A SCALING RELATIONSHIP FOR SATELLITE-FORMING IMPACTS

Robin M. Canup and William R. Ward
Department of Space Studies
Southwest Research Institute
1050 Walnut St., Boulder, CO 80302

and

A. G. W. Cameron
Lunar and Planetary Laboratory
University of Arizona
Tucson, AZ 85721

Abstract. We describe a scaling relationship that can be used to characterize the results of numerical smooth particle hydrodynamic (SPH) experiments of potential satellite-forming impacts. The relationship is used to interpret and summarize data from 41 such SPH simulations, all employing an impactor-to-target mass ratio of 3:7, but with a variety of total masses and angular momenta. The results can be utilized to infer other classes of impacts beyond those simulated to date that are plausible Moon-forming candidates.

Submitted to Icarus, 7-18-00
Accepted 12-4-00

Keywords: Moon; Impact Processes; Planetary Formation; Satellites, General; Accretion

Running Title: “Satellite-Forming Impacts”

Corresponding Author:
Robin M. Canup
Southwest Research Institute
1050 Walnut Street, Suite 426
Boulder, CO 80302
(303) 546-6856; fax (303) 546-9687
robin@boulder.swri.edu
INTRODUCTION

The current leading theory for the formation of the Moon is the giant impact hypothesis (Hartmann and Davis 1975, Cameron and Ward 1976). This theory proposes that during the final stages of its accretion, protoearth suffered a collision with another protoplanetary body, leaving debris in orbit about the Earth from which the Moon then accumulated. Cameron and co-workers (e.g. Cameron and Benz 1991; Cameron 1997, 2000a,b) have performed numerous smooth particle hydrodynamic (SPH) calculations intended to simulate potential moon-forming impact events. These simulations have considered a variety of impact angular momenta, as well as combined impactor and protoearth masses.

While early simulations (Benz, Slattery and Cameron 1986; Benz, Slattery and Cameron 1987; Benz, Cameron and Melosh 1989; Cameron and Benz 1991) modeled the protoearth and impactor with only a few thousand SPH particles (such that a lunar mass worth of ejected debris was represented by only a few tens of particles), recent works have utilized between N = 10,000 and 100,000 total particles (Cameron 1997, Cameron 2000a,b) allowing for a better resolution of ejected material. Here the results of forty-one impact simulations performed by Cameron are compiled, including thirty-five simulations utilizing N = 10,000 particles, three utilizing N = 20,000 and three utilizing N = 100,000 particles. The simulations all employed the equation of state known as ANEOS, (as described in Benz et al. (1989)), and assumed an impact velocity equal to the mutual escape velocity of the protoearth and impactor.

Both the total system mass, \(M_s \), and the angular momentum of the colliding pair, \(L \), were varied. Impactor and target bodies were assumed to be composed of silicate mantles and iron cores. Table 1 lists the data from these simulations. Figures 1a-b show the total mass of debris placed into bound orbit (in lunar masses) and the angular momentum of this debris, both as functions of \(L \) normalized to the current angular momentum of the Earth-Moon system, \(L_{EM} = 3.5 \times 10^{44} \, \text{g} \cdot \text{cm}^2/\text{s} \). Appendix A describes the basic method used to calculate these quantities from the output of a given SPH simulation.

A prevailing trait of the simulation results is an apparent difficulty in placing a sufficient amount of mass into orbit to yield the Moon for a total system mass and impact angular momentum equal to that of the current Earth-Moon system (e.g. Cameron 1997, 2000a,b; Cameron and Canup 1998). Models of the accumulation of the Moon from an impact-generated disk suggest that an initial disk mass of at least two lunar masses, or a disk with a lunar mass of material exterior to the Earth’s Roche limit\(^1\) is required to yield the Moon (Canup and Esposito 1996; Ida, Canup and Stewart 1997). One class of impacts that appear capable of producing sufficiently massive disks are those involving a total mass equal to that of

\[^1\text{For lunar density materials, } a_{\text{Roche}} = 2.9 R_{\oplus}.\]
the Earth and Moon \(M_f = M_{EM}\), and an impact angular momentum significantly greater than that of the current Earth-Moon system, or \(L \sim 2L_{EM}\). Interactions of the Earth-Moon system with the Sun act to decrease the system angular momentum, although this likely resulted in only a few percent change. The only known way to remove a more substantial angular momentum excess subsequent to lunar formation would be a later large impact to the Earth, which would then presumably also add significant mass to the system, making the original assumption of \(M_f = M_{EM}\) in this case somewhat inconsistent.

If a smaller total mass is considered for a set impactor to target mass ratio, greater yields of orbiting material are achieved for given impact angular momenta. Simulations have been performed for various values of the total mass ranging from 0.5 to 1 \(M_{EM}\), and in particular, yield disks of sufficient mass to produce the Moon when \(M_f \sim 0.65M_{EM}\) and \(L \sim L_{EM}\). Smaller total mass values could be appropriate if the lunar forming impact occurred before the Earth’s accretion was complete (e.g., Cameron and Canup 1998), which is not inconsistent with recent simulations of late-stage terrestrial planet formation that find the largest impact a planet experiences often occurs prior to the end of its final accretion (Agnor, Canup and Levison 1999). In addition, an “early-Earth” impact may more easily account for the observed tungsten isotopic compositions of the Earth and Moon (e.g., Halliday, Lee and Jacobsen 2000). However, requiring that a significant fraction of the Earth’s mass is accreted subsequent to lunar formation may also be problematic. The accretion of \(\sim 0.35M_{EM}\) to the Earth would likely have involved subsequent large impacts, which could significantly alter the angular momentum of the Earth-Moon system and weaken the rationale for assuming the lunar forming impact occurred with \(L \sim L_{EM}\). It also has yet to be demonstrated that the Moon could avoid contamination by siderophile-rich material during the period when the Earth was accumulating the final \(\sim 35\%\) of its mass (e.g., Stewart, 2000). We note however that the post-impact protoearth probably had an extensive magma ocean, whose larger rate of tidal dissipation may have reduced the period of maximum exposure of the Moon to the

\[\dot{\omega}_@ = 3/2K \left(k_{2@}/Q_@ \right) \left(M_S/M_@ \right) \left(R_@/a_@ \right)^3 \left(GM_S/a_@^3 \right) \text{, where } k_{2@}\text{ and } Q_@\text{ are the Earth’s Love number and tidal dissipation factor, } a_@\text{ is the Earth’s orbital radius, } M_S\text{ is the solar mass, and } K = 0.335\text{ is the terrestrial gyration constant. For a fully-formed protoearth and a } (k_{2@}/Q_@)\text{ value equal to the average required for the Moon to evolve to its current position in 4.5 billion years, } \omega_@^0 \approx 4 \times 10^{-23} \text{ rad/sec},\]

giving \(\Delta \omega = 6 \times 10^6 \text{ rad/sec in 4.5 billion years. This decrease represents a fractional change in the Earth-Moon system’s angular momentum of } (K M_@ R_@^2 \Delta \omega)/L_{EM} \sim \text{ a percent.}\)
gravitationally-focused rain of planetesimals onto the protoearth.

SCALING RELATIONSHIP

An open question is whether there exist classes of impacts intermediate to those described above which could also yield the Moon, but would require a more moderate subsequent modification of the mass or angular momentum of the Earth-Moon system. To address this issue, it is useful to employ a scaling law to help characterize and interpret the results of numerical SPH experiments of potential satellite-forming impacts. This relationship can be then used to infer other classes of impacts that are likely Moon-forming candidates. While we have used data produced by models of the lunar-forming event, the relationships derived here may be applicable to other impact-related phenomena as well.

We take as normalization values the total mass, \(M_T \), involved in the collision, and the angular momentum of an object containing the total mass of the system spinning at the maximum rate for rotational stability, with the latter obtained by setting the centrifugal force equal to the gravitational force for a spherical solid body, viz.,

\[
L_* = K M_T R_T^2 \sqrt{G M_T / R_T^3} = M_T^{5/3} K \sqrt[6]{G [3/(4 \pi \rho)]}
\]

where \(K \) is the gyration constant of a body of mass \(M_T \) (\(K = 2/5 \) for a sphere of uniform density), and \(\rho \) is its solid body density. For the Earth, \(K = 0.335 \), \(\rho = 5.6 \text{ g/cm}^3 \), and the reference variable reads \(L_* = 1.02 \times 10^{42} (M_T/M_{\odot})^{5/3} \text{ g cm}^2/\text{s} \).

The data shown in Table 1 have been renormalized by dividing the masses and angular momenta by \(M_T/M_{\text{moon}} = 81.3(M_T/M_{\odot}) \), \(L/L_{\text{EM}} = 2.91(M_T/M_{\odot})^{5/3} \), respectively. The renormalized data are plotted in Figure 2a-b. The behavior seen in these frames can be better understood by noting that since all of the simulations here considered the same impactor to target mass ratio, \(L/L_* \) is a proxy for the impact parameter, \(p \). For \(\sin \xi < 1 \), \(p = (R_M + R_m) \sin \xi \), where \(\xi \) is the angle of the trajectory to the local surface normal (i.e. obliqueness) and \(R_M \) and \(R_m \) are the radii of the target and projectile, respectively. Assuming zero energy at infinity (see Appendix B),

\[
\frac{L}{L_*} = \frac{\sqrt{2}}{K} (\gamma) \sin \xi
\]
where $\gamma = m/M_T$ is the ratio of projectile mass to the total mass and $f(\gamma) \approx \gamma(1-\gamma)\sqrt[3]{1+\gamma}$. For all data in Table 1, $\gamma = 0.3$, and $f(\gamma) = 0.262$. A grazing impact occurs here for $L/L_*=\sqrt{2f/K} = 1.11$; this boundary is shown as a vertical dotted line in Figures 2a-b. Still larger values of L cause the projectile to miss the target.\(^3\) As the impact parameter (and therefore the impact angular momentum) increases and the collision becomes more oblique, the mass yield of orbiting debris goes up. For a given angular momentum, decreasing M_T allows for a larger impact parameter resulting in an increased yield. However, eventually the impact site approaches the edge of the target and the yield of bound orbiting material drops. As this occurs, the amount of material escaping the system (less than $0.05M_T$ for the simulations here) increases.

Figure 3 shows the disk mass fraction contained in iron as a function of the scaled impact angular momentum; this fraction generally increases with (L/L_*). One data point, corresponding to the simulation with $M_T = 0.55M_{\text{em}}$ and $L/L_*=1.163$, falls well outside the plotted range; the disk in this run contained 30% iron by mass, or approximately the same assumed bulk composition for the impactor. The horizontal dashed line in Figure 3 is a disk containing 4% iron by mass, corresponding approximately to the upper limit for the mass of the lunar core (e.g., Hood and Zuber 2000). Six out of seven cases simulated with $(L/L_*) > 0.9$, and 1 out of 34 cases with $(L/L_*) < 0.9$ fall above this limit. Extremely oblique impacts appear to typically produce disks that are too iron-rich to yield the Moon, assuming that a moon would accrete amounts of silicate and iron proportional to the ratio of these elements in the initial disk. However, we note that the amount of disk iron is not well-resolved by these simulations (since 1% of a lunar mass is represented by only a few tens of particles even in the N=100,000 runs), and it not clear to what extent the orbiting iron is well-mixed throughout the disk.

For convenience, the data in the range $0.5 < L/L_* < 1.00$ in Fig. 2a have been fit (solid curve) by a power law of the form $M_d/M_T = C_M(L/L_*)^{s_M}$ with $C_M = 0.056$, $s_M = 3.40$; those in Fig. 2b have been fit by a power law of the form $L_d/L_* = C_L(L/L_*)^{s_L}$ with $C_L = 0.381$, $s_L = 3.83$. Data above this range begins to show the steep decline associated with the target’s edge; data below this range has too little disk mass to be resolved reliably by the SPH simulations. A lower limit on (L/L_*) needed to yield a long-lived satellite can be found by requiring that the co-rotation radius is interior to the Roche limit, so that any impact-generated satellite that accretes exterior to a_{Roche} will initially evolve outward due to tidal interaction with the planet. This yields

\[^3\]Due to deformations of target and projectile, collision still occurs for impact parameters slightly greater than R_d+R_{em}.

5
\[
\frac{L}{L_\ast} \geq \left(\frac{R_p}{a_R} \right)^{3/2} + \frac{M_M}{KM_F} \sqrt{\frac{a_M}{R_p}}.
\]

where \(\rho_M \) and \(\rho_p \) are the densities of the satellite and planet, and the Roche limit is defined as
\[
a_{\text{Roche}} = 2.456 \left(\frac{\rho_p / \rho_M}{1/3} \right) R_p
\]
where \(R_p \) is the planet radius. Eq. (3) assumes \(M_F \sim M_p \), with \(a = 1.2a_{\text{Roche}} \) and Earth/Moon densities, Eq. (3) yields \((L/L_\ast) \approx 0.27 \). The power law representations shown in Figures 2a-b can be utilized to estimate the total collision mass and impact angular momentum required to yield a given mass and angular momentum disk. Given these, an estimate can be made for the mass of the resulting moon that would accrete from such a disk via conservation of angular momentum (Ida et al. 1997). Assuming that the disk material accretes into a single satellite on a circular orbit with semi-major axis \(a_M \), while the remaining disk material accretes onto the Earth gives
\[
M_M = \left[KC_L \left(\frac{L}{L_\ast} \right)^{g_L} - C_M \left(\frac{L}{L_\ast} \right)^{g_M} \right] \frac{M_F}{\sqrt{a_M / R_p - 1}}.
\]

Accretion simulations (Ida et al. 1997; Kokubo et al. 2000a,b) find accreted moon masses that agree fairly well with this estimate for disks with most of their mass initially within the Roche limit. For more radially extended disks, a significant fraction of the disk material escapes during the accretion process, so that the resulting moon mass is typically about 20% less than that implied by Eq. (4).

Figure 4 shows contours of the predicted mass of the moon from Eq. (4) (in lunar masses) that would accrete from impact-produced disks as a function of \((M_F/M_\ast) \) and \((L/L_{E,\ast}) \). Here we have again restricted consideration to \(0.5 < (L/L_\ast) < 1.00 \), the range of validity of our power-law fits, and have assumed \(a_M = 3.5R_\ast \) (e.g., Canup and Esposito 1996; Ida et al., 1997). Below and to the right of a given contour in Figure 4, the predicted disk mass is larger than the specified value until this increase is truncated by the grazing boundary (dashed curve). The basic nature of both the “high angular momentum” (HM) and “early-Earth” (EE) impact classes discussed in Cameron (1997, 2000a,b) and Cameron and Canup (1998) are easily distinguished. The dot-dashed line in Figure 4 corresponds to the grazing boundary is the maximum impact angular momentum obtainable for a \(p = (R_\ast + R_\ast) \) impact with a given total colliding mass (again assuming zero velocity at infinity and a 3:7 mass ratio between impactor and target).
\((L/L_s) = 0.9 \) contour; results in Figure 3 imply that between this line and the grazing limit, impact-generated disks would likely contain proportionally too much iron to yield the Moon.

From the contours shown in Figure 4, it appears that impacts other than those simulated to date may also yield sufficiently massive disks to form the Moon, in particular those involving a total mass \(\sim 0.8-0.9 M_\oplus \) and an impact angular momentum \(\sim 1.3-1.5 L_{E-M}. \) Such impacts may represent less restrictive alternatives to previously studied scenarios.

DISCUSSION

A simple scaling relationship has been identified that describes the results of a recent suite of 41 SPH simulations of potential Moon-forming impacts (Cameron 2000a,b; Cameron and Canup 1998) as a function of non-dimensional parameters. Here we do not attempt to explain the physical basis for the functional form, but have been content in this note only to demonstrate the commonality of outcomes when examined with respect to these scaled quantities. In general, the highest percentage of mass placed into bound orbit is achieved when the impact is slightly less than grazing, which for the 7:3 case implies an angular momentum approximately equal to the maximum angular momentum for rotational stability for a single body with the total system mass, \(i.e., L \approx L_s. \) The derived maximum yield of material placed into bound orbit is about 4% of the total colliding mass. This suggests that forming Charon (with approximately 12% of Pluto’s mass) via a giant impact event may require a quite different sort of impact (\(e.g., v > v_{esc} \)) than the Moon-forming event, and/or that collisions between icy outer solar system bodies are not well characterized by extrapolation from the present lunar forming simulations.

An interesting feature of Figure 4 is that the point representative of the current state of the Earth-Moon system lies well outside the contour for even a \(M_{sl} \geq 0.5 M_{moon} \) satellite. In addition, the plotted contours tend to overestimate the satellite mass obtainable, given that accretion into a single moon with no escaping material is assumed (\(i.e., Eq. (4) \)). A single impact does not appear capable of yielding both the final mass and angular momentum of the Earth-Moon system, a basic quandary that has been discussed in multiple previous works (Canup and Esposito 1996, Ida, Canup and Stewart 1997, Cameron 1997, CC98, and Cameron 2000a,b). If we assume that the Moon did in fact form via a large impact event, this finding suggests that either 1) the mass and/or angular momentum of the Earth-Moon system were significantly modified (presumably by a later impact or impacts) subsequent to the lunar-forming event, 2) regions of parameter space not explored in the above surveys would suggest different scaling relationships that would more easily yield the Earth-Moon system, and/or 3) current SPH methods are not yet adequately modeling processes important to the impact event. The first suggestion has key
implications for the impact hypothesis, as well as for the early dynamical and geochemical evolution of the Earth-Moon system. Additional SPH simulations with different impactor to target mass ratios and impact velocities—or that consider a pre-impact Earth with an initial spin—could illuminate the potential effect of (2), and help to map out what is almost certainly a complex phase space relationship that here only a slice of which is seen.

It is encouraging to observe that the predicted ejecta yields from simulations done to date appear quite consistent with one another when comparisons are made using scaled values. As a word of caution, we note that the simulations may be nonetheless lack fidelity as a whole due to some issue inherent to the techniques utilized. One issue of importance in this regard is the potential effect of numerical resolution, although recent comparisons between N=10,000, 20,000 and 100,000 particle simulations suggest variations in the predicted ejected mass of only ~ 10-20%. Another possibility is that the equation of state (ANEOS) used to date is inadequately treating vaporization. In this regard, it has been pointed out (J. Melosh, personal communication) that the standard version of ANEOS treats all vapor species as monatomic gases, leading to an overestimation of entropy and an underestimation of the amount of vapor produced. The primary emplacement mechanism observed in the simulations discussed here is gravitational torquing due to interactions among the ejecta fragments and the distorted protoearth, rather than accelerations due to gas pressure gradients. Recently, an improvement to ANEOS has been made (B. Pierazzo and J. Melosh, personal communication) which allows for the treatment of molecular vapor. It will be of great interest to determine if simulations utilizing this new version of ANEOS produce results in keeping with the basic relationship discussed here.

APPENDIX A

The post-impact disk mass and angular momentum are dynamic quantities whose values change with time as a result of the disk’s viscous evolution. Thus a reference time must be defined when computing and comparing these quantities. Here we have examined the results of impact simulations at characteristic times of 1 - 2 days after the impact event.\(^5\)

To determine the mass and angular momentum of the bound disk produced around an oblate protoearth in each impact simulation an iterative procedure is utilized. We begin with a data file from a given simulation containing the positions and velocities of all SPH particles in the center of mass frame at the time step to be considered. Initial guesses are made for the total mass contained in the post-impact

\(^5\)SPH simulations depicting the later evolution of the N = 100,000 particle simulations are discussed in Cameron (2000b).
protoearth, \(M_{PE} \), and the protoearth’s oblateness or flattening, \(f \), defined by:

\[
f = \frac{a - b}{a}
\]

(A1)

where \(a \) and \(b \) are the equatorial and polar radii, respectively. The mass of an oblate spheroid protoearth of mean density \(\rho \) is

\[
M_{PE} = \frac{4\pi a^2 b \rho}{3}
\]

(A2)

A1 and A2 are used to calculate the equatorial radius of the protoearth, \(a \), assuming a terrestrial bulk protoearth density. Orbital elements for particles exterior to \(a \) are calculated, and those on bound orbits with periapses greater than \(a \) are considered to be part of the disk.

The mass and angular momentum of the disk particles, together with those of any unbound/escaping particles, are then used to calculate a new estimate for \(M_{PE} \) and \(f \). The latter is computed by first determining the angular momentum contained in the protoearth’s rotation and the corresponding rotational period, \(T_{PE} \), and using this to calculate a new value for the flattening coefficient (e.g., Kaula 1968), where

\[
f = \frac{5}{2} \left(\frac{T_r}{T_{PE}} \right)^2 \left[1 + \left(\frac{5}{2} - \frac{15K}{4} \right)^2 \right]
\]

(A3)

where \(T_r \) is the minimum period for rotational stability from Eq. (1). This value of \(f \), together with the new estimate for \(M_{PE} \), is then used to compute a new \(a \). An improved estimate for the disk mass and angular momentum is then obtained by re-calculating the orbital elements of particles exterior to \(a \) using the new values for \(a \) and \(M_{PE} \). The iteration is continued until convergence is achieved.

We note that the scaling relationships presented here are not particularly sensitive to the specific method used to define the disk mass. A simpler method that assumed a spherical protoearth with radius \(R = (M_{PE}/(4/3 \pi \rho))^{1/3} \) produced somewhat different values for individual disk masses and angular momenta, but yielded scaling relations that were nearly indistinguishable from those in Figs. 2a-b.

APPENDIX B

To relate the scaled angular momentum to the impact parameter for an impact with zero energy at infinity, we use the following relationships with upper case notation referring to the target and lower case to the projectile:
Conservation of momentum in rest frame of center of mass:
\[MV + mv = 0 \quad \text{(B1)} \]

Conservation of angular momentum:
\[L = mvp_m - MVP_M \quad \text{(B2)} \]

Conservation of energy:
\[E = \frac{1}{2}MV^2 + \frac{1}{2}mv^2 - \frac{GMm}{R_M + R_m} = 0 \quad \text{(B3)} \]

Impact parameter:
\[p = p_M + p_m = (R_M + R_m)\sin\xi \quad \text{(B4)} \]

From (B1) and (B2), \(L = mvp \); while from (B1) and (B3), \(mv = \sqrt{2\mu GMm/(R_M + R_m)} \), with \(1/\mu = 1/M + 1/m \) being the so-called reduced mass. Combining with (B4), we find
\[L = \gamma(1-\gamma)M_T\sqrt{2GM_T(R_M + R_m)\sin\xi} \quad \text{(B5)} \]

where \(M_T = M + m \), \(\gamma = m/M_T \). Dividing (B5) by Eq. (1) from the text then gives,
\[\frac{L}{L_*} = \frac{\sqrt{2}}{K}\gamma(1-\gamma)\sqrt{\frac{R_M + R_m}{R_T}}\sin\xi \quad \text{(B6)} \]

Finally, if we assume the target and projectile have the same average density,
\(R_m/R_T = \gamma^{1/3} \), \(R_M/R_T = (1-\gamma)^{1/3} \), and (B6) reduces to Eq. (2).

ACKNOWLEDGMENTS

We thank W. Benz and an anonymous reviewer for their constructive suggestions. This work has been supported by NASA’s Origins of Solar Systems and NSF’s Life in Extreme Environments programs.
REFERENCES

FIGURE CAPTIONS

Figure 1: (a) Disk mass vs. impact angular momentum in units of lunar masses and the angular momentum of the Earth-Moon system. (b) Disk angular momentum vs. impact angular momentum. The symbols and color codes are keyed to the data presented in Table 1.

Figure 2: (a) Disk mass vs. impact angular momentum in units of the total mass and the quantity L_\ast. The dotted line indicates the limit of a grazing impact for two spherical bodies. Collisions are still possible with impact parameters just beyond this limit due to tidal distortion upon close approach. (b) Disk angular momentum vs. impact angular momentum in units of L_\ast. The solid curves in (a) and (b) are power-law fits to data with $0.5 < L/L_\ast < 1.00$.

Figure 3: The mass fraction of iron in the disk vs. (L/L_\ast). The dot-dashed curve is approximately the upper limit on the mass fraction of iron in the Moon. One point, corresponding to the simulation with $M_\gamma = 0.55M_{EM}$ and $L/L_\ast = 1.163$, falls well outside the plotted range and is indicated by the upward arrow; the disk in this run contained 30% iron by mass, or approximately the assumed bulk composition of the impacting body.

Figure 4: Contours of the predicted mass of the moon (shown in lunar masses) that will accrete from an impact-produced disk as a function of colliding mass and angular momentum. The contours were derived from power law fits to impact experiment data by Cameron (see text) for collisions with impactor to target mass ratios of 3:7. Below a given curve, the predicted disk mass is larger than the specified value until this increase is truncated by the grazing boundary (solid line). The dot-dashed curve corresponds to $(L/L_\ast) = 0.9$; between this curve and the grazing limit, simulated disks contain fractions of iron that typically exceed the upper limit on the fraction of the Moon’s mass contained in its core. The Earth-symbol corresponds to the coordinate of the current mass and angular momentum of the Earth-Moon system. The early-Earth and high angular momentum impacts, previously shown capable of generating sufficiently massive protolunar disks, are indicated by the EE and HM respectively.
Table 1: Data From SPH Giant Impact Experiments by Cameron (2000a).

<table>
<thead>
<tr>
<th>Total mass M_T/M_\odot</th>
<th>Col. A.M. L/L_{EM}</th>
<th>Disk mass M_d/M_{Moon}</th>
<th>Disk A.M. L_d/L_{EM}</th>
<th>Col. A.M. L/L_*</th>
<th>Disk mass M_d/M_T</th>
<th>Disk A.M. L_d/L_*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.500</td>
<td>0.26</td>
<td>0.0327</td>
<td>0.545</td>
<td>0.0064</td>
<td>0.0357</td>
</tr>
<tr>
<td>0.50</td>
<td>0.625</td>
<td>0.60</td>
<td>0.0832</td>
<td>0.682</td>
<td>0.0148</td>
<td>0.0908</td>
</tr>
<tr>
<td>0.50</td>
<td>0.750</td>
<td>1.16</td>
<td>0.178</td>
<td>0.818</td>
<td>0.0285</td>
<td>0.194</td>
</tr>
<tr>
<td>0.50</td>
<td>0.811</td>
<td>1.36</td>
<td>0.218</td>
<td>0.885</td>
<td>0.0335</td>
<td>0.238</td>
</tr>
<tr>
<td>0.50</td>
<td>0.874</td>
<td>1.62</td>
<td>0.259</td>
<td>0.954</td>
<td>0.0399</td>
<td>0.283</td>
</tr>
<tr>
<td>0.50</td>
<td>0.936</td>
<td>1.41</td>
<td>0.228</td>
<td>1.021</td>
<td>0.0347</td>
<td>0.249</td>
</tr>
<tr>
<td>0.55</td>
<td>1.00</td>
<td>2.09</td>
<td>0.323</td>
<td>0.931</td>
<td>0.0467</td>
<td>0.301</td>
</tr>
<tr>
<td>0.55</td>
<td>1.25</td>
<td>1.41</td>
<td>0.219</td>
<td>1.163</td>
<td>0.0315</td>
<td>0.204</td>
</tr>
<tr>
<td>0.60</td>
<td>1.00</td>
<td>1.32</td>
<td>0.228</td>
<td>0.805</td>
<td>0.0271</td>
<td>0.184</td>
</tr>
<tr>
<td>0.60</td>
<td>1.25</td>
<td>1.59</td>
<td>0.294</td>
<td>1.006</td>
<td>0.0326</td>
<td>0.237</td>
</tr>
<tr>
<td>0.65</td>
<td>1.00</td>
<td>1.14</td>
<td>0.163</td>
<td>0.705</td>
<td>0.0216</td>
<td>0.115</td>
</tr>
<tr>
<td>0.65</td>
<td>1.05</td>
<td>0.76</td>
<td>0.116</td>
<td>0.740</td>
<td>0.0144</td>
<td>0.082</td>
</tr>
<tr>
<td>0.65</td>
<td>1.20</td>
<td>1.84</td>
<td>0.290</td>
<td>0.845</td>
<td>0.0348</td>
<td>0.204</td>
</tr>
<tr>
<td>0.65</td>
<td>1.25</td>
<td>1.34</td>
<td>0.279</td>
<td>0.881</td>
<td>0.0254</td>
<td>0.197</td>
</tr>
<tr>
<td>0.65</td>
<td>1.15</td>
<td>1.53</td>
<td>0.268</td>
<td>0.810</td>
<td>0.0290</td>
<td>0.189</td>
</tr>
<tr>
<td>0.65</td>
<td>1.20</td>
<td>1.89</td>
<td>0.306</td>
<td>0.845</td>
<td>0.0358</td>
<td>0.216</td>
</tr>
<tr>
<td>0.65</td>
<td>1.10</td>
<td>1.60</td>
<td>0.250</td>
<td>0.775</td>
<td>0.0303</td>
<td>0.176</td>
</tr>
<tr>
<td>0.65</td>
<td>1.15</td>
<td>1.40</td>
<td>0.219</td>
<td>0.810</td>
<td>0.0265</td>
<td>0.154</td>
</tr>
<tr>
<td>0.65</td>
<td>1.20</td>
<td>2.08</td>
<td>0.328</td>
<td>0.845</td>
<td>0.0394</td>
<td>0.231</td>
</tr>
<tr>
<td>0.70</td>
<td>1.00</td>
<td>0.47</td>
<td>0.080</td>
<td>0.623</td>
<td>0.0083</td>
<td>0.050</td>
</tr>
<tr>
<td>0.70</td>
<td>1.00</td>
<td>0.92</td>
<td>0.140</td>
<td>0.623</td>
<td>0.0162</td>
<td>0.087</td>
</tr>
<tr>
<td>0.70</td>
<td>1.10</td>
<td>0.92</td>
<td>0.144</td>
<td>0.685</td>
<td>0.0162</td>
<td>0.090</td>
</tr>
<tr>
<td>0.70</td>
<td>1.15</td>
<td>0.95</td>
<td>0.149</td>
<td>0.716</td>
<td>0.0167</td>
<td>0.093</td>
</tr>
<tr>
<td>0.70</td>
<td>1.20</td>
<td>1.76</td>
<td>0.262</td>
<td>0.747</td>
<td>0.0309</td>
<td>0.163</td>
</tr>
<tr>
<td>0.70</td>
<td>1.25</td>
<td>1.56</td>
<td>0.272</td>
<td>0.778</td>
<td>0.0274</td>
<td>0.169</td>
</tr>
</tbody>
</table>

6Symbol colors vary with the total colliding mass, M_T. Circles, triangles and squares correspond to simulations with N = 10,000, 20,000, 100,000 particles, respectively. All entries following a given symbol have the same values of M_T and N.

13
<table>
<thead>
<tr>
<th></th>
<th>0.75</th>
<th>1.00</th>
<th>0.62</th>
<th>0.086</th>
<th>0.555</th>
<th>0.0102</th>
<th>0.048</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>1.25</td>
<td>0.91</td>
<td>0.155</td>
<td>0.694</td>
<td>0.0149</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>0.80</td>
<td>0.02</td>
<td>0.003</td>
<td>0.399</td>
<td>0.0003</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>1.00</td>
<td>0.43</td>
<td>0.074</td>
<td>0.498</td>
<td>0.0066</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>1.25</td>
<td>0.74</td>
<td>0.124</td>
<td>0.623</td>
<td>0.0114</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>1.00</td>
<td>0.06</td>
<td>0.005</td>
<td>0.410</td>
<td>0.0008</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>1.25</td>
<td>0.50</td>
<td>0.088</td>
<td>0.512</td>
<td>0.0068</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>0.07</td>
<td>0.010</td>
<td>0.344</td>
<td>0.0009</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.25</td>
<td>0.06</td>
<td>0.010</td>
<td>0.430</td>
<td>0.0007</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.50</td>
<td>0.41</td>
<td>0.097</td>
<td>0.515</td>
<td>0.0050</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.75</td>
<td>0.35</td>
<td>0.064</td>
<td>0.601</td>
<td>0.0043</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2.00</td>
<td>1.46</td>
<td>0.278</td>
<td>0.687</td>
<td>0.0178</td>
<td>0.096</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2.25</td>
<td>1.95</td>
<td>0.456</td>
<td>0.773</td>
<td>0.0240</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2.50</td>
<td>2.44</td>
<td>0.596</td>
<td>0.859</td>
<td>0.0300</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2.75</td>
<td>3.18</td>
<td>0.777</td>
<td>0.945</td>
<td>0.0391</td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>3.00</td>
<td>3.22</td>
<td>0.692</td>
<td>1.031</td>
<td>0.0396</td>
<td>0.238</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4