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ABSTRACT
The currently favored theory of lunar origin is the giant-impact hypothesis. Recent work that has

modeled accretional growth in impact-generated disks has found that systems with one or two large
moons and external debris are common outcomes. In this paper we investigate the evolution of terres-
trial multiple-moon systems as they evolve due to mutual interactions (including mean motion
resonances) and tidal interaction with Earth, using both analytical techniques and numerical integra-
tions. We Ðnd that multiple-moon conÐgurations that form from impact-generated disks are typically
unstable : these systems will likely evolve into a single-moon state as the moons mutually collide or as
the inner moonlet crashes into Earth.
Key words : Moon È planets and satellites : general È solar system: formation

1. INTRODUCTION

The ““ giant-impact ÏÏ scenario proposes that the impact of
a Mars-sized body with early Earth ejects enough material
into EarthÏs orbit to form the Moon (Hartmann & Davis
1975 ; Cameron & Ward 1976). Of all lunar origin theories,
the giant-impact theory seems best able to account for the
geochemical, geophysical, and dynamical characteristics of
the Earth-Moon system. Published works have utilized
smoothed-particle hydrodynamics to model the impact
event and the creation of an impact-generated protolunar
disk (e.g., Cameron & Benz 1991 ; Cameron 1997a). These
works predict the formation of an extremely hot debris disk
with a mean radius near or interior to the classical Roche
limit for lunar density materials and an outer disk(D2.9R

^
)

edge of To date, few works have addressed theD20R
^

.
earliest evolution of this disk, which may have experienced
instability-enhanced viscous spreading prior to cooling
and solidiÐcation (Ward & Cameron 1978 ; Thompson &
Stevenson 1988).

The midphase of disk evolutionÈwhen material has
cooled and settled enough to allow for collisional growthÈ
has been studied in Canup & Esposito (1996, hereafter
CE96) and most recently in Ida et al. (1997, hereafter
ICS97). The latter presented the Ðrst N-body simulations of
accretion in a protolunar disk using a Hermite-scheme inte-
grator to follow the orbital and collisional evolution of
between 1000 and 2700 particles. ICS97 included tidal inhi-
bition of accretional growth near the Roche limit by imple-
menting the Canup & Esposito (1995) tidal accretion
criteria, which basically require that a colliding pair of
objects (1) not physically overÑow their mutual Hill sphere ;
and (2) rebound with a velocity less than a three-body
escape velocity in order for accretion to occur. ICS97 varied
initial disk masses and radial surface density proÐles, as well
as assumed values for the coefficient of restitution. Initial
particle radii ranged from 38 to 380 km, and most runs
assumed a di†erential mass power-law index of forqm\ 1.5
the starting size distribution. ICS97 found that the largest
moonlet that accretes from the disk forms at a characteristic
distance of between 1.2 and 1.5 times the Roche radius (at
the outer edge of the Roche zone) in about 1 yr (or about

1000 orbits). This result was relatively independent of initial
disk conditions and collisional parameterizations. Pertur-
bations by the largest moonlet(s) were very e†ective at clear-
ing out inner disk materialÈin all of the ICS97 simulations,
the smaller debris within the Roche zone was scattered
either into Earth or into a collisional orbit with the largest
moonlet(s).

Two-thirds of the ICS97 runs end with a single large
moonlet at together with(1.2È1.5)aRoche [(3.5È4.3)R

^
],

multiple smaller bodies in exterior orbits. One-third of their
simulations, typically those that began with the most radi-
ally extended disks, yielded systems with two large moon-
lets (i.e., with At the end of these cases, them2Z 0.3m1).more massive moonlet had an orbital radius of a D

Figures 1 and 2 show example(0.8È2)aRoche [(2.32È5.8)R
^

].
results from ICS97 for the one- and two-moon cases.
Resulting inclinations of the largest moonlet(s) were always
low, while typical eccentricities were for the one-moon[0.1
cases and higher for two-moon cases (D0.09È0.4). The
ICS97 integrations did not include orbital evolution due to
tidal interaction with Earth.

This paper seeks to address a likely Ðnal stage of evolu-
tion in an impact-generated protolunar disk : the tidal evol-
ution of and mutual interactions between multiple bodies
that have formed via accretion. Would a multiple-moon
system persist as it orbitally evolves? The dependence of the
rate of orbital evolution on moonlet mass suggests that if
the innermost moon is the most massive it will likely over-
take and sweep up all exterior material (Cameron & Benz
1991 ; CE96). However, trapping of outer material in
exterior mean motion resonances could preclude mutual
collisions even in this case. Furthermore, cases in both
CE96 and ICS97 yield systems of multiple moons in which
the innermost moonlet is often not the most massive (e.g.,
Fig. 2).

In this work we utilize both analytic techniques and
numerical integrations to characterize probable modes of
evolution for a terrestrial multiple-moonlet system. The
combination of these complementary approaches is very
helpful, as the theoretical analysis allows for straightfor-
ward categorizations of general outcomes for certain ideal-
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FIG. 1.ÈExample of the collisional evolution of an initially centrally
condensed protolunar debris disk (from ICS97, their run 4). Cross-sections
of the disk are shown at times t \ 0, 50, and 1500 orbits at (where3R

^1500 orbits D15 months). The y-axis is the absolute value of the vertical
height above EarthÏs equatorial plane. The dashed semicircle is the surface
of Earth. The relative sizes of the disk particles are indicated but are not
shown to scale. The initial disk mass was 2.44 lunar masses ; the largest
moonlet, which forms at has a mass of3.5R

^
, 0.4Mlunar.

FIG. 2.ÈExample of the collisional evolution of a more radially
extended protolunar debris disk (from ICS97, their run 13). Cross-sections
of the disk are shown at times t \ 0, 50, and 1000 orbits. The initial disk
mass was again 2.44 lunar masses ; the largest moonlet at has a mass5.7R

^of while the inner moonlet at has a mass of0.63Mlunar , 2.7R
^

0.39Mlunar .

ized cases (e.g., single, isolated resonances), while the
numerical integrations reveal the complexities of the full
N-body dynamics. The analytic methods and our numerical
model are described in °° 2 and 3, respectively. Our results
are discussed in ° 4, and our conclusions are summarized
in ° 5.

2. ANALYTIC MODELING

Below we review the analytic modeling that we will utilize
in conjunction with our numerical integrations to describe
the evolution of a multiple-moon terrestrial system. We
beneÐt from the great amount of past work that has
addressed the stability and evolution of the satellite systems
of the outer planets (e.g., Greenberg 1977 ; Dermott et al.
1988 ; Tittemore & Wisdom 1988, 1989, 1990). A terrestrial
multiple-moon system di†ers dynamically from these
systems in three key respects : a much larger mass ratio of
satellites to central planet, a substantially faster rate of tidal
evolution, and the signiÐcant e†ect of tides raised on Earth
on increasing satellite eccentricities. All of these factors help
to explain our single-moon system. We note that here we
assume satellites occupy coplanar orbits in EarthÏs equato-
rial plane.

2.1. T idal Evolution of Moonlets
2.1.1. Terrestrial T ides

For orbits outside synchronous orbit (typically 2.3R
^immediately after the impact event), tides raised on Earth

by an orbiting satellite lead to a transfer of angular momen-
tum from EarthÏs rotation to the satelliteÏs orbit, causing an
increase in orbital radius. CE96 used a simple model of tidal
evolution in order to predict when two moons would likely
evolve into potentially collisional orbits, considering only
the evolution of orbital radius due to the principal tidesM2raised on Earth :

da
dt
K
^

B 3k2
S G

M
^

R5̂ ma~11@2 sin 2d , (1)

where is EarthÏs second-order Love number, andk2 M
^are the mass and radius of Earth, m and a are the massR

^and orbital radius of the orbiting body, and d is the lag
angle between the bulge raised on Earth and point below
the disturbing body (e.g., Burns 1986). Tides raised on Earth
also cause an evolution in eccentricity for initially non-
circular orbits, with

de
dt
K
^

B sgn (p)
19e
8a

da
dt
K
^

, (2)

where p \ 2u[ 3n, u is the angular rotation rate of Earth,
n is the satelliteÏs mean motion, and p is positive for a Z

(Kaula 1964 ; Goldreich & Soter 1966).1.3asyncIntegrating equation (1), CE96 determined when two
bodies would tidally evolve into unstable orbits with da ¹

(e.g., Gladman 1993), where is the mutual Hill3.5RHill RHillradius of the interacting bodies [RHill\ a(m1They found that the dynamical separation] m2 /3M
^
)1@3].

between two tidally evolving moonlets, da/a, asymptotes to
a value that is just a function of the mass ratio of the moon-
lets :

da
a
K
asym

\
Am2
m1

B2@13 [ 1 , (3a)
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where and are the masses of the inner and outerm1 m2moonlets and The critical relation thatda/a \ (a2[ a1)/a1.
determines whether two moonlets will converge or diverge
to this asymptotic value is a function of just their masses
and initial positions :

m1
m2

K
crit

\
Aa1
a2

B13@2
, (3b)

where and are the moonlet orbital radii anda1 a2 a1\ a2.For greater than this value, the moonlet orbits con-m1/m2verge. For systems with a massm1] m2 \ (0.1È1)Mlunar,ratio is required for the asymptoticm1/m2 Z 0.06È0.22
separation value to be or in order for two moon-¹3.5RHill,lets to evolve into potentially collisional orbits. While their
analysis included only tidal e†ects on orbital radius and
used a very simplistic stability criterion, the expressions in
equations (3a)È(3b) will be useful in our expanded treatment
here.

2.1.2. Satellite T ides

In addition to the e†ects of terrestrial tides, an orbiting
body will also be a†ected by tides raised by Earth on the
satellite. Tides raised on a synchronously rotating satellite
(i.e., with where is the rotation rate of the satellite)n \ u

s
u

sin a circular orbit will form in line with the centers of the
satellite and Earth and so will not yield any torque.
However, for noncircular orbits, the satellite tides dissipate
energy as their magnitude varies from perigee to apogee and
as the satellite bulge position is alternately ahead of and
behind the line of centers. Both the radial ““ push-pull ÏÏ tides
and the ““ wobble ÏÏ tides tend to circularize satellite orbits,
competing with the e†ects of planetary tides for orbits
outside corotation (e.g., Burns 1986).

From Kaula (1964) and Goldreich & Soter (1966), the
rate of change of eccentricity due to both Earth and satellite
tides (assuming all tidal components have the same lag
angle) is

de
dt
K
t
B

19e
8a

da
dt
K
^

C
sgn (p)[ 28

19
A
D

, (4)

where is given in equation (1), p \ 2u[ 3n, and Ada/dt o
^is deÐned as

A\ k2* sin (2d*)
k2 sin 2d

AM
^

m
B2AR*

R
^

B5
, (5)

the ratio of satellite-to-planet e†ects used in Mignard (1980,
1981 ; see also Kaula 1964 and Burns 1986), where the
starred quantities are those of the satellite. For the current
Earth-Moon system, (k2/Q)lunarB 0.0011, (k2/Q)

^
B 0.021,

and so AD 0.5 (Burns 1986 ; Dickey et al. 1994). A range of
A values from 0 to 20 is used to represent the range of
plausible values during the MoonÏs evolutionary history ;
the former corresponds to no satellite dissipation while the
latter corresponds to the limit when only solid-body tides in
Earth contribute to terrestrial dissipation The(Q

^
D 300).

value of has certainly changed over the course of theQ
^MoonÏs history, as its current value implies that the Moon

achieved its present position after only about 2 billion years
(see Burns 1986).

2.2. Mean Motion Resonances between Moonlets
As moonlets orbitally evolve due to tides, they will pass

through mutual mean motion resonances. In theory,

passage through resonance could either increase or decrease
the stability of a multiple satellite system relative to that
predicted from only relative rates of tidal evolution. For
instance, the satellite systems of the outer planets exhibit an
unusually high number of long-lived locked resonant con-
Ðgurations (e.g., Goldreich 1965). Passage through reso-
nances is typically modeled by treating tidal e†ects as a
slow, adiabatic evolution of semimajor axis, which a†ects a
single-resonance Hamiltonian (e.g., Henrard & Lemaitre
1983 ; Borderies & Goldreich 1984 ; Peale 1986 ; Malhotra
1994). The evolution of the system during passage through
or capture into an isolated resonance can then be described
by means of the adiabatic theorem. In this work we investi-
gate the e†ects of mean motion eccentricity resonances but
note that other classes of resonances (e.g., secular or inclina-
tion resonances) may also be important.

A mean motion resonance occurs when the ratio of the
mean motions of two bodies is nearly a ratio of integers, e.g.,
for the (p ] q) :p resonance, where n isn1/n2B (p] q)/p
mean motion and q is the order of the resonance. During a
mean motion eccentricity resonance, the gravitational inter-
action between the two bodies acts to maintain their con-
junction at a certain longitude relative to the apse of one or
both of the bodies. This process causes the critical argument
of the resonance, /, to librate about a Ðxed angle.

For every mean motion commensurability there are
several states that are each deÐned by their own critical
argument, which for coplanar orbits is just /\ [pj1 ]

where and are the mean(p] q)j2[ q1u8 1[ q2u8 2, j1 j2longitudes of the inner and outer body, and are theu8 1 u8 2longitudes of pericenter of the inner and outer bodies, and
and are integers with (see Malhotra 1994).q1 q2 q1] q2\ q

For Ðrst- and second-order resonances between coplanar
bodies, there are three primary resonance states for a given
(p ] q) :p commensurability to second order in eccentricity,
and in general, the relative masses and eccentricities of the
two bodies determine which state is occupied. For the 2 :1
resonance, the state is characterized by““ e1 ÏÏ /

e1
\ [j1the state by and] 2j2[ u8 1, ““ e2 ÏÏ /

e2
\[j1] 2j2[ u8 2,the second-order 4 :2 state bye1 e2 /

e1 e2
\[2j1 ] 4j2For the 2 :1 commensurability and low eccen-[ u8 1[ u8 2.tricities, the state is associated with (an interiore1 m2 ?m1resonance), while the state (exterior resonance) is associ-e2ated with m1?m2.Standard theories for evolution through resonance

assume that the primary states of a given commensurability
are ““ well separated,ÏÏ or that the variation of semimajor axis
that results from the resonance interaction (the libration
width) is small compared with the radial separation of
neighboring resonance states (e.g., Dermott et al. 1988). The
separation of the primary states of a commensurability
occurs mainly due to di†erences in precession rates associ-
ated with the oblateness of the primary. The libration width
of a given state depends both on the mass ratio of the
secondary to the primary and on eq. When the secondaryÈ
toÈprimary mass ratio is small and is large, even low-J2order resonances are well separated (Dermott et al. 1988).
However, when is small this is not necessarily the case. InJ2a group of three papers, Tittemore & Wisdom (1988, 1989,
1990) demonstrated that single-resonance theory was inade-
quate to describe passage through and capture in reso-
nances in the Uranian system, where is small. InJ2particular, they identiÐed signiÐcant chaotic zones sur-
rounding low-order resonances and found that escape from



606 CANUP, LEVISON, & STEWART Vol. 117

resonance could occur even after long periods of stability
and in cases where single-resonance theory would predict
permanent capture. In our analytic analysis here we have
utilized the single-resonance theory, which is conservative
in that it will tend to overestimate stability. Even given this
approach, we Ðnd all likely initial moonlet conÐgurations to
be unstable.

2.3. Capture into Resonance
When two moonlets orbitally evolve through an isolated

mean motion resonance, the outcome is dependent upon
whether their orbits are converging or diverging [i.e.,
whether d/dt(da/a) due to tides is negative or positive].
Resonant perturbations tend to increase the orbital separa-
tion between the resonant bodies. If the orbits of two bodies
are diverging as they tidally evolve, both resonant and tidal
e†ects are additive and resonance trapping does not occur
(e.g., Weidenschilling & Davis 1985). In this case, passage
through the resonance results in a jump in eccentricity
whose magnitude may be estimated from adiabatic analysis
(see Dermott et al. 1988 or Peale 1986).

For tidally converging orbits, a resonant conÐguration
can be maintained under certain conditions. First, the rate
of tidal evolution must be slow enough so that the change in
a due to tides in one libration period of the resonance is
much less than the amplitude of the resonant perturbation
of aÈthis is the ““ adiabatic criterion ÏÏ (see Dermott et al.
1988 ; Malhotra 1993). For tidal evolution rates that greatly
exceed this limit, passage through resonance without
capture occurs. With the adiabatic condition isQ

^
Z 10,

met for the Ðrst- and second-order resonances (q \ 1, 2)
considered here. If the adiabatic criterion is satisÐed,
capture into an isolated resonance is certain if eccentricity
values far away from resonance are below a critical value.
For initial eccentricities higher than this value, capture into
resonance is probabilistic. The value of the critical eccen-
tricity depends on the resonance, the masses of the two
bodies, and their orbital radii ; exact expressions for this ecritfor Ðrst- and second-order resonances are found in Dermott
et al. (1988, Appendix B; also Peale 1986 and Borderies &
Goldreich 1984). For example, for capture into a Ðrst-ecritorder interior resonance is

ecrit\
C 2J6(m2/M^

)af (a)
p2] (p ] 1)2(m1/m2)a2

D1@3
, (6)

where and f (a) is a function of Laplace coeffi-a \ a1/a2cients [Brouwer & Clemence 1961 ; pp. 490È494 ; also see
Weidenschilling & Davis (1985) for q \ 1 values : their
C(a)\ 2f (a)]. Capture probability decreases with increas-
ing e for e[ ecrit.Thus, we can (1) utilize the CE96 criterion for
convergence/divergence to determine what mass ratio
moonlets may get captured into a given resonance ; and (2)
estimate critical eccentricities for capture into resonance for
the convergent cases. Figure 3 is a plot of the asymptotic

value due to tidal evolution as a function of moonleta1/a2mass ratio ; also shown are the locations of Ðrst- and
second-order mean motion resonances. Stable capture into
resonance is impossible in the phase space above the solid
curve, since here orbits are diverging to their asymptotic
tidal separation. Below the solid curve orbits are tidally
converging, and capture is certain if and probabil-e\ ecritistic otherwise. Also shown is the critical ratio fora1/a2

FIG. 3.ÈSolid curve is the asymptotic value of due to the prin-a1 /a2cipal terrestrial tide as a function of moonlet mass ratio. Above and to the
left of the curve moonlet orbits diverge as they tidally evolve ; below and to
the right orbits converge due to tides. Also shown are the positions of Ðrst-
and second-order mean motion resonances. The solid horizontal line is the

separation required for two-body stability witha1 /a2 m1] m2\Mlunar .The only Ðrst- or second-order resonances outside the stability3.5Rhillseparation in this case are the 3 :1 and 2 :1.

two-body stability for(da ¹ 3.5RHill) m1] m2\ Mlunar.Because of the large mass ratio of the Moon to Earth, the only
Ðrst- and second-order commensurabilities that lie outside the
two-body stability separation for bodies that total a lunar
mass are the 2 :1, 4:2, and the 3 :1.

2.4. Evolution in Resonance
The evolution of tidally evolving bodies once captured in

resonance has been modeled by multiple past works (e.g.,
Peale 1986 ; Dermott et al. 1988 ; Pauwels 1994). We have
speciÐcally compared our numerical results with the ana-
lytical predictions from both Pauwels (1994) and Dermott
et al. (1988). Here we follow the approach used in the latter
work, as it easily allows for the inclusion of e†ects due to
both terrestrial and satellite tides.

From Dermott et al. (1988), the averaged rates of change
of eccentricity due to the resonant interaction between two
tidally evolving bodies trapped in an isolated mean motion
resonance [with /\ [pj1] (p ] q)j2[ q1u8 1[ q2u8 2]are

Tde1
dt
U K

r
\ [ J1 [ e12

e1
n1 a1

m2
M

^

F
3g

]
C
q1 ] p(1[ J1 [ e12)

D
, (7)

Tde2
dt
U K

r
\ [ J1 [ e22

e2
n2 a2

m1
M

^

F
3g

]
C
q2[ (p ] q)(1[ J1 [ e22)

D
. (8)

The function g is just

g \ p2 Gm2
a12

] (p ] q)2 Gm1
a22

B p2 Gm2
a12

C
1 ] a2m1

a1m2

D
. (9)
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The expression for F is

F\ pn5 1,t[ (p ] q)n5 2,t , (10)

where and are the rates of change of the meann5 1,t n5 2,tmotions of the inner and outer satellites due to tides. For
tidally converging orbits (necessary for capture into reso-
nance in the Ðrst place), F is negative and is dominated by
the Ðrst term (e.g., for the Ðrst term is an ordera1/a2D 0.5
of magnitude larger than the second term for m1/m2Z 0.1).
The rate of change in due to tides is justn1

n5 1,t\ [ 3n1
2
Aa5 1,t

a1

B
, (11)

where is the rate of change of due to all tidal e†ects.a5 1,t a1The rate in equation (11) contains contributions duea5 1,tto both planetary and satellite tides. Assuming tides in the
satellite dissipate energy while conserving angular momen-
tum,

da1
dt
K
s
\ 2a1 e1

(1[ e12)
de1
dt
K
s
, (12)

where is the rate of change of eccentricity of thede1/dt o
sinner satellite due to tides raised on the satellite, so that the

total rate of change of due to both satellite and Eartha1tides is given by

da1
dt
K
t
\ da1

dt
K
^

C
1 [ 7e12A

(1[ e12)
D

. (13)

The total rate of change of the eccentricity of a satellite in
a mean motion resonance is a combination of the e†ects due
to the resonance (eqs. [7]È[8]) and those due to tides raised
on both Earth and the satellite (eq. [4]). These analytic
evolution rates are compared with our numerical results
described below. For sufficiently high values of satellite dis-
sipation (i.e., high-A values), an equilibrium eccentricity is
reached. For and the equilibriumm1/m2 Z 0.1 FB pn5 1,t,eccentricities to lowest order in e can be solved for explicitly
and are given by

e1,eq2 \ q1
p
GC

7A[ 19 sgn (p)
4

DA
1 ] a2 m1

a1 m2

B
] 7A

q1
p
H~1

,

(14)

where p \ 2u[ 3n, and

e2,eq2 \ q2
p
Am1
m2

B2Aa2
a1

B6A
1 [ 7e1,eq2 A

B

]
GC

7A[ 19 sgn (p)
4

DA
1 ] a2m1

a1m2

BH~1
. (15)

Equation (14) is equivalent to equation (53) in Tittemore &
Wisdom (1990), except in that case they did not include the
e†ect of planetary tides on satellite eccentricity, as this is
unimportant for satellites orbiting gaseous planets with
high Q-values. For (exterior resonance case), them1? m2Ðrst term in g can be neglected and the equilibrium eccen-
tricity of the outer body can again be explicitly solved for to

lowest order in e :

e2,eq2 \ q2 p
(p ] q)2

Am1
m2

BAa2
a1

B8
(1[ 7e12A)

]
C
7A[ 19 sgn (p)

4
D~1

. (16)

Note that the equilibrium eccentricities depend only on
moonlet mass ratio, the type of resonance, and the A value.

Thus, from analytic methods we can determine which
mutual mean motion resonances moonlets can become cap-
tured in (and with what capture probability for ase[ ecrit )they orbitally evolve due to both planetary and satellite
tides. Given that capture into an isolated resonance occurs,
we can then estimate the subsequent evolution of moonlet
eccentricities (due to both tides and the resonant
interaction) from the rates given in equations (4), (7), and (8).
Despite the simplifying assumptions inherent to these
methods, they provide a clarifying structure in which to
categorize the numerical results.

3. NUMERICAL ANALYSIS

To simulate the evolution of multiple-moonlet systems
we utilize a code developed as part of the SWIFT group of
integrators that uses the mixed variable symplectic (MVS)
orbit integrator developed in Wisdom & Holman (1991)
(see also Levison & Duncan 1994). This symplectic tech-
nique by its N-body nature implicitly accounts for the
e†ects of mutual interactions, including resonances. For this
work, the orbiting satellites are additionally accelerated by
tides raised on Earth at each time step (see Touma &
Wisdom 1994). Accelerations due to tides raised on the
orbiting satellites are not included in our numerical simula-
tions, due to difficulties in incorporating the evolution of
satellite rotation in our symplectic method. In particular,
tracking of the moonlet spin rates is necessary for the
proper treatment of the ““ wobble ÏÏ component of the satel-
lite tides, especially in the case of very eccentric orbits.

3.1. T idal Accelerations
The tidal-generating force of a satellite in EarthÏs orbit

causes Earth to assume a distorted shape relative to the
sub- and antisatellite points, which can be mathematically
described in terms of an increase in the second-order har-
monic of EarthÏs gravitational potential. As a result of dissi-
pation within Earth, the bulge achieves a maximum height
some time *t after the tide-raising impulse from the satel-
lite. For a satellite outside geosynchronous orbit, the tidal
bulges will lead ahead of the line through the satellite-Earth
centers by an angle d, which is a function of *t :
d \ (u[ n)*t. While the tidal potential is often derived by
assuming a constant lag angle, for our numerical integra-
tions we follow the formalisms used by Mignard (1979,
1980, 1981), Conway (1982), and Touma & Wisdom (1994),
which instead assume a constant value for *t, the character-
istic time for bulge formation. This approach is preferred
since the value of the lag angle d is not constant for eccentric
orbits and is, of course, a function of position relative to
synchronous orbit.

The potential at a geocentric distance r due to the tidal
distortion of Earth raised by a satellite of mass m is just

U(r) \ Gk2mR5̂
2r

p
5 r5 [3(r Æ r

p
)2[ r2r

p
2] , (17)
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FIG. 4a

FIG. 4.È(a) Numerical simulation of the evolution of two moonlets g). The black and green curves respectively, while(m1, m2\ 1025, 1023 are a1 and a2,the yellow and orange curves show periapse and apoapse at each time step. The brown curves indicate the location of the 3 :2 (at D 4.8 at t \ 0), 2 :1 (atR
^

D 3.9 at t \ 0) and 3 :1 interior mean motion resonances. The y-axis is in Earth radii ; the x-axis is t(s/808). A terrestrial tidal time delay of *t \ 11.54R
^minutes and a terrestrial day of 5 hours were used. E†ects of satellite tides are not included (A\ 0). The moons are quickly captured into the 2 :1 e2resonance, and continues to increase until the moons collide (at t \ 4.8] 108). (b) Analytical predicted evolution of due to the 2 :1 resonance for thee2 e2 e2case shown in (a) with A\ 0 (solid line) and A\ 100 (dashed line). Numerical results for A\ 0 case are shown for comparison.

where is related to the position of the tide-raising bodyr
pwhen the tide-raising impulse occurred at time t [ *t

(Conway 1982 ; Touma &Wisdom 1994). In order to deter-
mine the acceleration of the satellite by the bulge it has

raised, one must determine the potential at the satelliteÏs
new position at the time the bulge forms, wherer

s
, r

p
\ r

sSubstituting this expression for into equa-[ r5
s
*t] *t. r

ption (17), expanding to Ðrst order in *t, and taking the
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FIG. 4b

gradient of U(r) yields the acceleration

r� \[3k2 GmR5̂
r10 *t[2r(r Æ ¿)] r2(r Â x]¿)] , (18)

where r is now the position of the satellite, and we have
assumed that or that the object being accelerated isr \ r

s
,

the same as the one that generated the tidal distortion (e.g.,
Conway 1982 ; Touma & Wisdom 1994). For multiple satel-
lite systems, it is customarily assumed that each body is
only a†ected by the tidal bulges it itself has raised on the
central planet. This is because a satelliteÏs own tidal bulges
maintain a Ðxed position relative to the satellite, while
bulges raised by other satellites would not and their chang-
ing relative orientations would tend to cause their e†ects to
cancel out.1

We incorporate the tidal acceleration into our integra-
tions at each time step by adding it to the(*¿\ r� tides tstep )
interaction part of the MVS Hamiltonian (see Wisdom &
Holman 1991). The tidal time delay for Earth (we typically
use the current value of *t D 12 minutes), and the initial
rotation rate of Earth (u) are input parameters for each run.
The oblateness of Earth is determined as a function of u,

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 We note that this may not be a valid assumption in the case of two

satellites in a mean motion resonance. In this case each satellite would
experience a periodic interaction with the tidal bulge of the other satellite
during their mutual conjunction, and this ““ tidal resonance ÏÏ could result in
an additional acceleration to both bodies (C. Agnor 1997, private
communication). We ignore such interactions here.

with rad s~1)2. By usingJ2\ 1.08] 10~3(u/7.3] 10~5
equation (18) directly in our numerical simulations, we
avoid the complications of an elliptic element-based
approach in which tidal e†ects are determined on a tide-by-
tide basis. Our integrations thus account for all e†ects of a
second-order (l \ 2)2 tidal distortion in EarthÏs potential, as
well as the harmonic due to rotational oblateness. OurJ2l \ 2 tidal acceleration expression is valid for any eccentric-
ity or inclination.

As mentioned above, we do not include the e†ects of tides
raised on the moonlets in our numerical integrations.
Instead, the e†ects of satellite tides for various A values are
estimated using the analytic methods described in ° 2. We
also ignore the e†ects of solar tides. Presently the torque on
Earth due to solar tides is one-Ðfth that of the lunar torque,
and the relative importance of solar tides is even less for the
much closer satellite orbits that we are concerned with here
(Burns 1986 ; Mignard 1981).

4. RESULTS

We categorize our Ðndings in terms of the relative
moonlet masses, presenting both numerical and analytical
results for each class. Unless otherwise stated, the numerical
integrations assume a rotation rate of 5 hours, a terrestrial

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
2 The l\ 3 order terms decrease more rapidly with orbital radius than

the l\ 2 terms ; even at the Roche radius for silicate densities (a B 3R
^

)
the force due to the l\ 2 distortion is a factor of D5 greater than that due
to the l\ 3 terms (e.g., Mignard 1980).
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tidal time delay equal to its current value of *t B 11.54
minutes, A\ 0, and initially coplanar moonlet orbits. In
most cases, the integrations were continued until the moon-
lets experienced a close encounter or one of the moons
collided with Earth. As before, our notation assumes a1\
a2.

4.1. Moonlets with m1? m2
This conÐguration is predicted by about two-thirds of the

ICS97 simulations, with a large single moonlet at the outer
edge of the Roche zone and a small amount of mass con-
tained in smaller, exterior debris. It has typically been
assumed that a more massive inner moon will overtake and
sweep up much smaller outer debris. However, stable
capture of this debris into exterior resonances could prevent
mutual collision.

Figure 4a shows the evolution of 2 moonlets with
g g), am1/m2\ 100, m1\ 1025 (Mlunar\ 7.349 ] 1025

starting separation of about ( just outside the 2 :17.6RHillresonance), and initially circular orbits. Here and in sub-
sequent Ðgures, the black and green curves are orbital radii,
while the yellow and orange curves indicate perigee and
apogee at each time step, while positions of the (in order of
increasing distance from the planet) 4 :1, 3 :1, 2 :1, and 3 :2
interior resonances are indicated by the brown curves (we
note that only the latter three resonances are shown in Fig.
4a due to the chosen ordinate scale). Times are shown in
units of seconds/808, and a is in Earth radii. In the simula-
tion shown in Figure 4a, the outer moon is captured into
the 2 :1 resonance and experiences a secular increase ine2its eccentricity ; after about 460 yr (t \ 1.8] 107) the moon-
lets are on crossing orbits. Since our numerical integrations
assume A\ 0, there is no process that damps eccentricity
for 2u[ 3n. If the resonance eventually destabilizes, or if e2was initially too large to allow for capture into the reso-
nance for the 2 :1 in this case), the moonlet(ecritD 0.096
orbits will continue to converge due to tides, and mutual
collision is probable. For the case shown in Figure 4a, at
t \ 4.8] 108 (after about 12,300 yr) the eccentricity of the
outer moonlet has grown to about 0.6. At this point the
resonance no longer protects the outer body from close
encounters with the inner body (e.g., Morbidelli et al. 1995),
and the moonlets experience a close encounter.

Figure 4b is the predicted evolution of from the analy-e2tic formalism for A\ 0 (line) compared with the numerical
results (points). Would dissipation in the moonlets allow for
a stable, equilibrium eccentricity in an external resonance?
For the case shown in Figure 4, equation (16) implies that e2would have an equilibrium value less than unity only for
Aº 145 ; Figure 4b shows the time evolution of fore2A\ 100 (dashed line) predicted by our analytic rate expres-
sions. More generally, equilibrium values in exteriore2eccentricity resonances are less than unity for m1/m2[ 20
only for a nominal upper limit on the value of AAZ 20,
during the history of the Earth-Moon system.

Thus, for reasonable values of the relative importance of
satellite to terrestrial tides (0 ¹ A¹ 20), external reso-
nances with the protomoon would have been unstable for
small exterior material. We predict eventual sweep up of
outer debris by an inner protomoon.

4.2. T idally Converging Moonlets with m1 [m2
Figure 3 shows the critical mass ratio at a given orbital

radius separation for tidally diverging/converging orbits.

Here we consider cases with such that the moon-m1/m2[ 1
lets are initially on converging orbits due to tides (below
and to the right of the curve in Fig. 3). The ICS97 two-moon
cases (of which there were a total of 7 out of 21 simulations)
fall into this category. Here we Ðnd that the end result is
often dependent on the choice of the initial spin rate of
Earth, which determines the location of synchronous orbit,

All of the ICS97 two-moon cases have an inner moonasync.whose perigee is Synchronous orbit is at D2.3[2.5 R
^

. R
^for a nominal terrestrial day of 5 hoursÈthis is a typical

day length produced by impacts with close to the current
angular momentum of the Earth-Moon system (e.g.,
Cameron & Benz 1991). For impacts with twice the angular
momentum of the current Earth-Moon system (which may
be favored due to their ability to place more material into
Earth orbit, see CE96 and ICS97), a day length of 2.5 hours
is more appropriate.

Figure 5a shows the evolution of the two-moon system
shown in Figure 2 (ICS97, their run 13) ; this was the ICS97
two-moon case with the largest value of Herea1. m1\

and we have0.39Mlunar, m2\ 0.63Mlunar, dainitialD 7RHill,assumed initially circular orbits. The moonlets are quickly
captured into the resonance. The inner moonlet is3 :1e1e2close enough to corotation that both planet and satellite
tides are acting to decrease its eccentricity ; however, there is
still a net increase in due to the resonant interaction.e1From Figures 5aÈ5b, at about t \ 1.51] 106, perigee of

falls brieÑy within corotation, and the inner moon atm1t \ 1.52] 106 becomes trapped in the 4 :1. Here again the
resonance acts to increase until perigee of the innere1 ,
moonlet falls within corotation,3 at which point the orbit of

circularizes and falls into Earth at t \ 1.58] 106, orm1after about 40 yr.
Figure 6 shows the characteristic outcome for integra-

tions of two-moonlet cases when perigee of is initiallym1inside corotation (the case shown is ICS97Ïs run 12). The
inner moon immediately begins its decent, with a Ðnal colli-
sion with Earth after only about 5 yr.

If we consider a terrestrial day of 2.5 hours, asyncDFigure 7 shows the evolution of the two moons from1.5R
^

.
Figure 5 with hours. The moons are again cap-T

^
\ 2.5

tured into the resonance and experience a close3 :1e1 e2encounter after about 3 yr. We obtained a similar outcome
for all our integrations of the ICS97 two-moonlet cases with

hours.T
^

\ 2.5
Thus, with A\ 0, the inner moonlets predicted by ICS97

collide with Earth for rotation rates corresponding to a
system angular momentum close to the current value, while
the moonlets mutually collide if the spin rate of Earth is
signiÐcantly faster than this. How would dissipation in the
satellites a†ect these outcomes? The fate depicted in Figure
6 would change little. However, the resonant interactions in
Figures 5 and 7 would be a†ected. Figure 8 shows the
analytic predictions for from the run shown in Figure 5e1(t)for A\ 0, 1.0 and 10.0. For A\ 1.0 and 10.0, perigee of m1remains outside of corotation. Once the moonlets have out-
wardly evolved so that de/dt due to terrestrial tides is posi-
tive equilibrium eccentricities predicted from(a Z 1.3async),

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
3 For eccentric orbits the tidal interaction can be well approximated by

an impulse at perigee, since the tidal force is Pr~7. This means that it is the
relative location of perigee (not mean orbital radius) to corotation that
determines the overall direction of the evolution.
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FIG. 5a

FIG. 5.È(a) Numerical integration of the evolution of the two-moonlet case from ICS97 shown in Fig. 2 (their run 13). A terrestrial day of 5 hours, or
was assumed. Here the two moons are captured into the resonance until about t \ 1.5] 106 (about 40 yr). After a brief period ofasync\ 2.33R

^
3 :1e1 e2capture in the 4 :1, perigee of the inner moon falls within synchronous orbit and its orbit then circularizes and falls into Earth. (b) The evolution of relevant

quantities from the simulation shown in (a).

equations (14) and (15) for A\ 10.0 are e1,eq D 0.05, e2,eqD
0.29 ; for A\ 1.0, and has a value greatere1,eq D 0.24 e2,eqthan unity. Similar results apply for the hours runT

^
\ 2.5

shown in Figure 7. For satellite dissipation rates corre-
sponding to the predicted equilibrium eccentric-A[ 0.5È1,

ity of the outer moonlet in a 3 :1 or eccentricity4 :2e1e2resonance is greater than unity for moonlet mass ratios
greater than In the case of signiÐcant satellitem1/m2Z 0.3.
dissipation (i.e., A values larger than the current value), a
resonant conÐguration between two moons close in size
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FIG. 6.ÈEvolution of another two-moon case from ICS97 (their run 12). Here periapse of is initially inside synchronous orbit for a terrestrial day of 5m1hours, and the inner moon collides with Earth after about 5 yr.

may have persisted for a considerable length of time.
However, such a conÐguration would likely have destabi-
lized when A approached its current value. We predict that
all of the speciÐc multiple-moonlet cases found in ICS97
would evolve into single-moon systems for expected values
of A and async.

4.3. T idally Diverging Moonlets with m1\ m2
Here we consider cases to the top left of the curve in

Figure 3 ; to Ðrst order, these would seem to be the cases
most likely to yield a long-lived multiple-moon system.
Assuming the moons begin with a stable separation in
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FIG. 7.ÈEvolution of same two-moon ICS97 case as shown in Fig. 5, but here we have used a terrestrial day of 2.5 hours The moons are(asyncD 1.5R
^

).
again captured into the resonance, but in this case they experience a close encounter after about 3 yr.3 :1e1 e2

orbital radius, further tidal evolution will generally increase
their relative separations. Divergence due to tides precludes
stable capture into resonances. The expected outcome is
that the outer moon leaves the inner one behind and that as
long as the inner body is massive enough to keep outside of
corotation (whose position would be determined by the
dominant interaction with the more massive outer moon)
we might expect the pair to survive indeÐnitely.

These expectations are most clearly met when m1> m2,as shown in Figure 9 where andm1/m2\ 0.01 m2\
5 ] 1024 g. The jump in eccentricity as the inner body
diverges across the 2 :1 is very distinct, with a resulting e1D
0.12. For diverging orbits with initially low eccentricities,
adiabatic analysis predicts a jump in eccentricity Decrit,where here (see Dermott et al. 1988). ForecritD 0.1

we Ðnd a large variation in our numericalm1 /m2\ 0.1,
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FIG. 8.ÈAnalytic predictions for the case shown in Fig. 5 for A\ 0
(dashed), A\ 1 (dot-dashed), and A\ 10 (dotted). In this case, has ane2equilibrium eccentricity less than unity only for AZ 1.5.

results from this simplistic scenario. In Figure 10, m1/m2\
0.1, and the initial orbital separation ism2\ 0.05Mlunar ,about The moons diverge through the 3 :2, experi-5RHill .ence corresponding increases in eccentricity, and after a
brief excitation by the 4 :7, they resume a potentially stable
conÐguration. Figure 11 follows the same initial conditions
(same only here the moons are initiallym1/m2, a1/a2),farther away from the planet. The jump in free eccentricity
as the moons diverge through the 3 :2 is again very clear
(postpassage from adiabatic theory). However, ine1D 0.1
this run, later interaction with the 4 :7 (t \ 1.3] 109) per-
turbed the orbital radius of the inner moon to such an
extent that it crossed the 2 :1. At the 2 :1, the moonlet orbits
are converging due to tides and capture into the 2 :1 e1resonance occurs, followed by a secular increase in untile1the integration was stopped when the orbits crossed. The
critical eccentricity for the 2 :1 for these parameters is

which yields a capture probability of about 10%ecritD 0.09,
for an initial eccentricity of D0.19. Another run with identi-
cal moonlet masses and positions but with an initial outer
moonlet eccentricity of did not result in capturee2,0\ 0.1
into the 2 :1 in this way, and again left the moonlets on
potentially stable orbits.

Figure 12 shows a run with m1/m2\ 0.1, m2\
an initial spacing of 4.2 Hill radii (just outside0.07Mlunar ,the 3 :2). In this case, eccentricity increases associated with

mutual perturbations bring perigee of the inner moon inside
after about 2000 yr (9] 107 in our units), and theasyncinner moon collides with Earth. We note that the run

shown in Figure 10 probably narrowly missed a similar fate,
as perigee of the inner moon extended inward as far as
about 2.6R

^
.

We completed a total of nine integrations that followed
moonlets on diverging orbits that would have all been pre-
dicted to be stable by the CE96 criterion. All but one of the

cases in this category were neverthelessm1/m2\ 0.1
unstable and ended with mutual collision or with one body
colliding with Earth. Stability of a two-moon system
increases for and this would be the most problem-m1>m2,atic conÐguration for resolution with our current one Moon
system. However, recent accretion simulations (ICS97) indi-
cate that this conÐguration is unlikely to have occurred : by
the nature of the morphology of impact-generated disks, the

protomoon or moons form in close orbits (at outer edge of
Roche zone) and are very e†ective at scattering small inner
debris onto Earth (Figs. 1 and 2).

5. CONCLUSIONS

The purpose of this work has been to conduct a prelimi-
nary study of the stability of a terrestrial multiple-moon
system, using both analytical techniques and numerical
integrations. In particular, we are interested in the stability
of multiple-moonlet conÐgurations predicted by modeling
of lunar accretion from an impact-generated disk. Our
results indicate that all of the systems produced in ICS97
will likely yield a single moon for reasonable values of tidal
parameterizations. Our general Ðndings can be best cate-
gorized in terms of relative moonlet masses :

Massive inner moon/small exterior debris.ÈIn this sce-
nario, orbits are converging due to tides and capture into
mean motion resonances can occur for low enough eccen-
tricities. However, we Ðnd that exterior eccentricity reso-
nances are unstable over the whole range of plausible
relative rates of satellite and terrestrial tidal dissipation
(A¹ 20). The assumption that a large inner moon will even-
tually overtake smaller exterior material as it tidally evolves
outward is a good one. Thus, we expect sweep up of outer
disk debris, which persists at the end of the ICS97 simula-
tions.

Two moons with capture into resonancesm1D m2.ÈHere
can again occur for low enough initial eccentricities, and
equilibrium values of moonlet eccentricities in resonance
are achieved for high rates of satellite dissipation (AZ

However, in this case resonances destabilize as the5È10).
relative importance of satellite to planetary tides
approaches its current value (A[ 0.5È1).

This conÐguration is predicted by one-third of the ICS97
simulations. In all of our integrations of the two-moon
ICS97 cases, we Ðnd that the inner moon rapidly crashes
into Earth (D yr) due to its proximity to synchronous orbit
for a terrestrial day of 5 hours. For a more rapidly spinning
Earth (as would be appropriate for an initial giant impact
event with the two-moon conÐguration couldZ2J

E~M
),

have persisted for some time and the eventual outcome may
have been either a moonlet-moonlet collision or a moonlet-
Earth collision. We note that the former outcome was
assumed in the accretion efficiency estimates in ICS97 (their
Fig. 5)

Inner small material/massive exterior body.ÈIn this case,
orbits diverge due to tides and capture into resonance is
precluded. This conÐguration is the one most likely to yield
a stable, multiple-moon system around Earth. However,
this initial condition might never be achieved from accre-
tion in an impact-generated, lunar-mass disk, since pertur-
bations by the largest moon or moons that form scatter
inner debris onto Earth (ICS97).

This study has highlighted the importance of several
factors that predispose a terrestrial system to a single-moon
state. First is the rapid rate of orbital evolution of satellites
due to tidal interaction with Earth. Even for solid-body Q

^values, a protomoon that forms close to Earth evolves out
to (a typical outer limit for an impact-generateda D 20R

^debris cloud ; Cameron & Benz 1991) in only 107È108 yr. In
contrast, tidal evolution rates around gas planets are
103È104 times slower. Second, terrestrial Q values are within
an order of magnitude of likely Q values for orbiting satel-
lites. This means that the plausible range of ““ A values ÏÏÈ
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FIG. 9.ÈEvolution of two moonlets with g. Here the moonlet orbits are diverging due to tides and so capture into resonancem1, m2\ 5 ] 1022, 5] 1024
does not occur. The inner moonlet experiences a jump in eccentricity as it diverges through the resonance.2 :1e1

the relative role of satellite to planetary tides in e†ecting
satellite eccentricity evolutionÈextends only up to A[ 20,
with a current value AD 1. For a satellite orbiting a
gaseous planet, AD 1000. In a terrestrial system, planetary
tides thus play an important role in increasing satellite
eccentricities, which acts to destabilize resonances and to
increase mutual collisions. Finally, the large mass ratio of

the Moon to Earth, coupled with lunar formation from a
central, impact-generated disk, appears to insure that small
inner disk material inside the Roche radius is e†ectively
scattered onto Earth (ICS97). In the context of these basic
characteristics, it is not difficult to imagine why systems of
multiple moons and rings persist around the gas giants
while at Earth we Ðnd our single Moon.
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FIG. 10.ÈEvolution of two moonlets with g. The moons are initially just outside the 3 :2, and remain on diverging,m1, m2\ 3.6 ] 1023, 3.6 ] 1024
potentially stable orbits at the end of the simulation.

5.1. Discussion
Our investigations have been directed toward the general

identiÐcation of stable versus unstable conÐgurations of ter-
restrial multiple-moon systems and not toward the predic-
tion of speciÐc end outcomes. Multiple additional processes
need to be characterized in order to make our results more
case-speciÐc. The symplectic integration technique utilized

here breaks down upon close approach between two bodies,
and so our simulations are unable to track the evolution of
systems until a physical collision actually occurs. A new
symplectic technique recently developed (Duncan et al.
1998) promises to remedy this deÐciency.

A self-consistent incorporation of tides raised on orbiting
satellites into a numerical scheme would allow for a much
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FIG. 11.ÈSimulation using the same and values as in Fig. 10, only here the moons are initially farther away from the planet. In this case,m1, m2, a1 /a2capture into the 2 :1 leads to orbit crossing.

more thorough examination of the e†ects of high early rates
of satellite dissipation on system stability. This would be
particularly important for the case of multiple moonlets
that are close in size. Such an improvement would be war-
ranted if results from higher resolution simulations of the
impact event and improved disk accretion models continue
to suggest high likelihoods of multiple-moon conÐgurations

such as the ““ two-moon ÏÏ cases found in ICS97. The varia-
tion in satellite tidal dissipation rates can also have a signiÐ-
cant e†ect on outcomes of speciÐc cases. For signiÐcantly
high eccentricities and A values, da/dt due to tides is nega-
tive (see Touma & Wisdom 1998, their Fig. 6). This would
of course alter the analysis of when a given pair of moons is
tidally diverging or converging. Such reversals in orbital
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FIG. 12.ÈNumerical integration of two moons with 5 ] 1024 g. Jumps in eventually bring periapse of the inner moon to withinm1, m2\ 5 ] 1023, e1synchronous orbit (about where tides cause it to evolve inward and collide with Earth after about 2060 yr.2.3R
^
),

evolution direction would likely be short-lived (see Touma
& Wisdom 1998, their Fig. 9), as high A values will act to
decrease eccentricities.

We have investigated only the planar eccentric problem
in this work, and our future work will explore the e†ects of
moonlet inclinations on system evolution. We have also
neglected the e†ects of Sun, which have recently been shown

to have a signiÐcant inÑuence even in the inner disk through
the resonance between the lunar periapse precession rate
and EarthÏs orbital period around the sun (the ““ evection ÏÏ
resonance), which occurs at (Touma & Wisdoma \ 4.6R

^1998). Capture into this resonance is capable of producing
large eccentricities for a lunar-sized body (eD 0.1È0.5 for
A\ 0È10) on a time scale of thousands of years.
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Finally, our results are dependent on the speciÐcs of the
giant impact event itself. Currently two impact scenarios
have been shown to be capable of yielding sufficiently
massive debris disks : impacts with an angular momentum

times that of the current system, and impacts with anZ2
Earth that has not yet fully accreted (Cameron 1997b ;
Cameron & Canup 1998). Recent SPH simulations of these
types of impacts often yield massive, gravitationally bound
clumps of debris in stable orbits subsequent to the impact
event (Cameron 1997a, 1997b ; and Cameron & Canup
1998). The existence of such clumps in the initial disk could
cause the distribution of moonlets that accretes from the

disk to vary from the ICS97 predictions. Additional accre-
tion simulations are required to determine the typical
number and sizes of moons that form in these recently
modeled impact scenarios.
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many fruitful discussions, and Matt Holman for a helpful
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