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ABSTRACT

Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging
from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial
disks, yet in general it is impossible to connect an existing planetary system with an observed disk. We present a
method by which we can constrain the size of our own protosolar nebula using the properties of the small body
reservoirs in the solar system. In standard planet formation theory, after Jupiter and Saturn formed they scattered a
significant number of remnant planetesimals into highly eccentric orbits. In this paper, we show that if there had
been a massive, extended protoplanetary disk at that time, then the disk would have excited Kozai oscillations in
some of the scattered objects, driving them into high-inclination (i � 50◦), low-eccentricity orbits (q � 30 AU).
The dissipation of the gaseous disk would strand a subset of objects in these high-inclination orbits; orbits that are
stable on Gyr timescales. To date, surveys have not detected any Kuiper-belt objects with orbits consistent with
this dynamical mechanism. Using these non-detections by the Deep Ecliptic Survey and the Palomar Distant Solar
System Survey we are able to rule out an extended gaseous protoplanetary disk (RD � 80 AU) in our solar system
at the time of Jupiter’s formation. Future deep all sky surveys such as the Large Synoptic Survey Telescope will
allow us to further constrain the size of the protoplanetary disk.
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1. INTRODUCTION

Understanding the properties of the gas rich disks around
young stars is crucial to understanding the formation of plan-
etary systems. Observations demonstrate that these protoplan-
etary disks exhibit significant diversity in their sizes, masses,
and lifetimes (e.g., Haisch et al. 2001; Mamajek 2009; Andrews
et al. 2009, 2010). These variations must affect the ubiquity and
diversity of observed exoplanet systems. However, it is impos-
sible to connect any of the Gyr-old existing planetary systems
directly to the observed few Myr-old disks. However, our own
solar system provides a unique test case. In this one system we
have access to a significant amount of data, stored in the small
body reservoirs, that allows us to make inferences about the
early state of our own solar nebula.

There is a long tradition of using observations from the present
day solar system to try to constrain the properties of the original
solar nebula. Early on, researchers noted that they could define
a minimum mass solar nebula (MMSN), the lowest mass disk
that could have created the planets in their current locations, by
augmenting the observed solids in the planets with hydrogen
and helium until they reach solar composition (Weidenschilling
1977b; Hayashi 1981). The resulting power-law profile has
served the standard benchmark model in planet formation
simulations. More recently, researchers have suggested that
an apparent hard edge to the classical Kuiper belt at 50 AU
(Allen et al. 2001) may be indicative of the initial size of
the protoplanetary disk. Indeed, Adams (2010) and references
within have used this apparent outer edge to the solar system
as part of an effort to understand the birth environment of our
solar system. For example, Adams (2010) presents arguments
that a star cluster dense enough to truncate the disk at around
50 AU is consistent with a cluster capable of producing a
supernova able to contaminate our early solar system with short
lived radioactive isotopes. Although this paints a self-consistent
picture, it is important to note that the mechanisms that truncate

the outer regions of the disk (especially photoevaporation)
actually act primarily on the disk gas, while the data (the
distribution of planets and Kuiper-belt objects, KBOs) refer
to the disk solids. There are well-known physical mechanisms
capable of decoupling the solids and the gas (Weidenschilling
1977a; Youdin & Shu 2002). Indeed, some authors have even
argued that a large reservoir of drifting solids born in an extended
gaseous disk could be useful in enhancing the solid to gas
ratio, increasing the likelihood of planetesimal formation and
core formation (e.g., Youdin & Chiang 2004). Therefore one
cannot claim that an “edge” in the planetesimal disk necessarily
corresponds to an edge to the gas disk.

In this paper, we present an argument that constrains the size
of the gaseous disk at the time of Jupiter’s formation. Planet
formation is an inefficient process; current models suggest that
the total mass of planetesimals left over after the planets are
fully assembled is equivalent to, or up to five times greater
than, the total mass of solids incorporated into the planets (e.g.,
Pollack et al. 1996; Lissauer 1987; Thommes et al. 2003; Alibert
et al. 2005; Hubickyj et al. 2005; and see Thommes & Duncan
2006 for a review). Therefore, during and shortly after the
formation of the giant planets, there must have been a significant
number of planetesimals left over in the planets’ feeding zones.
These planetesimals are fated to undergo close encounters with
the planets and many will be scattered to high-eccentricity
orbits. In a simple three-body scattering, the perihelion of the
scattered object remains roughly unchanged, meaning that the
planetesimal will return to undergo additional close encounters.
Eventually these objects will either collide with the planet or be
ejected by the system.

However, in order to form the planets there must also have
been a circumstellar gas disk, a disk that potentially could have
extended beyond the orbits of the planets. And the presence of
a massive gaseous disk can alter these scattered planetesimals’
orbits. For planetesimals between a few tens to a few thousands
of kilometers in size, they are too large to experience significant
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gas drag (Adachi et al. 1976), and yet are too small to undergo
any sort of tidal interaction with the disk (Ward 1997, and
references therein). Given the cylindrical symmetry of the disk,
the major gravitational effect of the disk is of the Kozai type
(Kozai 1962), which arises when a perturber can be treated as
a circular ring. In the presence of the potential from a massive
gaseous disk, planetesimals scattered from the Jupiter/Saturn
region into moderate inclination, high-eccentricity orbits may
undergo Kozai oscillations.

During a Kozai oscillation, the presence of perturbing ma-
terial exterior to the scattered particle forces the particle ex-
change eccentricity for inclination, all the while conserving the
z-component of the angular momentum. In the situation pre-
sented here the gaseous disk serves as the perturbing potential.
The scattered object oscillates between a low-inclination, ec-
centric orbit and an high-inclination, more circular orbit. Dur-
ing the high-eccentricity phase the particle is susceptible to
additional close encounters with the planets, but during the low-
eccentricity phase, the particle’s orbit will no longer cross the
planets. After the disk disperses, statistically some of the ob-
jects will be stranded at high-inclination orbits. This dynamical
mechanism is capable of producing objects with large enough
perihelia to place them in Kuiper belt on orbits that are stable
for the lifetime of the solar system with the planets in their
present day orbital configuration. But while these particles have
semimajor axes that would place them in the Kuiper belt, they
would have substantially higher inclinations than what has been
observed so far. In this paper, we explore this dynamical mech-
anism as a way to use the current distribution of KBOs to place
constraints on the early structure of the protoplanetary disk.

In Section 2, we describe our numerical method and model
parameters. In Section 3, we discuss the outcomes for various
disk parameters. In Section 4, we discuss how we can use these
results to constrain the size of the protosolar nebula using results
from the Deep Ecliptic Survey (DES; Millis et al. 2002; Elliot
et al. 2005; Gulbis et al. 2010) and the Palomar Distant Solar
System Survey (Schwamb et al. 2009, 2010). And finally, in
Section 5 we summarize our results and discuss the implications.

2. MODEL

In this paper, we investigate the behavior of planetesimals
initially in the giant planet regions and model their gravitational
interactions with the planets and the gaseous disk. We initial-
ize these simulations with four giant planets in the compact
configuration proposed by Tsiganis et al. (2005) as the initial
positions of the planets in the Nice Model, with Jupiter, Saturn,
Uranus, and Neptune at 5.45, 8.18, 11.5, and 14.2 AU, respec-
tively. However, as we discuss in Section 3, the results of this
paper are insensitive to this choice. For each simulation we cal-
culate the orbital evolution of NTP = 6 × 103–104 massless test
particles initially distributed from 4 to 15 AU with small eccen-
tricities (e = 0.1) and inclinations (0◦ < i < 3◦) to represent
the planetesimals left over in the planet forming region. We cal-
culate the orbital evolution of the scattered planetesimals using
the SWIFT RMVS3 numerical integrator package (Levison &
Duncan 1994). We integrate the orbits for 5 Myr with a time step
of 0.15 yr, and we remove particles from the simulation if they
become unbound or experience a collision with a planet or the
Sun. Additionally, as we are interested only in particles whose
orbits are not perturbed by the potential due to the birth cluster
or the galaxy, we remove particles if their semimajor axis (a)
becomes larger than 300 AU.

To calculate the particles’ gravitational interaction with the
disk gas we numerically integrate Poisson’s equation over a
cylindrically symmetric grid. This allows us to obtain the
potential and the accelerations derived from the disk gas on
the particles using bicubic interpolation. For computational
simplicity we use a simple parametric form for the disk gas.
We describe the surface density profile as a function of distance
from the sun r at time t as a truncated power law,

Σ(r, t) = Σ0

( r

AU

)−γ

Θ(r, RD) exp

(−t

τD

)
, (1)

where Θ(r, RD) describes the functional form of the truncation
of the outer disk at size RD and τD is the disk depletion timescale.
For the fiducial disk models we use Σ0 = 2000 g cm−2 and
γ = 3/2 consistent with the benchmark minimum mass nebula
profile (Hayashi 1981). We investigate the effect of the sharpness
of the disk truncation on distribution of planetesimals by
comparing two truncation profiles, a sharp cutoff,

Θ(r, RD) = Θcut(r, RD) ≡
{

1, if 1 AU � r � RD ,
0, otherwise. (2)

and an exponential cutoff

Θexp(r, RD) ≡
{

exp(−r/RD), if r � 1 AU,
0, otherwise. (3)

(cf. Andrews et al. 2009, 2010). In all disk models we truncate
the inner disk at 1 AU, but we vary the outer disk cutoff (RD) from
30 AU to 100 AU. To preserve the stability of the integration we
use a “puffy” exponential profile for the disk vertical profile,

ρ(r, z) = Σ(r) exp
(
− z

H

)
, (4)

where H is constant throughout the disk. This disk model is
chosen for its simplicity and is not intended to represent a
detailed disk evolution model.

There are five free parameters for the disks in these simula-
tions: Σ0, τD , RD, and γ , and the functional form of Θ(r, RD).
In total we present the results of the evolution in 35 differ-
ent gas disks. Our fiducial parameters are Σ0 = 2000 g cm−2,
τD = 2 Myr, Θ(r, RD) = Θcut, RD = 100 AU, and γ = 3/2.
With the fiducial disk parameters, we perform seven simulations
varying Σ0 from 20 to 4000 gcm−2. We also perform six simula-
tions varying τD from 2×104 to 4×106 years. Using the fiducial
Σ0 and τD we then perform simulations with RD = 30, 40, 50,
60, 80, and 100 AU. For the sharp cutoff we allow γ = 3/2
(the MMSN value) and γ = 1 (a value consistent with some
viscous evolution models). For the exponential cutoff we use
γ = 1/2 and 1, appropriate values for observed disks (Andrews
et al. 2010). In addition, we compute one simulation in the fidu-
cial disk with the four giant planets in the configuration of the
modern day solar system. We run these scattering simulations
for 5 Myr (10 Myr for the disk with τD = 4 × 106).

In most of these simulations, some particles are captured by
the Kozai resonance and forced into orbits with q > 30 AU,
orbits that are potentially stable in the modern day solar
system. However, although a large number of particles undergo
oscillations with large perihelion values at some point during
their orbital evolution, at the end of the scattering simulations
only a handful of these particles happen to have been caught
on the q phase of their orbits. Still, the time at which a given
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Figure 1. Eccentricity (top), inclinations (middle), and perihelion distance (bottom) for particles after 5 Myr in simulations with no disk potential (left), and the
potential of a MMSN disk truncated at 30 AU disk (middle) and 100 AU (right). In blue we show particles stable in the compact early solar system and in dark red we
show particles stable in the present day solar system, while test particles on unstable orbits are gray.

particle is scattered into one of these orbits is random, and
could as easily have happened right before the disk dispersed as
at any other time. Therefore instead of restricting our stability
calculation to only those particles still active at the end of the
simulations, we randomly extract the orbital elements (a, e,
and i) of particles with large perihelia (q > 20 AU) values
throughout the simulations. We then randomly assign orbital
angles and create a new suite of equally probable, potentially
stable particles. We integrate these new particles in the presence
of the four giant planets, in their modern day configuration, for
4.5 Gyr. We use these particles to define the probability that a
particle will survive as a function of its perihelion distance at
the beginning of the stability calculations (PS(q)). We can then
return to the initial scattering calculations and use the probability
that each particle (at its given perihelion distance) will be stable
to calculate the expected fractional retention of particles,

f ≡
NTP∑
i=1

PS(qi)/NTP. (5)

Here, PS(q) is the function defined by the stability calculation
and qi refers to the perihelion distance of each particle at the end
of the initial scattering simulations. Because PS(q) goes to zero
as qi approaches 20 AU in all simulations, we are confident that
the initial cutoff of q = 20 AU does not impact the statistics
in any part of this study. To determine our 95% confidence
intervals, we assume that our data are distributed according to a
binomial distribution and use a non-informative, Bayes–Laplace
uniform prior (see Cameron 2011, for a nice description of this
method).

In these simulations, the particles only interact with the gas
through its gravitational potential, not through aerodynamic
drag. As indicated in Brasser et al. (2007) the gas drag is

only dynamically important for objects with diameters smaller
than about D = 30 km. The impact of the gas drag on these
small bodies is to circularize the orbits, and thus they do not
participate in the effect explored in this paper. Furthermore, as
we discuss in Section 4, most of the mass is likely to be in
100 km, or larger, sized objects and smaller objects would not
be detectable in current data sets. Therefore we only concern
ourselves with these larger bodies and neglect gas drag in these
simulations.

3. RESULTS

In Figure 1, we compare the orbital distribution of planetesi-
mals produced by disks of various sizes after the scattering sim-
ulations, by which time the gas disks have dispersed. Without
the gravitational potential of a gaseous disk (left-hand panels),
the planetesimals are scattered by the planets into eccentric and
moderately inclined orbits, but the perihelia (q) remain roughly
unchanged. Therefore, all of the particles remain on planet-
crossing orbits that are unstable on timescales that are short
compared to the age of the solar system. These unstable parti-
cles are indicated by gray points. In contrast, in middle and right
panels we show the particles’ evolution in the presence of a disk
with an MMSN profile (γ = 3/2) and a sharp cutoff (Θ = Θcut),
truncated at RD = 30 AU and 100 AU, respectively. In both of
these simulations, a subset of the particles is placed into orbits
with larger perihelia and higher inclinations. In the small disk,
some particles have their perihelia raised so that they have a high
probability of being stable in the early compact solar system,
with q > 20 AU (particles marked in blue), but it is only in
the larger disk that the perihelia are raised to the point where
they would be stable in the modern solar system, q > 35 AU
(marked in red).
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(a) (c)

(b)

Figure 2. (a) The semimajor axis (black curve) and pericenter distance (gray curve) for an example particle in the fiducial simulation. This particle is scattered by
Jupiter and then undergoes a series of Kozai oscillations and close encounters. Eventually it is stranded in a high-inclination orbit. (b) The inclination of the particle.
The shaded region indicates an example Kozai cycle. (c) The eccentricity and argument of pericenter in a polar plot for the example particle. The small dots show
these parameters at all times, while the large circles indicate quantities while the particle is in the shaded region of the left panels.

These particles get onto these high-inclination, low-
eccentricity orbits via Kozai oscillations. In Figure 2, we show
the temporal evolution of an example particle in the 100 AU disk.
The particle undergoes a series of close encounters with Jupiter
and is scattered out to a high-eccentricity orbit. After about half
a million years we see a number of intervals in which the perihe-
lion distance increases and decreases in phase with oscillation
in the inclination while the semimajor axis remains constant, as
is characteristic for Kozai oscillations. As further evidence, in
the right-hand panel we plot the eccentricity and the argument
of perihelion for this particle. The large circles indicate a time
interval (shaded in the left-hand panel) of a single Kozai cycle.
In this time the argument of perihelion oscillates, indicating that
this is a true Kozai cycle. Additionally, by comparing Figure 2(c)
with the Kozai dynamics exerted by the planets on objects with
larger semimajor axes (cf. Thomas & Morbidelli 1996) we can
be confident that the perturbations seen here are dominated by
the external disk potential not perturbations from the interior
planets. During each of the periods of high eccentricity (small
q) the particle undergoes additional encounters with Jupiter and
Saturn, causing sharp jumps in the particle’s semimajor axis. As
the disk is depleted the timescale for the oscillation becomes
longer. In the end the period of oscillation becomes infinite,
stranding the particle on a high-inclination orbit.

Regardless of the exact initial orbits of the planets, at some
point they must have moved into their currently observed con-
figuration. Therefore we are really only concerned with the
orbital distribution of particles that would be observable today
due the fact that their orbits are stable in the present day so-
lar system, for the lifetime of the solar system. The location
of all stable objects produced in simulations with various disk
profiles and sizes is shown in Figure 3. We show four panels,
a “shallow” and “steep” surface density profile for each of our
two truncation functions. For the upper plots (sharp cutoff) the
disk truncation function is a step function (Θ = Θcut). The sur-
face density profiles are, for panel (a), the benchmark MMSN
γ = 3/2 and, for panel (b), the shallower γ = 1 more con-
sistent with viscous evolution. For the lower plots (exponential
cutoff) the disk truncation function is Θ = Θexp. We choose to
show shallower surface density indices, γ = 1/2 and γ = 1 in

panels (c) and (d), respectively, to be consistent with observa-
tions of disks (Andrews et al. 2010). The points are color coded
by the disk size, with RD = 40, 50, 60, 80, and 100 AU in
magenta stars, red diamonds, yellow squares, green hexagons,
and blue circles, respectively.

The orbital distribution of stable test particles is qualitatively
different depending on the size and cutoff profile of the disk. In
disks with sharp cutoff there is a limited semimajor axis range
in which stable high-inclination particles can be produced. An
exterior quadrapole moment is much more effective in raising
the Kozai resonance than an inner one, and the dynamics of
the two are significantly different (Thomas & Morbidelli 1996).
Therefore larger disks can excite Kozai oscillations in particles
with larger semimajor axes. Additionally, these disks are well
approximated by an annulus at the outer edge as that is where
the mass is concentrated. The shallower surface density profile
(γ = 1) is slightly better at producing high-inclination particles
as more of the disk mass is at this outer radii. In disks with
exponential profiles there is mass at a large range of radii.
This allows particles to undergo Kozai oscillations at large a,
however the fact that the disk is not dominated by a single
annulus of material at the outer edge means that the oscillations
are shallower. Therefore the objects produced do not have very
low eccentricity orbits. The shallower surface density profile
(γ = 1/2) again more effectively generates these particles due
to the fact that there is more mass at larger radii to excite Kozai
oscillations.

The effect of disk size on retention can be seen more clearly in
Figure 4 in which we show the fractional retention (f, defined in
Equation (5)) as a function of the disk size and profile (using the
parametric form shown in Equation (1)). The downward arrows
indicate the upper limit on simulations in which no particle ever
has its perihelia raised to a potentially stable orbit. There is a
trend that larger disks tend to retain a larger fraction of particles.

We note that in these various simulations we maintained the
same normalization of the surface density profile of the gas
disk at 5 AU (Σ5 = 180 g cm−2). However, this arbitrary choice
does not significantly impact the results. In Figure 5, we show
the fraction of particles retained as a function of disk mass
(with the fiducial depletion timescale of 2 Myr) and depletion
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(a) sharp cutoff and γ = 3/2 (b) sharp cutoff and γ = 1.

(c) exponential cutoff and γ = 1/2. (d) exponential cutoff and γ = 1.

Figure 3. Eccentricity and inclination of objects left in disk with disk size RD = 40, 50, 60, 80, and 100 AU (magenta stars, red diamonds, yellow squares, green
hexagons, and blue circles, respectively). In the upper panels we shade the regions according to perihelia distance (q = 20, 30, 35 AU darker to lighter).

Figure 4. Fraction of objects left in stable high-inclination orbits after 5 Myr as a function disk size and profile for a disk with a sharp cutoff (left) and an exponential
cutoff (right). The circles, squares, and diamonds correspond to γ = 3/2, 1, and 1/2, respectively. The downward arrows indicate simulations in which no particle
ever has its perihelia raised to a potentially stable orbit.

timescale (with the fiducial disk mass of 0.05 M�). Other than
at very small disk masses and very short disk lifetimes, the
fraction of retained particles is remarkably insensitive to these

disk parameters. In order to understand this insensitivity, we
examine the timescale for a Kozai oscillation. For a � R,
the characteristic timescale for Kozai oscillations due to a
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Figure 5. Fraction of objects left in stable high-inclination orbits as a function disk mass (left) and disk lifetime (right) for a disk with RD = 100 AU and γ = 3/2. In
the left-hand plot the light gray diamond indicates the results for a simulation in which the scattering is done by planets on their present day orbits.

perturbation of a narrow, infinitesimally thin annulus of radius
R and mass M on a particle or semimajor axis a is

τK ∼ 2

3π

M�
M

(
R

a

)3/2
√

R3

GM�
(6)

(e.g., Kiseleva et al. 1998). Despite the fact that the systems
considered in this paper are more aptly described as a series
of concentric rings with finite vertical thickness, the Kozai
timescale for the disks with a Θ = Θcut can be reasonably
well approximated by modeling the disk as a thin annulus of
mass M = MD and radius R = RD . This timescale becomes
longer as RD increases and as MD decreases. Therefore there is a
limiting mass for which a single oscillation can occur within the
disk lifetime. For disks with a timescale for dispersal of less than
this we do not see any particles excited into orbits of interest.
As mentioned previously, for our fiducial disk of an MMSN
truncated at 100 AU, this estimate of the Kozai timescale yields
2 × 104 years. Additionally, for the fiducial disk lifetime of
2 Myr, the minimum mass required in order to allow for a single
Kozai oscillation is 2×10−4 M�. This means that for our fiducial
disk parameters, the particles undergo many Kozai cycles, and
during each close encounter with a planet the particle may either
be scattered into or out of the Kozai cycle. As the disk mass
or lifetime increases, a larger fraction of the particles undergo
Kozai oscillations at some point in their evolution. However,
most of these particles at some point undergo a close encounter
with a giant planet and are ejected from the system. Therefore
the number of particles left after disk dispersal asymptotes with
increasing disk mass. As long as Jupiter and Saturn did not form
so late in the disk evolution that, within a few tens of thousands
of years, the disk mass decreased to less than a Jupiter Mass, we
are insensitive to the actual disk mass and lifetime. This means
that we can safely assume we are in a parameter space in which
disk size and profile are important parameters, but disk mass
and lifetime are not.

One may also be concerned about the sensitivity of these
results on our assumption about the position of the planets.
There are two possible reasons the planetary positions may
be important, first the secular perturbations from the interior
planets may stabilize the particles against the Kozai resonance.
Additionally, the location of the planets may scatter the particles
in different ways. Therefore, we perform the same calculation
with the planets in the present-day solar system, as opposed to
the Nice initial conditions. The fractional trapping is virtually

identical in this case (see the diamond in Figure 5). We note that
in the fiducial disk model, the total mass of the disk gas interior
to 30 AU is over 13 MJup, therefore the secular influence of the
planets is minor compared to that of the disk. This is because, in
order to undergo a deep Kozai oscillation, a particle at a given
semimajor axis must either have a minimum eccentricity or
inclination. As we are interested in using the Kozai resonance
to produce high perihelion (low eccentricity) objects, we are
interested in the initially eccentric objects. In order for the
initially dynamically cold particles need to reach these minimum
eccentricities, they must undergo a close encounter with a planet.
After the scattering the particle orbit will have a perihelia close
to the orbit of the scattering planet (q = a(1 − e) ∼ ap).
Therefore, if we look at a given a, a particle scattered by a
planet with a smaller aP will have a higher eccentricity than
a particle scattered by a more distant planet. Starting with a
low-inclination population, the planets beyond ∼10 AU cannot
efficiently produce particles with sufficiently high eccentricities
to undergo Kozai oscillations at the semimajor axes of interest.
Therefore as long as Jupiter and Saturn, to a lesser extent, were
not far from their present-day locations near the end of the
gaseous disk’s lifetime, the results are not sensitive to the other
planets’ locations. Additionally it is important to note that the
time t = 0 in these calculations corresponds to the time of the
formation of the giant planets not the initial time of the formation
of the disk.

4. COMPARISON TO OBSERVATIONS

In order to convert these retention fractions into a form suit-
able for comparisons with observations, we must make a series
of assumptions about the properties of the initial population of
planetesimals, specifically their initial abundance, size distribu-
tion, and physical characteristics. Ideally we would like these
assumptions to be guided by the observed characteristics of pop-
ulations with the same source, unfortunately, we discuss later in
this section, there is no observed population that we can be sure
came from the same source region. Therefore before we make
a detailed comparison to observations we will first present an
order of magnitude estimate for the number of high-inclination
particles produced by this mechanism.

Theoretical models suggest that in order to form the cores of
the giant planets within the observed lifetime of the gaseous
protoplanetary disks, the initial disk mass must have been
2–5 or even 10 times larger than the MMSN (e.g., Pollack
et al. 1996; Lissauer 1987; Thommes et al. 2003; Alibert et al.
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Figure 6. Perihelion distance vs. the inclination for all of the simulations (blue,
green, yellow, and red symbols are the same as in Figure 3) compared to the
Kuiper-belt objects (+ symbols) and centaur/scattered disk objects (× symbols)
from the minor planet center.

2005; Hubickyj et al. 2005; and see Thommes & Duncan 2006
for a review). This means that fewer than half of the initial
planetesimals were incorporated into the giant planets, so they
must have been ejected from the solar system or scattered into
the Sun. Therefore, we assume that the total amount of mass
in our solar system’s initial planetesimal swarm must be at
least equal to the mass of solids incorporated into the planets,
∼40 M⊕, and is probably significantly larger.

It is less clear how this mass was distributed among the plan-
etesimals. Without direct evidence for the true size distribution
of these particles, we assume that the population has a size distri-
bution similar to what is observed in other small body reservoirs
in the outer solar system—an assumption we will revisit at the
end of this section. In general it appears that there is a relatively
steep size distribution for large particles, which then, at some
size 50 � D � 150 km, rolls over to a shallower distribution
(Bernstein et al. 2004; Fuentes et al. 2009; Fraser & Kavelaars
2009). Particles with sizes near this break dominate the mass
of the whole population. Therefore if we assume a similar size
distribution for our initial population, this corresponds to greater
than 108 initial planetesimals of around D = 100 km in size.
With a capture efficiency around 10−3, we expect the mass in
our hypothetical reservoir of objects with inclinations larger
than 50◦ to be >0.05 M⊕ or >105 objects. This is of the same
order as the upper limits on the mass of the observed Kuiper
belt (Bernstein et al. 2004; Fuentes & Holman 2008) and to date
there are no detected Kuiper-belt objects with these inclinations.
Intuitively it seems unlikely that we would have failed to detect
this massive of a population, implying that the primordial gas
disk must have had a small radial extent to avoid producing this
population in the first place.

To emphasize the differences between our hypothetical pop-
ulations and the detected population we show the perihelion
distance versus the inclination for all stable particles produced
in all simulations as compared to the detected KBOs in Figure 6.
The observed Kuiper belt occupies a distinctly different re-
gion of parameter space than any of the populations produced
here. We note that there are a few objects detected on the
periphery of the area of parameter space that is populated
by these models; for instance 2005 NU125 (i = 56.◦5, a =

44.2 AU, e = 0.026). However, fewer than 1% of particles pro-
duced in simulations with 100 AU disks have inclinations as
low as 56.◦5 and fewer than 5% of particles produced by 80 AU
disks have inclinations this low. Therefore, if this object is a
member of the population described in this paper we would ex-
pect to have detected 20–100 KBOs with higher inclinations.
Additionally, the smaller 50 AU disks produce a few particles
at lower inclination and smaller perihelia that could potentially
be consistent with observed KBOs. However these are still rela-
tively low probability particles (<10%) and, as we discuss later
in this section, the current data sets place limits on these 50 AU
size disks.

Using two surveys, the DES (Millis et al. 2002) and the
Palomar Survey (Schwamb et al. 2010), we can quantify this
statement and make rigorous observational limits. The DES
survey observed over 800 deg2 with a mean limiting VR
magnitude 23.6 (Elliot et al. 2005). Although this survey
targeted the ecliptic (±6◦), it was still sensitive to these high-
inclination objects during a fraction of their orbits. The Palomar
survey is a shallower survey (mean limiting VR magnitude 21.3)
but with a wider coverage of 12,000 deg2 up to ±40◦ ecliptic
latitude. Using the a, e, and i from our population of stable
particles, we generate Ntest = 105 to 106 test particles and
create a synthetic population of orbits by assigning randomized
orbital angles. For each of these test particles we determine
the probability (pi,j ) that each particle (indexed by i) will be
detected on each survey field (indexed by j) as a function of its
intrinsic brightness (H). If a particle does not land on the field
then pi,j (H ) = 0. If it does land on the field, we can define a
critical absolute magnitude (Hcrit), a function of both the orbital
properties and detection limit on the observation,

Hcrit,i,j ≡ mlimit,j − 2.5 log

(
d2

i r2
i

q(χi)

)
. (7)

In this expression, di is the distance between the Sun and object,
ri is the distance between the observer and object (both measured
in AU), and mlimit,j is the background limiting magnitude for
the field. We parameterize the phase function (q(χi)) of these
small bodies with the H G formalism (Bowell et al. 1989), i.e.,

q(χi) = (1 − G)φ1(χi) + Gφ2(χi)

φ1(χ ) = exp

(
−3.33 tan

(χ

2

)0.63
)

φ2(χ ) = exp

(
−1.87 tan

(χ

2

)1.22
)

, (8)

where χi is the phase angle and G is a parameter describing the
strength of the opposition spike (e.g., Gehrels 1956; Hapke et al.
1993; Nelson et al. 1998; Rabinowitz et al. 2007). However due
to the fact that the fields are always chosen to view objects
near opposition, even varying this parameter from G = 0
to 1 changes the critical value by less than 0.2 mag so it
does not notably affect our conclusions. While the probability
of detection is a smoothed step function around this critical
magnitude (Hcrit), due to the uncertainties in the population size
distribution, a simple step function will be adequate for these
estimates. Therefore we use pi,j (H ) = 1 if H < Hcrit,i,j and
zero otherwise. Additionally, in order to determine the orbital
elements of the detected object it must be detected in at least
two different observations. Therefore we define a new variable
δ(j, j ′) which we set to 1 if the two observations are temporally
separated such that the observed motion of the object is large
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enough to be resolvable by the instrument and small enough that
the observations are clearly of the same object, and δ(j, j ′) = 0
otherwise. The total number of objects we would expect to detect
is then

Ndetect = 1

Ntest

Ntest∑
i

Nfields∑
j

Nfields∑
j ′

∫ Hmax

Hmin

pi,j (H )pi,j ′(H )

× δ(j, j ′)(1 − fobsc,j)n(H ) dH, (9)

where fobsc,i is the small fraction of the field lost due to stellar
obscuration, n(H ) ≡ dN/dH is the luminosity function for
these hypothetical objects, and Hmin and Hmax are the intrinsic
brightness ranges for these particles.

To continue we must make a number of assumptions about the
properties of these hypothetical high-inclination objects. For this
analysis we assume that the initial planetesimals have a Kuiper
belt like size distribution. Bernstein et al. (2004) found that the
luminosity function can be well described by a combination of
power laws

n(H ) = n0(10−βH + c10−β ′H )−1, (10)

where β is the slope on the bright end, β ′ is the slope on the
faint end, and c is chosen so that the break between these two
populations matches observations. Observations indicate at least
two distinctly different populations in the outer solar system.
The dynamically hot KBOs have a fairly shallow slope to their
bright end distribution, while the dynamically cold KBOs and
the Jupiter Trojans have a steeper size distribution. The different
origins of these size distributions are not well understood. There
is evidence that the hot population may have accumulated closer
to the Sun (Levison & Stern 2001; Gomes 2003; Levison et al.
2008), where the protoplanetary disk had shorter accretion
times. For this reason we strongly prefer the assumption that
the luminosity distribution of our hypothetical population is
similar to that of the hot population, but we consider both for
completeness. We revisit this line of reasoning at the end of this
section.

When looking at the bright end slope, Fraser et al. (2010)
found different values for this power-law index β in different
populations, βcold = 0.8 and βhot = 0.35. However, the data
cannot constrain the shallow end slope. Bernstein et al. (2004)
found a break in both the hot and cold populations. We include
this break in the cold population and use β ′

cold = 0.38. However,
we follow Fraser et al. (2010) and do not change the slope of
the hot population after the “break” so β ′

hot = 0.35.
We assume that particles extend from 30 km to 1000 km in

size with a break at D = 100 km. Additionally, we assume that
the particle size distribution extends to 1 km for the estimates of
the mass, but we note that the calculation is insensitive to this
choice as most of the mass lies in larger particles. To convert
the number of expected detection into an estimate of the mass
in this population we assume a bond albedo p = 0.05 and a
density of ρ = 2 g cm−3.

Finally, we can create a synthetic population and use the
previously described method to calculate the expected number
of detections. For example, in our fiducial disk model, RD =
100 AU, γ = −1.5, and Θ = Θcut the fractional trapping
efficiency is greater than 2 × 10−3. If the scattered particles
have the same size distribution of the hot population, we expect
the two surveys to have been able to detect ∼10−6 of the
scattered objects. Now, if we assume that the initial population of
planetesimals was 40 M⊕, then, using the same size distribution,

there would have been initially 108 planetesimals greater that
D � 30 km. Therefore if our solar system had been embedded
in a 100 AU gaseous disk we would expect these two surveys to
have detected over 100 objects. However, this number depends
upon the initial assumption that we start out with a population
of 40 M⊕ planetesimals, a conservative lower limit.

So perhaps a better way to think about this is to turn the
argument around and ask, for the different disk sizes, what is the
upper limit on this initial mass. Using a binomial distribution
and a non-informative, Bayes–Laplace uniform prior we can
determine the limit such that we are 95% confident that we will
detect at least one particle. For the populations used here that
corresponds to Ndetect � 3. The results are plotted in Figure 7.
The upward triangles indicate the results if we assume a size
distribution consistent with the hot population (our preferred
model), while the open downward triangles indicate the limits
assuming the size distribution of the cold population. The error
bars here are the statistical error bars (propagated through
from Figure 4). For disks that do not produce stable high-
inclination particles we cannot place any limits, and these disks
are indicated with upward arrows.

If we assume that the size distribution of scattered planetesi-
mals was similar to that of the hot population then we can rule
out 80 and 100 AU disks as the limit on the initial population
mass is below the expected theoretical amount. Indeed, for disks
with shallower profiles we can marginally rule out 60 AU disks
with this size distribution. However, if we relax this assumption
on the size distribution then we cannot place as stringent limits
on the disks with steeper surface density profiles.

In order to significantly improve these constraints we would
need a survey with a limiting magnitude similar to that of the
DES (r = 23.5) but with an area comparable to the Palomar
survey (10,000 deg2). A non-detection in this type of survey
would allow us to rule out all disks larger than 60 AU, except the
steep exponential profile. The Large Synoptic Survey Telescope
(LSST), designed to cover 10,000 deg2 with a typical limiting
magnitude of r = 24.5 (Ivezic et al. 2008), will easily exceed
this limit, allowing us to make meaningful constraints down to
the 50 AU level.

4.1. Discussion of Size Distribution

In this paper, we argue that the non-detection of this hypo-
thetical high-inclination population can be used to constrain the
size of the protosolar nebula. Of course, another possibility is
that the population does exist, but that it has such a steep size
distribution that most of the mass is in bodies well below 100 km
in size, and thus undetectable. There are three main reasons why
we believe this is unlikely.

First, there is another potential reservoir in which some
remnants from this same initial population of planetesimals are
believe to have been stored: the Sedna population. The 1000 km
Sedna is so far unique in that it has a perihelion distance of
76 AU, well detached from Neptune, but it has a semimajor axis
around 500 AU, well interior to the main Oort Cloud (Brown
et al. 2004). The observational difficulties in detecting an object
on this type of orbit imply that there must be on the order of 100
similar sized planetoids on similar orbits. The best dynamical
mechanism to produce this type of orbit is to have an object
scattered by a planet very early on in the solar system (at the
same time considered in this paper) so that its pericenter can
be lifted via an interaction with the birth cluster potential or
by the passage of nearby stars (Morbidelli & Levison 2004;
Brasser et al. 2006). The large predicted number of 1000 km
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Figure 7. Observational constraints on the upper limit on the initial mass of planetesimals in the planet forming region. As in Figure 4, the left panel is for sharp
cutoff disks and the right panel is for disks with exponential profiles. The color indicates the disk surface density profile. (On the left, γ = 1, 3/2 in blue and
black, respectively. On the right, γ = 1/2, 1 in blue and black, respectively.) Upward triangles indicate results for a shallow size distribution consistent with the hot
population, while the downward triangles indicate the steeper profile consistent with the cold population (see the text). Arrows indicate disk parameters for which we
cannot limit the initial mass.

sized objects implies a shallow size distribution, and constraints
from the TAOS survey indicate that this population must have
β < 0.88 (Wang et al. 2009), i.e., the size distribution cannot
be much steeper than that of the cold population.

Second, in the Kuiper belt where we can directly measure
the size distributions, we see that the hot population has
a shallower size distribution than the cold population. As
mentioned previously, there is evidence that the hot population
may have accumulated closer to the Sun (Levison & Stern 2001;
Gomes 2003; Levison et al. 2008), where the protoplanetary disk
had shorter accretion times. Therefore we would expect that
the source region for our hypothetical population, being even
closer to the Sun than the hot population, may have a shallower
population. At least it seems unlikely to be significantly steeper.

Finally, we can be confident that the population that produced
the comets could not have had a very steep size distribution. If
it had, then mutual collisions would have ground the comets
down before they could have been scattered into the Oort
Cloud (Stern & Weissman 2001). Charnoz & Morbidelli (2003)
demonstrated that this collisional grinding problem can be
avoided by assuming a shallower size distribution up through
10s to 100s of km, such as the size distributions used in this
paper. While the Oort Cloud likely has a source region exterior
to the population considered here (the Nice disk; Tsiganis et al.
2005) or even from other stars (Levison et al. 2010), the same
argument holds for the Sedna region. For these reasons we
believe that the size distribution of this population is unlikely to
be steeper than the cold population and is very likely have been
similar to, or even shallower than, the hot population.

5. CONCLUSIONS AND DISCUSSION

In this paper, we present a dynamical mechanism by which
high-inclination KBOs can be produced during the planet
formation process due to Kozai cycles excited by the presence
of the gaseous protoplanetary disk. If our own solar system’s
disk had been radially extended (RD � 50 AU) a significant
number of scattered planetesimals would have been placed onto
high-inclination orbits which would be stable for the lifetime
of the solar system. We find that the current observed lack of
objects on these orbits in the DES and Palomar Distance Solar
System Survey suggests that we can exclude very extended disks
(�80 AU) so long as we are correct in our assumption of a size
distribution more similar to the hot KBOs than the cold KBOs.

We argue that while we cannot technically rule out other options
such as that the planetesimals in the planet forming region were
orders of magnitude less numerous than expected by theory or
that the size distribution was dominated by small planetesimals,
we believe these options to be quite unlikely.

Future observations from deep all sky surveys (such as the
LSST) will allow us to place more stringent constraints on the
size of the disk. With this type of survey, if we are able to
detect a population of Kuiper-belt objects with i ∼ 60◦ the
orbital distribution of these particles will reveal information
on the shape of the protoplanetary disks, especially revealing
information about the truncation. However, it is also possible
(and perhaps likely) that future observations will not reveal this
population. If this is the case we will be able to conclude that
the disk must have been smaller than 50 AU, but we will not be
able to place more stringent limits because if the disk had been
smaller than 50 AU, the dynamical mechanism presented in this
paper cannot produce stable particles.

This method is the first technique to constrain the size of the
gaseous protoplanetary disk of a known planetary system during
the time of planet formation. The fact that we find disk sizes
consistent with observations implies that in some way our solar
system is typical. Although many of the first protoplanetary
disks observed were quite radially extended, smaller disks with
sizes below 60 AU are quite common according to recent
observations (Andrews et al. 2010). Additionally, this small disk
size is consistent with other pictures of the early solar system.
This work is consistent with the idea that a sharp cutoff in the
planetesimal disk at around 50 AU might have corresponded to
a sharp cutoff in the gas disk. Future deep all-sky surveys will
allow us to probe closer to this 50 AU radius and allow us to
meaningfully constrain on the theoretical models of solid–gas
interactions during the time of the formation of the solar system.

We thank M. Schwamb for guidance in our comparison with
the Palomar Distant Solar System Survey. K.A.K. and H.F.L.
are grateful for funding from NASA’s Origins program.
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