonlet’s semi-major axis before
its eccentricity gets too high is a more favorable scenario for a
moonlet to successfully collide with the Moon.

The inner disk continuously loses mass on the planet and
through the Roche limit, so that the torque it applies on newly
formed objects decreases over time (see Equation (10)). On the
other hand, the Moon gets more massive over time, making it
an even more efficient scatterer. Those two effects result in a
progressively slower expansion of the semi-major axis of new
moonlets, while their eccentricity gets excited even more rapidly
by the growing Moon. As a result, it becomes increasingly
difficult for new objects to collide with the Moon before getting
tidally disrupted. Figure 6 shows the fraction of newly spawned
objects that get accreted onto the Moon, tidally disrupted, or
ejected from the system. It shows that initially, most of the
new moonlets collide with the Moon. But as time goes by, a
larger fraction of objects get scattered toward the planet and are
tidally disrupted, until this outcome becomes predominant at
∼120 years.

A single interaction at conjunction between the Moon and an
inner moonlet that is on an approximately circular orbit leads to
a positive torque on the Moon’s orbit. Once the inner moonlet’s
orbit becomes eccentric, subsequent interactions between it and
the Moon can lead to a positive or negative torque on the Moon’s
orbit. But if inner moonlets are removed by tidal disruption soon
after their initial encounters with the Moon, the net torque on
the Moon is on average positive, which drives an increase in its
semi-major axis (Figure 5, solid line). When scattering events
become predominant, the Moon starts migrating outward, at
which point it becomes much more difficult for objects spawned
at the Roche limit to merge directly with the Moon, and thus
its growth levels off (Figure 5, plateau on the dotted line at
∼120 years).

When the Moon’s 2:1 resonance is initially located just out-
side the disk’s outer edge at ≈3 R⊕, spawned moonlets are not
captured into the resonance. The latter requires that the change
in a moonlet’s semi-major axis due to an external torque in one
libration period of the resonance be much less than the libration
width of the resonance (e.g., Dermott et al. 1988). This adiabatic
condition is violated when the 2:1 is very near the disk edge be-
cause the rate of increase in a moonlet’s semi-major axis due to
disk torques is typically too rapid as it crosses the resonance for
inner disk masses � 0.1 M�.

However as the Moon’s orbit expands outward due to scat-
tering as described above, its 2:1 resonance moves away from
the disk edge. The disk torque on a moonlet as it crosses the
resonance is then weaker due to a greater separation between
the moonlet and the disk’s edge, and capture into the 2:1 res-
onance can occur as the disk is dissipating. For example, in
Run 34, newly spawned moonlets begin to be trapped in the
Moon’s 2:1 at about t = 120 years, when the 2:1 has moved
outward to about 3.1 R⊕, and the inner disk mass has decreased
to ≈0.5 M�. An inner moonlet trapped in the 2:1 resonance
continues to receive a positive torque from the inner disk, but
because it is in resonance with the Moon, the torque causes
both the inner body’s and the Moon’s semi-major axes to ex-
pand in lockstep. In this way the Moon’s orbit is driven out-
ward due to indirect resonant interactions with the disk, with
the inner moonlets acting as an angular momentum relay be-
tween the disk and the Moon. Most moonlets captured into
the Moon’s 2:1 resonance are ultimately absorbed by the in-
ner disk and are not accreted by the Moon because the reso-
nance prevents close encounters between the moonlets and the
Moon, while at the same time increasing moonlet eccentrici-
ties to high values that lead to close passes by the Earth and
tidal disruption. However in cases where multiple moonlets are
captured into the 2:1, mutual moonlet interactions on occasion
scatter objects out of resonance and allow them to be accreted by
the Moon.

Thus due first to the effects of inward scattered moonlets
that are lost to the inner disk, and then to moonlet capture into
the 2:1 resonance with the Moon, the efficiency of accretion
onto the Moon decreases substantially in the t ≈ 120 to t ≈
200 year period, while the Moon’s semi-major axis increases
substantially. This period is also associated with a rapid increase
in the total mass of particles that are absorbed by the inner disk
(Figure 5, dashed line).

By t ∼ 200 years, the inner disk mass in Run 34 has decreased
to Md ∼ 0.2 M�, and the disk viscosity transitions to the
Ward–Cameron viscosity. The viscosity then decreases rapidly
as the disk dissipates (since νWC ∝ σ 2), causing the production
rate of spawned moonlets to slow dramatically (see Figure 7).

Figure 7 shows the evolution of the Roche-interior disk
mass (solid line), of the mass falling onto the planet from the
Roche-interior disk (dashed lined), and of the mass of new
objects accreted from the inner disk (dotted line), for Run 34.
New objects are accreted at the disk’s outer edge only after
∼20 years (Figure 7, dotted line). At that point, the disk has
lost ∼0.04 M�, that is ∼2% of its initial mass (Figure 7, dashed
line). At ∼200 years, the Roche-interior disk is almost depleted
in mass, and no significant mass is accreted after that point
(Figure 7, solid and dotted lines).

4.2.3. Other Possible Outcomes

The aforementioned dynamical steps are present in 28 of the
46 runs, but other outcomes are possible. During the first phase
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Figure 7. Evolution of the mass of the Roche-interior disk (solid line), of the
mass from the inner disk fallen onto the planet (dashed line), and of the mass of
new objects accreted from the inner disk (dotted line), for Run 34.

of accretion, interactions between initial outer bodies can lead
to the Moon forming farther away, around ∼5 R⊕ or beyond.
In such cases, the Moon’s 2:1 resonance is far enough from the
disk that newly spawned moonlets are immediately captured in
the resonance. Subsequent interactions between moonlets can
then result in some of them being ejected from the resonance
and colliding with the Moon, just like in the general mechanism
described above, or it can lead to the growth of a secondary
object inside the resonance. In such cases the Moon can be
driven out to ∼8 R⊕, at which point the secondary body’s semi-
major axis is ∼4.6 R⊕ where it does not interact with the inner
disk anymore. The interior body can sometimes get even more
massive than the body resulting from accretion of the initial
outer particles (e.g., Runs 11 and 16).

For Runs 1 and 2 that do not include an initial outer disk,
the outcome is similar to those described above. The first body
accreted at the Roche limit confines the inner disk inside the
Roche limit. As the disk viscously spreads outward, the body
recoils from the disk and a second body is spawned at the
Roche limit after ∼1 year. The disk is once again confined and
the second body recoils until it finally merges with the first one.
This process continues until the Moon gets far enough from the
disk to start capturing bodies in resonance after several tens of
years. At that point, interactions between particles lead to the
accretion of a second large object that moves in resonance with
the first one. In Run 1 the resonant configuration remains stable,
while in Run 2 it eventually goes unstable due to interactions
with other objects, resulting in a merger of the two largest
objects.

4.3. Simulation Results

4.3.1. Properties of the Final Moon

The mass, angular momentum, and mass fraction of inner disk
material of the largest body from each of the hybrid simulations
are shown in Table 4. The mass of the largest body at t =
1000 years, versus the disk’s initial specific angular momentum,
is represented in Figure 8. Results show a range of outcomes,
with an average Moon mass of 〈M〉 ∼ 0.81 ± 0.21 M�,
semi-major axis 〈a〉 = 2.15 ± 0.27aR , eccentricity 〈e〉 =
0.042 ± 0.093, and fraction of inner disk material 35% ± 30%.
Accretion efficiency, defined as M/Md , is somewhat lower than
in pure N-body simulations, as the fraction of the disk accreted
varies from ∼20% to 50%, with the rest being either ejected

from the system or lost onto the planet. As in Ida et al. (1997)
and Kokubo et al. (2000), we find that M/Md increases with the
initial specific angular momentum of the disk.

Figure 9(a) shows the mass of the largest body at t =
1000 years versus the fraction of its mass that is composed
of particles accreted from the inner disk. Figure 9(b) shows the
semi-major axis of the largest body against its mass. Figure 9(c)
shows the semi-major axis of the largest body against its mass
fraction of inner disk material. For the less massive initial disks,
final moons with a mass �0.8 M� generally contain less than
20% of their mass in material originating from the inner disk.
This is because the Roche-interior disk is more strongly confined
when a larger object is formed by accretion of the initial outer
bodies, and while the disk is confined it loses a significant mass
onto the planet. Starting with initially more massive disks (red
and purple points, corresponding to total disk masses of 2.5
and 3 M�) increases this fraction to ∼60%. However lunar-
forming impact simulations have not generally produced such
massive disks for cases in which the impact angular momentum
is comparable to LEM.

4.3.2. Analytical Estimate

While analytical estimates from Equation (13) are in good
agreement with pure N-body simulations (Figure 1), this is no
longer the case for simulations with a Roche-interior fluid disk
(Figure 8, black lines). To derive formula (13), Ida et al. (1997)
assumed that the Moon formed at 1.3aR , while in our hybrid
simulations 〈a〉 ∼ 2.15aR . To revise this formula, we redo the
calculation in Ida et al. (1997) and consider conservation of the
disk’s angular momentum, which gives

Ld = M1

√
GM⊕

(
1 − e2

1

)
a1 + Mpl

√
GM⊕

(
1 − e2

2

)
a2

+ M∞
√

GM⊕
(
1 − e2

3

)
a3, (21)

where M1, a1, and e1 are the mass, semi-major axis, and
eccentricity of the Moon, Mpl = Md − M1 − M∞ is the mass
scattered onto the planet (solid bodies and through the inner
edge of the inner disk), with semi-major axis and eccentricity a2
and e2, and M∞ is the mass of ejected bodies, with semi-major
axis and eccentricity a3 and e3. Here we assume that all material
initially in the disk is either accreted by the Earth, accreted into a
Moon at a = a1, or scattered onto escaping trajectories. Average
values from Table 4 give e1 ≈ 0.04 so that (1 − e2

1) ≈ 1. Since
most of the material accreted by the Earth comes from the inner
disk (due to tidal disruption, generally no particles collide with
the Earth), we can set e2 ≈ 0 and a2 = R⊕. Finally, assuming
that the Moon scatters escaping material on nearly hyperbolic
orbits, we can set (1−e3)a3 ∼ a1 and (1+e3) ∼ 2. Equation (21)
then becomes

Ld

Md

√
GM⊕aR

= M1

Md

√
a1

aR

+
(Md − M1 − M∞)

Md

√
R⊕
aR

+
M∞
Md

√
2a1

aR

. (22)

Then, using
√

aR/R⊕ = 1.7 we get

M1

Md

= 1.7√
a1/R⊕ − 1

Ld

Md

√
GM⊕aR

− 1√
a1/R⊕ − 1

− M∞
Md

√
2a1/aR − 1√
a1/aR − 1

. (23)
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Figure 8. Ratio of the mass of the largest body at t = 1000 years to the initial
disk mass, as a function of the disk’s initial specific angular momentum. Black,
green, red, and purple triangles correspond to runs with a total disk mass of 2,
2.4, 2.5, and 3 M�, respectively. Small symbols are cases where the mass of
the second largest body is at least 20% that of the largest one. In those cases
we added the mass of the two bodies, since tidal evolution could cause them to
merge later on (Canup et al. 1999). The black solid and dashed lines correspond
to Equation (13) with M∞ = 0 and M∞ = 0.05Md , respectively. Blue lines are
the analytical estimates from Equation (24).

For hybrid simulations, assuming the Moon forms at
a1 ≈ 2.15aR so that a1/R⊕ ≈ 6.2, we get

M1

Md

= 1.14
Ld

Md

√
GM⊕aR

− 0.67 − 2.3
M∞
Md

. (24)

This equation is plotted in Figure 8 as the blue solid and dashed
lines, for M∞ = 0 and M∞ = 0.05Md , respectively, which
show good agreement with the results from our simulations.

5. DISCUSSION

5.1. Summary

We have developed a new numerical model to study the
formation of Earth’s Moon from an impact-generated disk: an
N-body symplectic integrator coupled to a simple model for
a fluid Roche-interior disk. Our model includes: (1) viscous
spreading of the Roche-interior disk, using either an instability-
driven viscosity, or a radiation-limited viscosity; (2) accretion
of moonlets when the inner disk’s outer edge reaches the Roche
limit; (3) tidal accretion criteria to treat collisions between
orbiting bodies; (4) disk–satellite interactions at zeroth-order
Lindblad resonances; (5) spawning of new moonlets as the inner
disk spreads past the Roche limit; and (6) tidal disruption of
objects scattered close to the planet.

Our initial setup consists of a fluid disk extending from Earth’s
surface to the Roche limit at 2.9 R⊕, and individual particles
beyond. We find that the Moon accretes in three consecutive
phases, accreting first from the bodies initially present outside
the Roche limit, which confine the inner disk within the
Roche limit. The inner disk slowly viscously spreads back out
to the Roche limit, pushing along outer bodies via resonant
interactions. After several tens of years, the disk spreads beyond
the Roche limit, and starts producing new objects that continue

Figure 9. (a) Fraction of the mass of the largest body composed of Roche-interior disk material, against mass of the largest body. (b) Semi-major axis of the largest
body against its mass. (c) Semi-major axis of the largest body against its mass fraction of inner disk material. Black, green, red, and purple triangles correspond to
runs with a total disk mass of 2, 2.4, 2.5, and 3 M�, respectively. Small symbols are cases where the mass of the second largest body is at least 20% that of the largest
one. In those cases we added the mass of the two bodies. The two points at 100% inner disk material correspond to Runs 1 and 2 that include only a Roche-interior
disk initially.
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the growth of the Moon, until the inner disk is depleted in mass
after several hundreds of years. For initial disk masses in the
range impact simulations typically predict, a moon with a mass
of 0.6–1.1 M� is produced, with a mass fraction of Roche-
interior material of 5%–65%, accreted only during the last stage
of the Moon’s accretion. Increasing the initial total mass of
the disk can produce large moons containing up to 60% inner
disk material, although it is not clear yet if such disks could be
produced by appropriate giant impacts.

Most of our simulations produce a single Moon outside the
Roche limit, similar to prior pure N-body models (Ida et al. 1997;
Kokubo et al. 2000). However there are several key differences.
First, consideration of a fluid inner disk leads to a lengthening
of the Moon’s total accretion timescale to ∼102 years, versus
a timescale of <1 year predicted by pure N-body models.
Material that rapidly accretes outside the Roche limit resonantly
confines the inner disk, which delays the accretion of the inner
disk material until the disk can viscously spread back out to
the Roche limit. For a fluid disk with a thermally regulated
viscosity (Thompson & Stevenson 1988), the latter typically
requires �50 years. The inner disk material is then preferentially
accreted during the last stages of the Moon’s growth. In contrast,
in pure N-body models the viscosity of the inner disk is large
and the disk spreads very quickly (in <1 year), so that inner and
outer disk material is accreted more or less simultaneously by
the growing Moon.

The prolonged period of interaction between the fluid inner
disk (and moonlets spawned from it) and the outer Moon
also leads to a substantially larger semi-major axis for the
final Moon, with 〈a〉 ≈ 2.15aR versus 〈a〉 ≈ 1.3aR in the
pure N-body simulations. A larger initial semi-major axis for
the Moon in turn implies a somewhat lower overall accretion
efficiency for a given initial disk mass and angular momentum,
with our hybrid simulations finding that only 20%–50% of
the initial total disk mass is ultimately incorporated into the
Moon. This suggests that an initial disk mass �2 M�is required
to produce a lunar mass Moon, which is somewhat larger
than that produced to date by most impact simulations (e.g.,
Canup et al. 2012) that produce a planet–disk system whose
angular momentum is comparable to that in the current Earth
and Moon.

5.2. Relation to Equilibration

A key constraint on prior impact simulations is the present an-
gular momentum of the Earth–Moon system, which constrains
the impactor size, the impact angle, and the relative velocity. For
an impact angular momentum comparable to LEM, the outcome
of the impact is a circumterrestrial disk composed primarily of
impactor material (e.g., Benz et al. 1989; Canup 2004a). If the
Moon accreted from such a disk, it would then have a composi-
tion close to that of the impactor.

The Earth–Moon system shows striking compositional simi-
larities, in particular regarding oxygen isotopes (Wiechert et al.
2001). However, the distribution of this element in the early so-
lar system was very heterogeneous (Clayton 1993). In addition,
the scale of radial mixing found in terrestrial accretion simu-
lations (Chambers 2001) implies that the impactor would have
had a substantially different composition from that of the Earth
(Pahlevan & Stevenson 2007), which contradicts the observed
similarities.

It has been suggested that mixing could occur between
the disk’s atmosphere and that of the Earth, leading to the
equilibration of disk–planet compositions in 102–103 years

(Pahlevan & Stevenson 2007). This is much longer than
the accretion timescales predicted by N-body simulations.
However, in our model, the slow spreading of the disk de-
lays the final accretion of the Moon by several hundreds of
years, which could be compatible with estimated equilibration
timescales.

The three-step accretion mechanism revealed in our simula-
tions implies that only material accreted during the final stage
would have been processed through the Roche-interior disk.
Earth-like material could then naturally end up in the outer
parts of the Moon, although mixing in the lunar interior would
need to be taken into consideration.

We can however adopt an idealized model for the Moon where
initial outer disk bodies accrete into a core with radius R1, and
material processed in the inner disk piles up later to increase the
radius to R2. Noting f the mass fraction of inner disk material,
we can express R1 and R2 as

R1 =
[

3M (1 − f )

4πρ

]1/3

(25)

and

R2 =
[

3M

4πρ

]1/3

. (26)

For M = 1 M�, f = 50%, and ρ = 3500 kg m−3, we get
R1 ≈ 1358 km and R2 ≈ 1711 km. In the limit that no mixing
occurs between the early- and late-accreted material, the Earth-
like material would represent an R2 − R1 ≈ 350 km deep outer
layer on the Moon. Whether this would be sufficient to explain
the identical composition between Earth and the lunar samples
is not clear.

5.3. Model Limitations

5.3.1. Uniform Surface Density Inner Disk

In our model we assume that the disk maintains a uniform
surface density profile. Numerical simulations of the viscous
evolution of self-gravitating dense planetary rings show that the
disk evolves with a density peak inward and lower densities in
the outer regions, regardless of the disk’s initial profile (Salmon
et al. 2010). In the instability-driven regime, this would increase
(decrease) the viscosity close to the planet (at the Roche limit).
The opposite would happen in the radiation-limited regime (see
Equations (1) and (5)). A higher viscosity and/or surface density
close to the Roche limit would decrease the ability of exterior
moonlets to confine the inner disk, since the balance between
the viscous and resonant torque would be more difficult to
achieve. As a result, more material may be brought viscously
through the Roche limit, thus possibly improving the accretion
efficiency, resulting in a larger moon formed for a given disk
mass, compared to the slab model. However, since the mass
necessary to confine the inner disk with the present model is
so much smaller than a lunar mass, confinement of the inner
disk and the associated phase (2) of the accretion process seem
inevitable when forming a lunar mass Moon (see Section 4.2.1).
Simulation of the radial, as well as temporal, evolution of the
inner disk is certainly possible (e.g., Charnoz et al. 2010; Salmon
et al. 2010), although more computationally intensive, and such
modeling is planned in our future work.

Another simplification adopted for the viscous spreading of
the fluid disk is the computation of the mass fluxes at the disk’s
inner and outer edges. Both of these fluxes are estimated using
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the viscosity at the Roche limit. However, the viscosity varies
with distance as νWC ∝ r9/2 or νTS ∝ r3. Thus we overestimate
the rate of mass loss onto the planet, and we expect that future
models that include the variation of viscosity with distance may
increase the disk lifetime. As a consequence, we can expect more
material to be delivered through the Roche limit, thus increasing
the fraction of potentially equilibrated material incorporated in
the final Moon.

5.3.2. Co-evolution of Liquid and Gas Phases

Our inner disk model assumes that both the vapor and
condensed phases viscously evolve as a single unit. This is
motivated by the Thompson & Stevenson (1988) disk model in
which the liquid and vapor phases remain vertically well mixed.
Recently, Ward (2012) has developed a generalized description
of vertical disk structures appropriate for a two-phase silicate
protolunar disk. He identifies alternative disk solutions that
involve a stratified disk, in which the condensates settle to
the disk mid-plane and are surrounded by a gravitationally
stable vapor atmosphere. The mid-plane layer then has a large,
instability-induced viscosity (as per Equation (1)), while the
atmospheric viscosity could be much smaller. The mid-plane
layer surface density regulates itself so that the energy dissipated
matches that which can be radiated from the surface of a
∼2000 K vapor disk (Ward 2012).

To describe such a structure will require separate tracking of
the condensate and vapor layers, which we plan in future work.
How might this affect the truncation of the inner disk by the
outer moon(s)? Initially resonant torques will cause the outer
edge of the liquid layer to contract inward relative to the outer
edge of the gas disk. Gas that lies beyond the outer edge of
the liquid layer may then condense (because it was the energy
supplied by the underlying condensate layer that was keeping
it in the vapor phase) so that there will be a condensation front
that will lie outside the liquid layer’s outer edge. Once gas has
condensed into liquid, the liquid will be subject to resonant
torques and truncated in a similar manner to that found here.

5.3.3. Resonances

For each satellite, we determine which of its resonances fall in
the disk and the associated torque. The total torque exerted by all
orbiting objects onto the disk is then applied at the disk’s outer
edge. As a result, the confinement of the Roche-interior disk
may be too efficient. A more realistic model that applies torques
at the location of each resonance in the disk (as in Charnoz et al.
2010) could increase the ability of inner disk material to spread
outward and be accreted by the Moon, bringing more potentially
equilibrated material to the Moon.

Our model adopts the standard resonant torque expressions
appropriate for a cold disk. For a hot disk, the positions of the
inner Lindblad resonances are shifted inward (and their torques
correspondingly reduced). A revised torque expression for the
(m : m − 1) resonance is (Papaloizou et al. 2007, pp. 655–68):

Γm = π2σ

3ΩΩps

√
1 + ξ 2(1 + 4ξ 2)

Ψ2, (27)

where Ψ is the satellite’s gravitational potential, ξ = mh, and
h is the disk’s aspect ratio, with h ≈ 0.1 for the protolunar
disk (see Thompson & Stevenson 1988, their Table 1). This
expression reduces to that given by Equation (C1) for ξ  1.

The high m resonances that are closest to a satellite are
the most affected, which will principally impact the initial

Table 5
Influence of Minimal Fragment Size

Fragment Mass a M e f a2 M2 e2 f2
(aR) (M�) (aR) (M�)

Test Run 1

Unlimited 2.82 0.485 0.099 14.60% 1.76 0.131 0.420 100%
10−9 M⊕ 2.82 0.485 0.100 14.59% 1.76 0.131 0.420 100%
10−8 M⊕ 2.78 0.485 0.071 14.66% 1.76 0.134 0.406 100%
10−7 M⊕ 2.65 0.487 0.017 14.98% 1.67 0.141 0.183 100%

Test Run 2

Unlimited 2.58 0.644 0.043 26.79% 1.61 0.020 0.557 100%
10−9 M⊕ 2.58 0.644 0.043 26.79% 1.61 0.020 0.557 100%
10−8 M⊕ 2.55 0.643 0.005 26.78% 1.59 0.021 0.283 100%
10−7 M⊕ 2.56 0.640 0.019 26.39% 1.59 0.028 0.259 100%

Notes. a, e, M, and f are the semi-major axis, eccentricity, mass, and mass
fraction of inner disk material of the largest moon at the end of the simulation
(t = 1000 years). a2, e2, M2, and f2 are the semi-major axis, eccentricity, mass,
and mass fraction of inner disk material of the second largest body. Units of
mass and distance are the present Lunar mass M�, and the Roche limit for
silicates aR ≈ 2.9 R⊕.

recoil of objects close to the disk’s edge. Once a satellite
migrates outward away from the disk’s edge, only its resonances
of lower order are in the disk. Of particular importance is
the 2:1 resonance—which we argue is responsible for the
initiation of phase 2 and the nature of the Moon’s accretion in
phase 3—and the torque due to this resonance is reduced by
about 15% due to thermal effects for h = 0.1. We performed
a test simulation using the modified torque expression above
and found no substantial modifications to the overall accretion
history described in Section 4.2.

5.3.4. Size of Fragments

To improve computation efficiency, we set the smallest
fragment that can be spawned from the inner disk to 10−7M⊕,
although fragments some two orders of magnitude smaller than
this are predicted when the inner disk’s mass decreases to
∼10−1M�. This should not significantly impact the outcome
of a given simulation, as such small fragments are produced
when the disk is almost fully depleted in mass, so that no further
growth of the Moon is expected. To check the influence of this
parameter, we compare results of simulations using four values:
no limit, 10−9M⊕, 10−8M⊕, and 10−7M⊕. Table 5 shows the
resulting mass, semi-major axis, eccentricity, and fraction of
inner disk material for the largest and second largest body, at
t = 1000 years, for two test runs with parameters similar to
Run 22 (chosen arbitrarily). Although the Moon’s predicted
semi-major axis and eccentricity do increase somewhat as the
fragment mass is reduced (due to an increased number of
particles captured into resonance as their size decreases), results
show that the final properties of the Moon are not strongly
affected by the minimal mass set for the accretion of new
moonlets.

5.4. Physical State of Accreting Material

In the immediate aftermath of the giant impact, ejected
material with equivalent circular orbits exterior to the Roche
limit is predicted to have temperatures ∼2000 K to 5000 K
(e.g., Canup 2004a, Figure 6), and to be predominantly sili-
cate melt (with ∼O(10%) vapor by mass). If the initial outer
disk surface density of melt/solid, σS , is high enough for
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gravitational instability, the disk will on a rapid, orbital
timescale, fragment into clumps with radii R ∼ O(10) km (e.g.,
Thompson & Stevenson 1988). The subsequent timescale for
solids in the outer disk to grow through binary collisions is

τcoll ∼ Rρ

σSΩ
∼ 0.05 yr

(
R

103 km

) (
σS

106 g cm−2

) (
a

aR

)3/2

,

(28)

where ρ is the bulk density of the solid particles. The timescale
for radiative cooling from the surfaces of a vertically well-mixed
disk is

τcool ∼ σSCP

2σSBT 3
∼ 1 yr

(
σS

106 g cm−2

) (
T

1500 K

)−3

, (29)

where T is the disk temperature, σSB is the Stefan–Boltzmann
constant, and a specific heat CP ∼ 107 erg g−1 K−1 is assumed.

Because the time for the disk to cool to temperatures below
the solidus is longer than the accretion timescale in the outer
disk, material initially orbiting outside the Roche limit will
accrete in a hot, molten state. Pritchard & Stevenson (2000)
estimate that protolunar disk material orbiting between two and
five Earth radii will take of order 10 years to lose memory
of the high temperatures produced by the giant impact, and
find that individual large objects (R > 100 km) can retain
temperatures in excess of 1000 K for 102 years, even given
conditions designed to maximize cooling (e.g., neglecting the
energy of accretion itself).

Our simulations reveal two stages of accretion: an early, rapid
phase in which material initially placed outside the Roche limit
by the impact accretes in ∼0.1 years, and a protracted phase in
which material is delivered to the outer disk on a much longer
timescale of ∼102 years, as the Roche-interior disk viscously
spreads. During phase 1, accreting objects will be inevitably hot
and at or above the solidus, while cooling and some solidification
might occur during phase 2.

This work has been funded by NASA’s Lunar Advanced
Science and Exploration Research (LASER) program and the
NASA Lunar Science Institute (NLSI). We thank William
Ward for valuable comments, and for the diffusion model in
Appendix A that he developed for Ward & Canup (2000) and
Canup & Ward (2000).

APPENDIX A

EVOLUTION OF INNER DISK MASS

We consider a simple diffusion model for a uniform surface
density inner disk by calculating the effective changes in its
inner and outer edges, R and rd, under the constraint that σ is
uniform with distance r. This is the same disk model developed
by W. R. Ward for Ward & Canup (2000) and Canup & Ward
(2000).

The disk spreading timescale is tvisc = ΔR2/ν, where ΔR =
rd − R is the disk’s width and ν is its viscosity. Differentiating
with respect to time gives

1 = 2 (rd − R) (ṙd − Ṙ)

ν
, (A1)

where we assume a constant viscosity for simplicity. This
assumption is fairly accurate as long as integration time steps

remain small, which will be the case here. This yields

ṙd = ν

2 (rd − R)
+ Ṙ (A2)

as the rate of expansion of the disk’s outer edge.
The inner disk angular momentum is

Ld = 4

5
πσ

√
GM⊕

(
r

5/2
d − R5/2

)
= 4

5
Md

√
GM⊕

r
5/2
d − R5/2

r2
d − R2

, (A3)

where Md = σπ (r2
d −R2) is the disk’s mass. Viscous spreading

yields no net torque on the disk, implying

dLd

dt
= 0 = d

dt

(
r

5/2
d − R5/2

r2
d − R2

)
, (A4)

which can be rewritten as

Ṙ = 4x(x5/2 − 1) − 5(x2 − 1)x3/2

4(x5/2 − 1) − 5(x2 − 1)
ṙd ≡ f (x)ṙd , (A5)

where x ≡ rd/R. Finally, combining Equations (A2) and (A5)
gives

ṙd |visc = ν

2R (x − 1) (1 − f (x))
(A6)

Ṙ = νf (x)

2R (x − 1) (1 − f (x))
, (A7)

as the rates of change of the disk’s inner and outer edges due to
viscous spreading.

We set R = R⊕, so that the rate of mass loss from the disk
due to infall onto the planet is

dMd

dt

∣∣∣∣
P

= 2πRṘσ = 2πRṘMd

πR2(x2 − 1)
, (A8)

with Ṙ from Equation (A7). Once rd expands to the Roche limit,
we consider that material that diffuses beyond aR accretes into
moonlets that are added to the N-body code (see Section 2.2),
and this results in an additional loss of mass from the inner disk
at a rate

dMd

dt

∣∣∣∣
aR

= 2πrd ṙdσ = 2πrd ṙdMd

πR2(x2 − 1)
. (A9)

Here ṙd = ṙd |visc + ṙd |moon, where the first term is from
Equation (A6) and the second term modifies the expansion rate
of the outer edge due to satellite torques, as per Equation (C11)
below. The total rate of change in the inner disk mass is then

dMd

dt

∣∣∣∣
visc

= dMd

dt

∣∣∣∣
P

+
dMd

dt

∣∣∣∣
aR

. (A10)

APPENDIX B

CONSERVATION OF ANGULAR MOMENTUM
DURING MOONLET SPAWNING

The angular momentum of the inner disk before fragmenta-
tion is given by Equation (A3). After fragmentation, it becomes

L′
d = 4

5
M ′

d

√
GM⊕

r
′5/2
d − R5/2

r ′2
d − R2

, (B1)
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where M ′
d = Md −mf . The angular momentum of the fragment

is

Lf = mf

√
af GM⊕

(
1 − e2

f

)
, (B2)

where af and ef are its semi-major axis and eccentricity. We set
the latter to the ratio of the fragment’s escape velocity to the
local orbital velocity (Lissauer & Stewart 1993)

ef =
√

2Gmf /Rf

af

√
GM⊕/a3

f

=
√

2mf af

M⊕Rf

, (B3)

where Rf is the fragment’s radius. The fragment’s angular
momentum then reads

Lf = mf

√
af

Rf

GM⊕

(
Rf − 2

mf

M⊕
af

)
. (B4)

To compute the new disk’s outer edge, we numerically solve for
L′

d + Lf − Ld = 0 so that angular momentum is conserved to
a 10−8 precision. We then move the new body around its orbit
so that its actual distance to the new disk’s outer edge slightly
exceeds its physical radius. Finally, a spawned moonlet’s initial
inclination is set to half its eccentricity.

APPENDIX C

DISK–SATELLITE INTERACTIONS

The torque on an exterior moon due to the (m : m − 1) inner
Lindblad resonance is (Goldreich & Tremaine 1980)

Γm = π2σ

3ΩΩps
Ψ2 = π2σ

3ΩΩps

[
r
dΦm

dr
+

2Ω
Ω − Ωps

Φm

]2

, (C1)

where Ω is the orbital frequency in the disk at distance r, Ωps
is the pattern speed of the resonance, and Φm is the mth-order
Fourier component of the satellite’s potential. For zeroth-order
inner Lindblad resonances, Ωps = Ωs where Ωs is the satellite’s
orbital frequency, and the satellite potential can be expressed as
(Goldreich & Tremaine 1978)

Φm = −GMs

as

b
(m)
1/2(α), (C2)

where Ms and as are the satellite’s mass and semi-major axis,
α = r/as = (1 − 1/m)2/3 and b

(m)
1/2(α) is the Laplace coefficient

of order 1/2 defined by

b(m)
s (α) = 2

π

∫ π

0

cos(mθ )dθ

(1 − 2α cos θ + α2)s
. (C3)

With Ω = mΩs/(m − 1), the torque can then be expressed as

Γm = π2σ

3Ω2
s

(
m − 1

m

) (
GMs

as

)2
(

α
db

(m)
1/2

dα
+ 2mb

(m)
1/2

)2

. (C4)

The torque per unit of satellite mass is

Γm

Ms

= π2

3
μsGσascm, (C5)

with μs = Ms/M⊕ and cm = α3/2(α(db
(m)
1/2/dα) + 2mb

(m)
1/2)2. We

then use the following approximation (Goldreich & Tremaine
1980)(

α
db

(m)
1/2

dα
+ 2mb

(m)
1/2

)
≈ 2m

π

[
K1

(
2

3

)
+ 2K0

(
2

3

)]

≈ 2m

π
2.51, (C6)

where K0 and K1 are modified Bessel functions, so that cm ≈
2.55m2(1 − 1/m).

The total torque Ts exerted by the inner disk on an exterior
satellite per unit satellite mass is found by summing the torques
due to all the zeroth-order resonances that fall in the disk,

Ts

Ms

=
∑m∗

m=2Γm

Ms

=
(

π2

3
μsGσas

)
C(m), (C7)

where

C(m) =
m∗∑

m=2

cm (C8)

and

m∗ =
⎢⎢⎢⎣(

1 −
(

rd

as

)3/2
)−1

⎥⎥⎥⎦ , (C9)

where �X� is the largest integer not greater than X.
The total torque on the disk due to N orbiting moonlets

is Td = −∑N
s=1 Ts . For an inner disk with a uniform surface

density, changing the disk’s angular momentum must involve
a change in its outer edge rd and/or mass flow across its
inner boundary. Because resonances with the outer moonlets
generally occur in the outer regions of the disk, we assume that
moonlet torques cause a change in the disk’s outer edge rd, with
ṙd |moon < 0 because external moons remove angular momentum
from the disk, with

Td = dLd

dt
= 2

5
Md

√
GM⊕

[
5r

3/2
d ṙd

r2
d − R2

− r
5/2
d − R5/2(
r2
d − R2

)2 4rd ṙd

]
.

(C10)

The rate of change of the disk’s outer edge due to Td is then

ṙd |moon = 5Td

2Md

√
R

GM⊕

[
(x2 − 1)2

5x3/2(x2 − 1) − (x5/2 − 1)4x

]

= 5Td

2Md

√
R

GM⊕
g(x). (C11)

APPENDIX D

TIDAL ACCRETION CRITERIA

At each time step, we detect which particles are about to
collide by checking if their relative distance will get smaller
than the sum of their radii within the next time step. For each
pair of colliding particles, we compute the Jacobi energy after
the collision (Canup & Esposito 1995):

EJ = 1

2
ε2v2

imp − 3

2
x2

p +
1

2
z2
p − 3

rp

+
9

2
, (D1)
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where xp, yp, and zp are the Hill coordinates of the impact
point and vimp is the relative impact velocity in units of the Hill

velocity RH Ω, where Ω =
√

GM⊕/a3
0 and

RH = a0

(
m1 + m2

3 M⊕

)1/3

. (D2)

a0 is the local reference radius, m1 and m2 are the masses
of the colliding particles with physical radii r1 and r2, rp =
(r1 +r2)/RH , and ε is an effective coefficient of restitution given
by

ε =
√

ε2
nv

2
n + ε2

t v
2
t

v2
imp

, (D3)

where εn and εt are the normal and tangential coefficients
of restitution, and vn and vt are the normal and tangential
components of vimp. If the post-impact Jacobi energy is <0 we
assume that the collision will result in a perfect merger (Ohtsuki
1993; Canup & Esposito 1995).

D.1. Angle-averaged Criterion

When averaging Equation (D1) over all possible impact
orientations (radial, vertical, and azimuthal), the post-impact
Jacobi energy becomes (Canup & Esposito 1995)

EJ = 1

2
ε2v2

imp − 3

rp

− 1

3
r2
p +

9

2
. (D4)

In the limit that ε = 0 (a completely inelastic collision),
requiring EJ < 0 for accretion yields rp < 0.7.

D.2. Total Accretion Criterion

An alternative is to assume that the particles are aligned in
the radial direction, which is the widest dimension of the Hill
“sphere” and therefore the most favorable for growth. In this
case, Equation (D1) becomes

EJ = 1

2
ε2v2

imp − 3

rp

− 3

2
r2
p +

9

2
. (D5)

In the limit that ε = 0, requiring EJ < 0 for accretion then
yields rp < 1.

D.3. Minimal Distance for Accretion

The quantity rp = (r1 + r2)/RH can be expressed as

rp = Rc

a0

(
ρ

3ρc

)−1/3 1 + μ1/3

(1 + μ)1/3 ≈ 0.6
aR

a0

1 + μ1/3

(1 + μ)1/3 , (D6)

where Rc and ρc are the radius and bulk density of the central
body, ρ is the material density of the colliding particles,
aR = 2.456Rc(ρc/ρ)1/3 is the Roche limit for material density
ρ, and 0 < μ � 1 is the mass ratio of colliding particles. Using
the above constraints on rp, we can derive a minimum distance
beyond which two particles of a given mass ratio μ can accrete,
depending on vimp and ε. This is represented in Figure 10.

If the post-impact Jacobi energy of the colliding particles is
positive, we assume that they rebound inelastically and do not
merge. The relative velocity of the particles is then modified as{

v′
n = −εnvn

v′
t = εtvt

, (D7)

where v′
n and v′

t are the post-impact normal and tangential
velocity components.

Figure 10. Orbital distance (in units of the Roche radius, aR) beyond which
two colliding particles with mass ratio μ may accrete. The model assumes an
inelastic collision between two spherical particles. The solid line corresponds to
an average over all possible impact orientations, while the dashed line considers
a purely radial collision (Canup & Esposito 1995).
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