Evidence for Asteroid Space Weathering from the Sloan Digital Sky Survey

David Nesvorný¹
Robert Jedicke²
Robert J. Whiteley³

and

Željko Ivezić⁴

¹ Southwest Research Institute, 1050 Walnut St, Suite 400, Boulder, CO 80302
² Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822
³ Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
⁴ Princeton University Observatory, Princeton, NJ 08544
Running title: Evidence for Asteroid Space Weathering

Address for correspondence and proofs:
David Nesvorný
Department of Space Studies
Southwest Research Institute
1050 Walnut St, Suite 400
Boulder, CO 80302
USA
Phone: (303) 546 0023
Fax: (303) 546 9687
Email: davidn@boulder.swri.edu

No. of PAGES: 39
No. of FIGURES: 13 (1 COLOR)
No. of TABLES: 1
ABSTRACT

By studying color variations between young and old asteroid families we find evidence for processes that modify colors of asteroids over time. We show that colors of aging surfaces of S-type asteroids become increasingly ‘redder’ and measure the rate of these spectral changes. We estimate that the mean spectral slope between 0.35 and 0.9 μm increases with time t (given in My) as $\approx 0.01 \mu m^{-1} \times \log_{10} t$. This empirical fit is valid only for $2.5 \lesssim t \lesssim 3,000$ My (the time interval where we have data) and for the mean spectral slope determined from wide-wavelength filter photometry obtained by the Sloan Digital Sky Survey. We also find that Gy-old terrains of S-type asteroids reflect about 15% more light at $\sim 1-\mu m$ wavelengths than an ~ 5-My-old S-type asteroid surface when the flux is normalized by the reflected light at 0.55 μm. We attribute these effects to space weathering. This result has important implications for asteroid geology and the origin of meteorites that we collect at the Earth. Our results also suggest that surfaces of C-type asteroids exhibit color alterations opposite to those of the S-type asteroids.

Keywords: Asteroids
1. Introduction

Studies of soils and rocks collected by the Apollo astronauts provide evidence for processes that alter optical properties of the lunar surface (e.g., Hapke 2001 and references therein). Similarly, optical properties of an asteroid surface change over time (Clark et al. 2002a, Chapman 2004, and references therein). Because we do not yet have soils taken directly from the surface of an asteroid, surface-aging processes on asteroids are not well understood. Following standard terminology, we will refer to processes that alter optical properties of surfaces of airless bodies (such as solar wind sputtering, micrometeorite impacts, etc.) as ‘space weathering’ effects.

Two lines of evidence suggest that the space weathering effects modify asteroid surfaces: (i) Although many S-type asteroids are probably similar in bulk composition to ordinary chondrite (OC) meteorites (Gaffey et al. 1993, McFadden et al. 2001, Sullivan et al. 2002), surfaces of S-type asteroids are significantly ‘redder’ than colors of OC meteorites, and have much shallower olivine/pyroxene absorption band at 1μm (Chapman and Salisbury 1973). (ii) Color variations on surfaces of S-type asteroids (243) Ida, (951) Gaspra and (433) Eros mimic the sense of the color differences observed for lunar soils with older surfaces being darker and redder in appearance (Veverka et al. 1996, 2000; Chapman 1996, 2004; Clark et al. 2001, 2002a,b; Murchie et al. 2002; Bell et al. 2002). Conversely, it is believed that other common asteroid types (e.g., the V- and C-types) show little evidence of optical alteration with time (McCord et al. 1970, Veverka et al. 1999, Clark et al. 1999, Keil 2002).

The rate of change of optical properties by space weathering effects is poorly understood. Using laser experiments, Sasaki et al. (2001) estimated that micro-meteoroid impacts may produce significant space weathering effects on a timescale of order 10^8 years. On the other hand, Hapke (2001) calculated that solar wind sputtering would produce sufficient nanophase iron coatings on regolith grains to account for asteroid space weathering in only 50,000 years. While the micro-meteoroid and solar wind bombardment alter optical properties of the uppermost thin layer of regolith, other processes such as the impact blanketing (or tidal ‘jolt’, Chapman 2004) are competing with the above effects to periodically uncover ‘fresh’, optically unaltered material (so-called regolith ‘gardening’). The resulting surface of an
asteroid is a complex product of these processes whose relative importances and relevant
timescales are yet to be determined.

Here we use the spectrophotometric data obtained by the Sloan Digital Sky Survey
(SDSS) to collect evidence for space weathering on asteroids. We find that the reflectance
spectra of S-type asteroids become redder and that the broad absorption band at 1-μm
becomes shallower over time. We also find indications that surfaces of the C-type asteroids
may become bluer over time. If true, then the low-reflectivity material of C-type asteroids
exhibits color alterations opposite to those inferred for the higher-reflectivity material of
S-type asteroids. We base our evidence on a comparative study of young and old asteroid families\(^1\) that we find by standard techniques but using ten times more asteroid proper
elements\(^2\) than previous works (Zappalà et al. 1994, 1995).

Our analysis is in many ways similar to the one used by Jedicke et al. (2004). Here, we
add to Jedicke et al.’s results by: (i) augmenting the number of studied asteroid families, (ii)
describing in detail our classification of asteroid families and ways their ages were determined,
and (iii) examining the effects of space weathering on the 1-μm absorption band.

In section 2, we describe the photometric system of the SDSS and perform several tests
to justify the use of SDSS colors of asteroids. In sections 3 and 4, we explain how we find
asteroid families and how we determine whether an asteroid family is young or old. In
Section 5, we show that there exists a correlation between colors and ages of the asteroid
families. This result and its implications are discussed in section 6.

\(^1\)An asteroid family is a group of asteroid fragments with similar orbits that originated in the catastrophic
disruption of a large parent body. Some two dozen robust asteroid families have been identified in the main
belt (Zappalà et al. 1994).

\(^2\)The proper elements are analytically defined as constants of orbital motion of a suitably simplified
dynamical system. Unlike the instantaneous orbital elements, the proper elements are generally nearly
constant on \(10^7-10^8\) year time scales, and are widely used to decipher the collisional history of the asteroid
belt (Milani and Knežević 1994, Knežević et al. 2002).
2. SDSS Photometry

The recently-released Sloan Digital Sky Survey Moving Object Catalog, hereafter SDSS MOC\(^3\) lists astrometric and photometric data for asteroids observed by the 2.5-meter Sloan telescope located at Apache Point Observatory, in Sunspot, New Mexico. To date, the survey has mapped in detail one-eighth of the entire sky, determining positions, brightnesses, and five-color CCD photometry of 125,283 moving objects (Ivezić et al. 2001, Stoughton et al. 2002).

35,401 unique moving objects detected by the survey (i.e., about 28\% of the total) have been matched (Jurić et al. 2002) to known asteroids listed in the ASTORB file (Bowell et al. 1994)\(^4\). The flux densities of detected objects were measured almost simultaneously in five bands (measurements in two successive bands were separated in time by 72 seconds) with effective wavelengths 3557 Å (\(u\) band), 4825 Å (\(g\) band), 6261 Å (\(r\) band), 7672 Å (\(i\) band), and 9097 Å (\(z\) band) (Fukugita et al. 1996).

These data provide important and unique information about asteroids because the SDSS MOC includes one to two orders of magnitude more objects than other catalogs that were used in the past to study asteroid visible reflectance spectra. For example, the Small Main-Belt Asteroid Spectroscopic Survey I (SMASS I, Xu et al. 1995) and II (SMASS II, Bus and Binzel 2002a,b), which are the largest spectroscopic surveys in visible wavelengths to date, produced a set of visible wavelength spectra for 1447 asteroids. Figure 1 shows a comparison between the total numbers and magnitude distributions of main-belt asteroids observed by the SDSS and SMASS. These two surveys provide complementary information because different magnitude ranges were observed by each of them; the SDSS observed smaller asteroids than the SMASS. The SDSS MOC has been recently used to show many asteroid families segregate in the color space from their local backgrounds (Ivezić et al. 2002), and that this segregation is apparent at least down to absolute magnitude \(H \approx 16.0\).

We first verified that the SDSS photometry is consistent with published spectra of

\(^3\)http://www.astro.princeton.edu/~ivezic/sdssmoc/sdssmoc.html

\(^4\)ftp://ftp.lowell.edu/pub/elgb/astorb.html
asteroids. To this end, we compared the SDSS colors with SMASS spectra\(^5\) for 113 asteroids with known proper elements that appear in both datasets. In 64 cases (i.e., in 57%), the agreement was excellent. To illustrate this, Fig. 2 shows a comparison between the SDSS colors and the SMASS reflectance spectra for selected S-, C- and V-type asteroids. In 43% of cases, the agreement was less good. In these cases, the SDSS colors follow the global shape of the SMASS spectra, but either show systematically a slightly steeper slope, or the reflectance in the z-band does not not drop as much as the SMASS spectrum near the 1\(\mu\)m absorption band. Individual SDSS measurements of the flux may differ by as much as 10–20% from the values measured by the SMASS.

The origin of these differences cannot be explained by the accuracy of the SDSS and/or SMASS observations. Repeated observations of the same sources demonstrate that the spectrophotometric accuracies of the SDSS and SMASS are \(\sim0.02\) and \(\sim0.01\) mag, respectively (Ivezić et al. 2003, Bus and Binzel 2002a), which accounts for only a small fraction of the observed discrepancy. The effect of phase reddening on the SDSS colors is also unlikely to cause a difference because the SDSS observed at low phase angles (\(\sim7^\circ\) rms, \(\sim35^\circ\) maximum). Errors in the SDSS colors generated by calibration, atmospheric extinction, etc., are also small (\(\lesssim0.2\) mag). Similarly, great care was taken in calibrating the SMASS observations (Bus and Binzel 2002a).

We explain the discrepancy between the SMASS spectra and the SDSS colors by the wavelength range of the SDSS filters. In Fig. 2, the SDSS color values were plotted at the effective wavelengths of the SDSS filters (Fukugita et al. 1996). It is not correct to compare these values with the SMASS reflectance spectra at the same wavelengths, because the SMASS values are local, narrow-wavelength-range spectral reflectances while the SDSS filters integrate the reflectance spectra over their 0.1-0.3\(\mu\)m band widths. To test this explanation, the SMASS spectra should be convolved with the SDSS filters and only then be compared to the SDSS colors. Unfortunately, this cannot be done because the SDSS filters span a larger wavelength range than the SMASS data (\(\sim0.3–1.2\mu\)m compared to SMASS’s \(\sim0.45–1.0\mu\)m) with only the central SDSS’s \(r\) and \(i\) bands being located within the range of SMASS.

\(^5\)The SMASS spectra were obtained from http://smass.mit.edu/
wavelengths.

To verify whether or not these differences may compromise our analysis, we have performed several tests. For example, the SMASH data provided a basis for developing a new asteroid taxonomic system (Bus and Binzel 2002b) that classifies reflectance spectra into a few categories that have interpretations in terms of the surface mineralogy of asteroids. For example, the S-type taxonomic category is characterized by a spectral redness that is usually attributed to the reflectance properties of Fe/Mg-bearing silicates such as olivine and pyroxene. We may thus ask whether the five-color SDSS photometry is good enough to distinguish between asteroids of different taxonomic types.

We utilize an algorithm that automatically analyzes photometric data in the SDSS MOC and classifies asteroids according to their taxonomic types. This algorithm uses the Principal Component Analysis (hereafter PCA). The PCA involves a mathematical procedure that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. In the result, the PCA creates linear combinations of the five SDSS colors that maximize the separation between the taxonomic types in the SDSS data.

The first two principal components (i.e., the new uncorrelated variables) that this algorithm yields are given by the following relationships,\(^6\)

\[
\begin{align*}
\text{PC}_1 & = 0.396(u - g) + 0.553(g - r) + 0.567(g - i) + 0.465(g - z) \\
\text{PC}_2 & = -0.819(u - g) + 0.017(g - r) + 0.09(g - i) + 0.567(g - z),
\end{align*}
\]

where \(u, g, r, i, z\) are the measured fluxes in five bands after correction for solar colors. To

\(^6\)This definition of the principal components slightly differs from the one used by Jedicke et al. (2004) because we used a slightly different dataset for the PCA than Jedicke et al. These differences are insignificant in the context of this study. The PCA produces color components that more rigorously separate asteroid colors than \(a\) and \(i - z\) color components used by Ivezić et al. (2002). Nevertheless, there exists a correlation between Ivezić et al.’s \(a\) and our \(\text{PC}_1\), and between Ivezić et al.’s \(i - z\) and our \(\text{PC}_2\).
illustrate the result of the PCA, Fig. 3 shows the principal components (Eq. 1) of ~100 asteroids with previously known taxonomic types (Bus and Binzel 2002b) that were detected by the SDSS. This figure demonstrates that we can use the first two principal components to distinguish taxonomic complexes such as S, C, or X (see Bus and Binzel 2002b for their definitions); indeed, these complexes occupy different locations in the \((PC_1, PC_2)\) plane:

S-complex asteroids generally have \(PC_1 > 0.35\), C-complex asteroids have \(PC_1 < 0.35\) and \(PC_2 \lesssim -0.1\), X-complex asteroids have \(PC_1 \lesssim 0.35\) and \(PC_2 \gtrsim -0.1\). Moreover, (4) Vesta and V-type asteroids in the Vesta family (see, e.g., Cellino et al. 2002) have \(PC_1 \gtrsim 0.35\) and small \(PC_2\) (only one V-type asteroid was observed by both SDSS and SMASS as shown in Fig. 3: (2704) Julian Loewe has \(PC_1 \approx 0.5\) and \(PC_2 \approx -0.4\).

Based on these results, we conclude that the SDSS MOC is a useful, self-consistent dataset to study general, statistical variations of colors of small asteroids in the main belt but that caution is required to interpret colors in individual cases.\(^8\) In this work, we study systematic color variations within the taxonomic complexes and the correlation of colors with other parameters.

3. Asteroid Families

The asteroid belt has collisionally evolved since its formation (see Davis et al. 2002 and other chapters in section 4.2 of the *Asteroids III* book). Possibly its most striking feature is the asteroid families that represent remnants of large, collisionally disrupted asteroids (Hi- rayama 1918). In the present asteroid belt most asteroid families can be clearly distinguished

\(^7\)Each of the three main categories has a number of taxonomic sub-divisions depending on the depths of the absorption bands, relative redness or blueness of the reflected light, and other features such as the presence/absence of specific absorption bands (Bus and Binzel 2002b). Classification into these categories is difficult to achieve with the SDSS photometry because there is usually not enough resolution with only five colors to detect these spectral signatures.

\(^8\)For example, Fig. 3 shows that about 5% of asteroids in the C-complex region \((PC_1 \leq 0.35\) and \(PC_2 \lesssim -0.1\)) are not C-complex bodies and that about 2% of asteroids in the S-complex region \((PC_1 \geq 0.35)\) are not S-complex type bodies. Also, about 3% of the SDSS MOC entries are instrumental artifacts (Ivezić et al. 2002).
from the background population of asteroids.

To make an efficient use of the SDSS MOC we want to sort the main-belt asteroids into family and background populations and analyze color variations within these sets separately. While the analysis of the asteroid families may tell us about things like asteroid interior, geological differentiation in the main belt, or about phenomena that alter asteroid colors with time, the analysis of background asteroids is more related to issues like the primordial temperature gradient in the proto-planetary nebula, subsequent dynamical excitation and mixing of bodies formed at different orbital distances from the Sun. Here, we concentrate on the first subject, i.e., on systematic color variations between the asteroid families.

To identify asteroid families, researchers look for clusters of asteroid positions in the space of proper elements: the proper semimajor axis \((a_P)\), proper eccentricity \((e_P)\), and proper inclination \((i_P)\) (Milani and Knežević 1994, Knežević et al. 2002). These orbital elements describe the size, shape and tilt of orbits. Proper orbital elements, being more constant over time than instantaneous orbital elements, provide a dynamical criterion of whether or not a group of bodies has a common ancestor.

To identify an asteroid family, we use a numerical code that automatically detects a cluster of asteroid positions in the 3-dimensional space of proper elements. We based our code on the so-called Hierarchical Clustering Method (hereafter HCM, Zappalà et al. 1990). The HCM requires that members of the identified cluster of asteroid positions in the proper elements space be separated by less than a selected distance (the so-called ‘cutoff’).

In the first step, we apply the HCM to a catalog of proper asteroid elements (Milani and Knežević 1994, Knežević et al. 2002).\(^9\) The catalog we used for this work includes 106,284 proper elements (10/10/2002 release). The procedure starts with an individual asteroid position in the space of proper elements and identifies bodies in its neighborhood with mutual distances less than a threshold limit \((d_{\text{cut-off}})\). We define the distance in \((a_P, e_P, i_P)\) space by

\[
d = n a_P \sqrt{C_\alpha (\delta a_P/a_P)^2 + C_\epsilon (\delta e_P)^2 + C_i (\delta \sin i_P)^2},
\]

\(^9\)Available at the AstDys node, http://hamilton.dm.unipi.it/cgi-bin/astdys/astibo
where na_P is the heliocentric velocity of an asteroid on a circular orbit having the semimajor axis a_P. $\delta a_P = |a_P^{(1)} - a_P^{(2)}|$, $\delta e_P = |e_P^{(1)} - e_P^{(2)}|$, and $\delta \sin i_P = |\sin i_P^{(1)} - \sin i_P^{(2)}|$. The indexes (1) and (2) denote the two bodies in consideration. C_a, C_e and C_i are weighting factors; we adopt $C_a = 5/4$, $C_e = 2$ and $C_i = 2$ (Zappalà et al. 1994). Other choices of C_a, C_e and C_i yield similar results.

The cutoff distance d_{cutoff} is a free parameter. With small d_{cutoff} the algorithm identifies tight clusters in the proper element space. With large d_{cutoff} the algorithm detects larger and more loosely connected clusters. For the main belt, the appropriate values of d_{cutoff} range between 1 and 150 m/s. To avoid an a priori choice of d_{cutoff}, we developed software that runs HCM starting with each individual asteroid in our $N = 106,284$ sample and loops over 150 values of d_{cutoff} between 1 and 150 m/s with a 1 m/s step. The code has been optimized so that this job takes only a few days on a fast workstation.

In Fig. 4, we illustrate the final product of this algorithm using a ‘stalactite’ diagram (Zappalà et al. 1994). For each d_{cutoff} on the Y-axis we plot all clusters found by the HCM. For example, with $d_{\text{cutoff}} = 150$ m/s, nearly the whole main belt is linked to a single asteroid, (1) Ceres. We plot a horizontal line segment at $d_{\text{cutoff}} = 150$ m/s with length equal to the total number of members in this cluster. At smaller d_{cutoff} the complex structure of the main asteroid belt emerges. The stalactite diagram is extremely useful when we want to systematically classify this information. In fact, more than fifty significant groups are shown in Fig. 4 – twice the number of robust asteroid families known previously (Bendjoya and Zappalà 2002). We label each stalactite by the lowest numbered asteroid in the group (not all these labels appear in Fig. 4), and proceed to the second step of our algorithm.

In the second step, we select appropriate d_{cutoff} for each particular cluster. Unlike the first step of our algorithm that is fully automated, the second step requires some non-trivial insight into the dynamics of the main-belt asteroids, and cannot be fully automated. We illustrate this for the Koronis family (Zappalà et al. 1994). Figure 5 shows how the number $N(d_{\text{cutoff}})$ of members of the cluster linked to (158) Koronis changes with d_{cutoff}. The two bottom panels show derivatives of $N(d_{\text{cutoff}})$ that we use to find values of d_{cutoff}, where $dN(d_{\text{cutoff}})/dd_{\text{cutoff}}$ is large (these d_{cutoff} values are labeled by vertical dashed lines).
Each of these four $d_{\text{cut-off}}$ values has a clear interpretation. To correlate these values of $d_{\text{cut-off}}$ with structures and processes operating in the main belt, we generate movies that show projections of the dynamical structure of families into (a_P, e_P) and (a_P, i_P) planes. Moreover, we programmed an interactive visualization tool that allows us to work in three dimensions thus avoiding problems generated by the projection effects into either (a_P, e_P) or (a_P, i_P) planes.

With $d_{\text{cut-off}} \lesssim 12 \text{ m/s}$, the algorithm accumulates members of a very tightly clustered group – the product of a collisional breakup of the Koronis family member about 5.8 My ago (Karin cluster, Nesvorný et al. 2002a). With $d_{\text{cut-off}} \sim 23 \text{ m/s}$, the HCM starts to agglomerate the central part of the Koronis family. With $d_{\text{cut-off}} \sim 40 \text{ m/s}$, the algorithm steps over the secular resonance that separates central and large semimajor axis parts of the Koronis family (this particular shape resulted from long-term dynamics driven by radiation forces, Bottke et al. 2001). Finally, with $d_{\text{cut-off}} \gtrsim 95 \text{ m/s}$, the algorithm starts to select other structures in the outer main belt that have unrelated origins. This can be seen in Fig. 4, where many small stalactites join the Koronis family at $d_{\text{cut-off}} \gtrsim 100 \text{ m/s}$.

According to these considerations, $d_{\text{cut-off}} = 10-20 \text{ m/s}$ is the best choice for the Karin cluster and $d_{\text{cut-off}} = 50-90 \text{ m/s}$ is best for the Koronis family. For other families, we choose $d_{\text{cut-off}}$ using similar criteria. This effort requires human intervention because it is difficult (if not impossible) to program a general algorithm that takes into account all relevant processes operating in the main belt (such as resonances, radiation forces, etc.). A systematic analysis of 50+ clusters required a significant work effort. The final product of our algorithm are the

\[10\text{http://www.boulder.swri.edu/~davidn/morby/NEWfam(100,000PE)/}\

\[11\text{To demonstrate the statistical significance of each family we generated synthetic distributions of the proper elements and applied the HCM to them. For example, to demonstrate larger than 99\% statistical significance of the Karin cluster, we generated 100 synthetic orbital distributions corresponding to the Koronis family determined at $d_{\text{cut-off}} = 70 \text{ m/s}$ (i.e. 2388 asteroid positions at } 2.83 < a_P < 2.95 \text{ AU, } 0.04 < e_P < 0.06, \text{ and } 0.033 < i_P < 0.04), \text{ and applied our HCM algorithm to these data. With } d_{\text{cut-off}} = 10 \text{ m/s}, \text{ we were unable to find a cluster containing more than five members, yet the Karin family contains 84 members with this } d_{\text{cut-off}} \text{ (Fig. 5). We also used the HCM algorithm on 100 computer-generated asteroid belts (i.e. 106,284 random orbital positions at } 2.1 < a_P < 3.25 \text{ AU, } e_P < 0.3, \text{ and } i_P < 0.3). \text{ Once again, } d_{\text{cut-off}} = 10 \text{ m/s yielded no meaningful structures. We are thus confident that the Karin cluster and other families to which we applied the same technique are statistically robust.}
asteroid families (Table 1), lists of their members selected at appropriate cutoffs, and the list of background asteroids showing no apparent groups. Figure 6 illustrates this result: from top to bottom, the panels show all main-belt asteroids, family members, and background asteroids, respectively. From the total of 106,284 main-belt asteroids, 38,625 are family members (36.3% of total) and 67,659 are background asteroids (63.7%).

To determine whether our algorithm produced a reasonably complete list of asteroid families, we searched for residual clusters in the background asteroid population using proper elements and colors simultaneously. We defined the distance in \((a_p, e_p, i_p, PC_1, PC_2)\) space by

\[
d_2 = \sqrt{d^2 + C_{PC}[(\delta PC_1)^2 + (\delta PC_2)^2]},
\]

where \(d\) is the distance in \((a_p, e_p, i_p)\) sub-space defined in Eq. (2), \(\delta PC_1 = |PC_1^{(1)} - PC_1^{(2)}|\), and \(\delta PC_2 = |PC_2^{(1)} - PC_2^{(2)}|\). The indexes (1) and (2) denote the two bodies in consideration. \(C_{PC}\) is a factor that weights the relative importance of colors in our generalized HCM search. With \(d\) in \(m\ s^{-1}\), we used typically \(C_{PC} = 10^6\) and varied this factor in the \(10^4-10^8\) range to test the dependence of results.

We have found no statistically robust concentrations in the extended proper element/color space that would help us to identify new families. This result shows that the list of families in Table 1 based on the available data is (at least nearly) complete. We have also found that the generalized HCM search is useful to identify family ‘halos’, i.e., populations of peripheric family members that were not joined with the rest of the family with the standard HCM and cutoffs listed in Table 1. Some of these family halos may be also seen in bottom panels of Fig. 6 that show proper element distributions of the background asteroids (e.g., the Koronis family halo located at \(a_p = 2.9\) AU and small \(i_p\)). Other halos, such as \(\sim 30\) additional peripheric members of the Nysa-Polana (Cellino et al. 2001) family can be identified only in the extended proper element/color space, because they differ from their local background only by colors (i.e., \(PC_1 \lesssim 0\) for the Polana family).

By choosing cutoff distances \(d\), we compromised (i) to include as many peripheric family members as possible, and (ii) to avoid including many peripheric interlopers. The selected values of \(d\) that are listed in Table 1 are usually restrictive (i.e., at the small end of the
acceptable range) because one of the goals of our study is to determine the reliable mean colors for family members. We thus tried to avoid including many peripheric interlopers by using small d.

In total, we have identified \sim50 statistically robust asteroid families. We list 42 selected main-belt families in Table 1 (i.e., the Pallas family, other non-main-belt families, and several sub-structures of the prominent main-belt families are not listed). Table 1 includes all most-reliable asteroid families listed in Bendjoya and Zappalà (2002; 25 in total) except a dispersed clump of asteroids around (110) Lydia (Zappalà et al. 1994, 1995), which the HCM failed to identify in the new proper elements catalog. The large overlap between our and previous family classifications shows the good consistency of our approach. By using more proper element than previous studies, we found \sim20 new, statistically robust asteroid families.

4. Ages of Asteroid Families

Motivated by issues related to space weathering, we will examine the correlation between the SDSS colors of asteroids and their surface ages. Asteroid families are useful in this context because asteroid members of each family share the same origin (i.e., the same age). If we knew ages of asteroid families, we could better understand space weathering issues by studying color variations among them. For example, recent work has suggested that S-type asteroids with ‘fresh’ surfaces may have spectra that resemble (or trend toward) the ordinary chondrite spectra (see, e.g., Binzel et al. 2004, and references therein). If so, members of young S-type asteroid families (such as the Karin cluster; Nesvorný et al. 2002a) may show more OC-like colors than older S-type asteroid families (such as, e.g., the Koronis family; Marzari et al. 1995, Bottke et al. 2001).

To date, we know of four methods that allow us to estimate the age of an asteroid family: (i) Family Size-Frequency Distribution (SFD) Modeling, (ii) Global Main-Belt SFD Modeling, (iii) Modeling of Family Spreading via Thermal Forces, and (iv) Backward Numerical Integration of Orbits. We describe these methods below.

(i) Family SFD Modeling. Marzari et al. (1995) have modeled the collisional evolution
\begin{itemize}
\item[(ii)] \textit{Global Main-Belt SFD Modeling.} Durda and Dermott (1997) modeled the global collisional evolution of the main asteroid belt. Once the code is calibrated against the present SFD of the main belt, it can be used to calculate the typical time interval that elapses between breakups of diameter D asteroids. For example, Durda (personal communication) estimated that a $D \sim 100$-km asteroid disrupts somewhere in the main belt every 10^9 years, a $D \sim 50$-km asteroid disrupts every 2×10^7 years, and a $D \sim 30$-km asteroid disrupts every 5×10^6 years. Although these estimates have large uncertainties they show us that the large families that correspond to breakups of $D \sim 100$ km and larger parent bodies should be billions of years old, in agreement with (i). On the other hand, families originating from smaller parent bodies should be more numerous. For example, hundreds of asteroid families with $D \sim 30$ km parent bodies may have been produced in the asteroid belt since its formation. Such a large number of small asteroid families is not observed today. One obvious solution to this problem is to invoke some erasure mechanism that eliminates small asteroid families over time. Indeed, a number of erasure mechanisms are operating in the asteroid belt today (Marzari et al. 1999, Bottke et al. 2001, Nesvorný et al. 2002b, Nesvorný and Bottke 2004). It is thus likely that the observed asteroid families derived from smaller parent bodies are younger than those created by breakups of $D \gtrsim 100$-km parent bodies (such as the Themis, Koronis and Eos families).

\item[(iii)] \textit{Modeling of Family Spreading via Thermal Forces.} A recent analysis has shown that the asteroid families are subject to slow spreading and dispersal via numerous tiny resonances in the main belt (Nesvorný et al. 2002b). Moreover, $D < 20$ km asteroids
\end{itemize}
are moved inward toward the Sun and outward away from the Sun over comparatively long timescales by the Yarkovsky thermal effect; this mechanism provides another means for dispersing families (Bottke et al. 2001, Nesvorný et al. 2002b, Carruba et al. 2003, Nesvorný and Bottke 2004). Therefore, old family’s orbital parameters in \((a_P, e_P, i_P)\) space do not reflect the immediate outcomes of cratering events or catastrophic disruptions. Instead, they reveal how the family members evolved in \((a_P, e_P, i_P)\) space over long timescales by dynamical diffusion and chaotic resonances. On the other hand, tight clusters in \((a_P, e_P, i_P)\) space should represent young families that have not yet had an opportunity to disperse via dynamical mechanisms. Using theoretical models of the Yarkovsky effect, D. Vokrouhlický (personal communication) estimated that the Eos family is \(2.1 \pm 0.5\) Gyr old, and Nesvorný et al. (2003) found that the Themis and Massalia families are \(2.5 \pm 1.0\) Gyr and \(300 \pm 100\) My old, respectively. See Fig. 7 for a brief description of this method. Using the same method, W.F. Bottke (personal communication\(^{12}\)) determined the approximate ages of many other asteroid families. We used the same means and determined ages for most asteroid families that we have identified.

When available, we list these ages in Table 1. These values are probably subject to a number of systematic and random errors. For example, physical parameters of asteroids such as the thermal conductivity, albedo, rotation speed, surface and bulk densities, etc., are generally unknown. The strength of the Yarkovsky effect depends on them in complicated ways (see, e.g., Vokrouhlický 1999). On the other hand, recent studies (Chesley et al. 2003, Nesvorný and Bottke 2004) used observations to directly detect the Yarkovsky effect and showed that the standard modeling of the Yarkovsky effect matches the observationally-measured semimajor axis evolution with excellent precision. These results helped us to constrain some of the physical parameters that are most crucial for the correct modeling of the Yarkovsky effect (such as, e.g., the thermal conductivity). We estimate that the uncertainty in physical parameters produces up to \(\sim 50\%\) uncertainties in the age estimates. These uncertainties cannot compromise our analysis (see next section) because the determined family ages range over three orders of magnitude.

\(^{12}\)http://www.boulder.swri.edu/~bottke/Yarkovsky/
A more fundamental limitation of an age estimate derived from the spread of an asteroid family in a_P is that some part of this spread may come from the collisional ejection of fragments rather than from the subsequent gradual spreading of the family members by thermal effects (Dell’Oro et al. 2004). This is probably not an important issue for most prominent families that are spread enough to allow us to gauge their age properly but poses difficulties for smaller and possibly younger families. For example, we know that the Karin cluster has been generated by a breakup of a ≈20-km-diameter parent S-type body ≈5.8 My ago (Nesvorný et al. 2002a, Nesvorný and Bottke 2004); this family is spread about 0.01 AU in a_P. Because the 1- to 5-km-diameter members of the Karin cluster drift at speeds of only about $3-5 \times 10^{-5}$ AU per My (Nesvorný and Bottke 2004), the observed spread of the Karin cluster in a_P must have been generated by the breakup of the parent body rather than by the latter slow evolution; we estimate that it would take ~70 My for the Yarkovsky effect to generate the observed spread which is much longer than the actual family’s age (≈ 5.8 My; Nesvorný et al. 2002a).

To roughly compensate for the ejection field component, we assumed ejection speeds ‘at infinity’ $V_\infty \sim 15$ m/s and $V_\infty \sim 30$ m/s for the S- and C-complex families, respectively. Ejection speeds of this order are suggested by dynamical structures of young asteroid families (Nesvorný et al. 2002a, 2003) and by the SPH simulations of asteroid breakups (Michel et al. 2002, 2003). For example, to explain structures of two known pristine asteroid families, the S-type Karin cluster and the C-type Veritas family, we find $V_\infty \sim 15$ m/s and $V_\infty \sim 30$ m/s respectively. These corrections produce ages that are about 70 My and 140 My shorter than those determined if $V_\infty = 0$ is assumed.

We used the above corrections in an attempt to resolve an apparent problem with ages determined from $V_\infty = 0$: three families for which the rigorous method (iv) worked (see below) are all younger than 10 My (the Karin, Veritas and Iannini families). On the other hand, none of the ages determined from families’ dispersions in a_P using $V_\infty = 0$ was larger than 10 My but shorter than 100 My even though we find no reason to believe that such ages should not occur. Although our solution of this problem may be simplistic, we adopted it to improve the consistency between methods (iii) and (iv).
Perhaps a more appropriate choice than a fixed \(V_\infty \) for all S- and C-type families would be to assume the initial spread of a family that increases (on average) with the size of the family’s parent body (i.e., family-forming impacts in large bodies must produce larger ejection speeds so that fragments can escape). For example, Dell’Oro et al. (2004) argued that \(\sim 50\% \) of the present spreads in the semimajor axis of prominent asteroid families is due to \(V_\infty \). If so, the age values determined with \(V_\infty = 0 \) should be reduced by a factor of \(\sim 2 \). We are developing a method where \(V_\infty \) and age can be fitted simultaneously to orbital distributions of at least several prominent families (Vokrouhlický et al., in preparation). This superior method will help us to obtain better understanding of \(V_\infty \) for family age estimates from (iii). Our preliminary results suggest values of \(V_\infty \) that are intermediate between the values assumed here and \(V_\infty \) recommended by Dell’Oro et al. (2004).

(iv) Backward Numerical Integration of Orbits. To determine the exact age of a family the orbits of the family members must be numerically integrated into the past. The goal is to show that in some previous epoch the orbits of all cluster members were nearly the same (Nesvorný et al. 2002a). There are two angles that determine the orientation of an orbit in space: the longitude of the ascending node (\(\Omega \)) and the argument of perihelion (\(\omega \)). Due to planetary perturbations these angles evolve with different but nearly constant speeds for individual asteroid orbits. Today, the orbits of the family members are oriented differently in space because their slightly dissimilar periods of \(\Omega \) and \(\omega \) produce slow differential rotation of their orbits with respect to each other. Eventually, this effect allows \(\Omega \) and \(\omega \) to obtain nearly uniform distributions in \([0^\circ, 360^\circ]\). For a short time after the parent body breakup, however, the orientations of the fragments’ orbits must have been nearly the same. Nesvorný et al. (2002a, 2003) used this method to determine the ages of the Karin (5.8 \(\pm \) 0.2 My) and Veritas (8.3 \(\pm \) 0.5 My) families, and also found that the tight family associated with (4652) Iannini is probably \(\lesssim 5 \) My old. Unfortunately, Nesvorný et al.’s method can not be used to determine ages of asteroid families that are much older than \(\approx 10 \) My, because the orbital evolution of asteroids is usually chaotic and non-reversible on \(\gtrsim 10 \)-My time scales.

In Table 1, we list ages for those asteroid families for which the age estimates are available. Ages of the Themis and Koronis families determined from (i) (\(\sim 2 \) Gy) are consistent
with determinations obtained from (iii) (~2.5 Gy). We list the latter values in Table 1, because we believe that (iii) generally provides a more reliable estimate of age. Similarly, (iv) is obviously more reliable and precise than (iii) for the young asteroid families.

5. Colors of Asteroid Families

We used the subset of entries in the SDSS MOC that were matched to asteroids with known orbit elements (Jurić et al. 2002) and that have $\delta PC_1 < 0.1$ and $\delta PC_2 < 0.1$, where δPC_1 and δPC_2 are the measurement errors in the principal components.\(^\text{13}\) In total, we studied colors of 7,593 main-belt asteroids of which 3,026 are family members and 4,567 are background main belt objects (Fig. 8). In the following analysis we will concentrate on color variation between asteroid families and its correlation with their age. Other issues, such as the color variations within families, colors of the background population, etc., will be discussed elsewhere (Jedicke et al., in preparation).

Table 1 shows the taxonomic-complex types for families for which the classification was obvious according to our criteria defined in section 2. In cases where the taxonomic type of a family was known previously from observations of its large members (see Cellino et al. 2002 and references therein) we find that this taxonomic type is also predominant for small asteroid family members observed by the SDSS (see also Ivezić et al. 2002). Our simple criteria, however, do not distinguish between sub-categories within the three broad taxonomic complexes S, C, and X. For this reason, we list some families as being taxonomic S-complex type (i.e., part of the S-complex as defined by Bus and Binzel 2002b) although a more refined classification is possible from the SDSS colors in some cases and/or the exact family’s taxonomic type was determined by past spectroscopic surveys (see, e.g., Bus 1999 and Cellino et al. 2002). Five families that appear to be either C- or X-complex type (no. 293, 363, 410, 1726 and 3556) are listed as C/X. For example, the (1726) Hoffmeister family is either C or F type according to Cellino et al. (2002).

\(^{13}\)For those asteroids that were observed more than once by the SDSS, we use the color measurement that has the smallest error.
Our Table 1 includes 24 families that were not listed in Cellino et al. (2002) because their taxonomic type was not known previously. On the other hand, Cellino et al. listed 11 families that are not included in our Table 1. Four of these families (14 Bellona, 88 Thisbe, 226 Weringia, 729 Watsonia) are very dispersed asteroid groups in proper element space and have been identified by means of spectroscopy rather than by the analysis of the proper elements. The (2) Pallas family is not included in our list because (2) Pallas has highly inclined orbit and does not appear in the catalog of analytically calculated proper elements that we use here. Three of Cellino et al.’s families (125 Liberatrix, 237 Coelestina, 322 Phaeo) were identified by means of the wavelet analysis of the proper elements. These families are statistically less robust because the wavelet analysis is known to impose more relaxed criteria on family membership than the HCM (Zappalà et al. 1995). The (2085) Henan and (110) Lydia families are rather dispersed, possibly old families that we have failed to identify as reliable asteroid families by using the most recent proper element catalog. Finally, the HCM fails to identify Cellino et al.’s (45) Eugenia family with \(d \leq 120 \) m/s, while all our other families show many members with \(d \leq 120 \) m/s values. Given the goals of this study we favor more restrictive criteria for family membership and will not use these families in our analysis.

We selected those families that are clearly either S-, C-, or X-complex type. Unusual cases, such as the Flora and Erigone families that show many members with SDSS colors corresponding to two or more distinct taxonomic complexes, were excluded from the analysis. Next, we removed all interlopers from the S-, C-, and X-complex families (e.g., those member asteroids that have unusual colors relative to the most other members), and calculated \(\langle PC_1 \rangle \) and \(\langle PC_2 \rangle \), where \(\langle PC_j \rangle \) is the arithmetic mean of the \(j \)th principal component over the remaining members of each asteroid family.

Figure 9 shows the mean colors of S-, C- and X-complex families. The S-complex families have \(PC_1 > 0.35 \) while C- and X-complex families have \(PC_1 < 0.35 \). The V-type Vesta family (denoted in green) differs from the S-type families by small \(PC_2 \). The (832) Karin cluster and the (490) Veritas family, the two youngest known asteroid families for which we have good color data, are located on a periphery of regions in \((PC_1, PC_2) \) plane that are populated
by the S- and C-type families. There is a significant spread of PC₁ and PC₂ for families of the same taxonomic complex. For example, two C-complex families can differ by \(\sim 0.1-0.2 \) in PC₁ and/or PC₂. Because measurement errors and errors of the mean colors are \(\lesssim 0.05 \), Fig. 9 documents true color differences between families. This result is consistent with studies of spectral variability among families by higher-resolution spectrophotometric measurements (cf. Cellino et al. 2002).

A simple explanation for this behavior is to interpret colors in terms of mineralogical differences between parent bodies of asteroid families. To this end, we must know how PC₁ and PC₂ correlate with spectral features that are diagnostic for presence of specific minerals. Figure 10 shows that PC₁ is an effective measure of the average spectral slope between 0.35 and 0.9 \(\mu \text{m} \). On the other hand, PC₂ correlates with the spectral curvature generated by broad absorption features such as the 1-\(\mu \text{m} \) olivine/pyroxene absorption band (e.g., Gaffey et al. 2002). These spectral features are also affected by asteroid surface properties such as the presence of particulate regolith, temperature, etc. (e.g., Johnson and Fanale 1973, Roush and Singer 1984). Moreover, the spectral slope and the depth of the 1-\(\mu \text{m} \) absorption band is affected by space weathering processes (e.g., Clark et al. 2002a, Chapman 2004).

To address these issues, we searched for correlations of PC₁ and PC₂ with asteroid size, distance from the Sun, age of an asteroid family, etc. Interestingly, the only statistically significant correlation we found is a correlation between PC₁ and the age of an asteroid family. Figure 11 shows a plot of PC₁ as a function of age for selected S- and C-complex asteroid families: (a) All S-complex families that appear in Fig. 9 but (606) Bragagne; we also include the S-type (4652) Iannini family in 11 using its members with \(\delta \text{PC₁} < 0.3 \) and \(\delta \text{PC₂} < 0.3 \). (b) All C-complex families that appear in a dashed polygon in Fig. 9. We plot only these C-complex families in Fig. 11 because we have found that the remaining six C- and X-type families do not show a clear correlation between PC₁ and age. We motivate this selection by the fact that families such as, e.g., the (18405) FY12 family with mean PC₂ \(\sim 0 \), are likely to have a very different mineralogical composition from the C-complex families. For the same reason we exclude the (606) Bragagne family from the analysis of the S-complex families because it has unusually large PC₂ (cf. Jedicke et al. 2004).
The trends for S- and C-complex families in Fig. 11 are opposite. Young S-complex families generally have smaller PC$_1$ than old S-complex families, while young C-complex families tend to have larger PC$_1$ than old C-type families. This produces a sort of convergence, where in the limit of zero age the S- and C-complex families would converge have similar values (\sim0.3) of PC$_1$. This does not mean that spectra of the S- and C-complex families become identical in the limit of zero age; they differ in dimensions orthogonal to PC$_1$.

We assign these color vs. age trends to effects of space weathering. In our scenario, surfaces of the member asteroids of a family were initially covered by a (perhaps thin) layer of ‘fresh’ particulate material that had been excavated by the disruption event from the parent body interior. This is consistent with recent results that favor low values of the surface thermal conductivity for Karin family members (Nesvorný and Bottke 2004). This surface material was then subject to space weathering effects. Spectral changes produced by these effects over time should be similar for all member asteroids of a single asteroid family, because they should have similar mineralogy (Bus 1999) and their surfaces have the same age. Because PC$_1$ is a proxy for the spectral slope (Fig. 10), Fig. 11 suggests that colors of S- and C-complex asteroids become increasingly ‘red’ and ‘blue’ over time, respectively. The former result confirms findings of Jedicke et al. (2004) and is consistent with previous studies of space weathering by remote sensing and ground-based spectrophotometry (see Clark et al. 2002a and Chapman et al. 2004 for reviews).

Figure 11 shows that there is an age-dependent component to asteroid colors along with mineralogical differences. Because we have no a priori means of disentangling these effects we make no distinction between families of different taxonomic types within the S- and C-complexes. Some justification for this approach is suggested by the large color difference between the (832) Karin and (158) Koronis families. The Karin family was formed by a breakup of a former Koronis family member (Nesvorný et al. 2002a). For this reason, the Karin and Koronis family asteroids should be compositionally similar. Yet, their SDSS colors differ (Fig. 9). It is natural to assign this color differences to space weathering effects because the Karin family is one of the most recently-formed families in the asteroid belt (5.8 \pm 0.2
My old, Nesvorný et al. 2002a) while the Koronis family is one of the oldest (~2–3 Gy old; Marzari et al. 1995, Bottke et al. 2001).

The trends in Fig. 11 cannot be explained by assuming that the mean SDSS color varies with asteroid size rather than with family age. On one hand it is true that younger families have usually smaller parent bodies, because small main-belt asteroids are disrupted at higher rates than large ones. Also, fragments of small parent bodies are smaller than those produced by breakups of large parent bodies. On the other hand, the mean SDSS colors are dominated by small, $H \gtrsim 13.0$ asteroids which are abundant in both the large and small families. For this reason, the correlation between the SDSS’s PC$_1$ and age occurs independently of whether we do or do not consider a size-limited sample of family members. We have made this and other tests and found no correlation of color with size. We also argue that the parent body of the young Veritas family (~140 km in size; Tanga et al. 1999) was larger than parent bodies of many prominent old families. Thus, the peripheric colors of the Veritas family (Fig. 9) may be a signature of its recent origin rather than the size of its parent body.

Correlations between PC$_1$ and log$_{10} t$ have been fit by straight lines. We used the fitexy routine from Numerical Recipes (Press et al. 1992) which let us fit PC$_1$ vs. log$_{10} t$ accounting for errors associated with both values (for PC$_1$ errors, we used the RMS range of PC$_1$ values within the family). The dashed lines in Fig. 11 show our best-fit results. For the S-complex families, we found that PC$_1 = A \log_{10} t + B$ (t in My) with $A = 0.068 \pm 0.024$ and $B = 0.312 \pm 0.060$, where the formal errors were determined by fitexy. The real uncertainty of this empirical fit must be larger than the formal errors because of the effect of varying composition among the S-complex families. The slope of the distribution is significant at greater than the 3-σ level and there is a 76% correlation coefficient between PC$_1$ and log$_{10}(t)$. For the C-type families, we found a less robust correlation with the best-fit parameters given by $A = -0.052 \pm 0.023$ and $B = 0.265 \pm 0.076$.

Using Fig. 10, we find that the mean spectral slope of the S-complex families increases with time as $\approx 0.01 \mu m^{-1} \log_{10} t$. This empirical fit is valid only for $2.5 \lesssim t \lesssim 3,000$ My (the time interval where we have data) and for the mean spectral slope determined from wide-
wavelength filter photometry obtained by the Sloan Digital Sky Survey (for reasons discussed in section 2). This result is as one would intuitively expect – the rate of space weathering is greatest for freshly exposed surfaces and as the object ages there is less opportunity for more weathering to occur on an already weathered surface. The functional form of the fit that we use here is arbitrary. We choose it because the log-linear fit is simple and does not require any special assumptions about the nature of space weathering effects. See Jedicke et al. (2004) for an alternative, theoretically-justified form of the fit function.

The correlation shown in Fig. 11 for the S-complex families would be much weaker than calculated above if the data points corresponding to the youngest families (such as the Iannini, Karin and Agnia families) were excluded from the analysis. For this reason, the youngest families provide a crucial constraint on our scenario. Fortunately, the youngest of all, the Karin and Iannini clusters, are robust dynamical families with solid age determinations (Nesvorný et al. 2002a, 2003, Nesvorný and Bottke 2004). Also, the S-complex members of the Iannini cluster have distinct colors from their local background of predominantly C-type asteroids. It is thus difficult to explain the colors of Karin and Iannini cluster members by using other assumptions.

The young Veritas family and the old Themis and Hygiea families are similarly important to constrain the color-age correlation for the C-complex families in Fig. 11. The Veritas family is a robust dynamical family with solid age determination (Milani and Farinella 1994, Nesvorný et al. 2003). The ages of the Themis and Hygiea families are certain only to about ~50%. Fig. 11 shows asteroid family ages over a three orders of magnitude range: the Iannini, Karin, and Veritas families being the youngest (< 10 My) and the Maria family being probably the oldest (~3 Gyr). For this reason, ~50% errors in some family age estimates cannot compromise our results.

As was argued earlier, some part of the PC$_1$ variability between families must come from the compositional variability between their parent bodies. For this reason, the spread of data points around the best-fit lines in Fig. 11 is not surprising. On the other hand, we find it hard to believe that compositional variability has a dominant effect in Fig. 11, because we do not see any reason why colors of young families would differ from colors of
old ones.

To probe the effect of composition we compared the reflectance spectra of the S-complex Karin and Koronis families (Fig. 12). Because the Karin cluster was produced by a breakup of a former Koronis family member, the mineralogical composition of these families should be similar. In contrast, the spectral slopes at 0.5-0.9 \(\mu m \) of Karin cluster members are significantly shallower than the spectral slopes of Koronis family members (Fig. 12). Moreover, the Karin cluster members show an absorption feature at \(\sim 0.9 \mu m \) that is deeper than that of Koronis family members. We find about 15% difference in flux at \(\sim 0.9 \mu m \) when the flux is normalized at \(\sim 0.55 \mu m \). This comparison shows that the difference in composition among the S-complex families cannot account for their color trends of S-complex families in Fig. 11.

Unfortunately, a similar comparison can not yet be made for the C-complex families because we have not yet identified a recent breakup of a member of an old C-complex family. We may, however, compare the colors of the Veritas family (youngest known C-complex family) with some compositional analog. Possible analogs are the Themis and Hygiea families. These families are located in the same region of the main belt as the Veritas family \((a \sim 3.2 \text{ AU})\) suggesting that their parent bodies may have accreted from roughly the same part of the proto-planetary disk. The Themis and Hygiea families are also the oldest C-complex families known \((2.5 \pm 1 \text{ and } 2 \pm 1 \text{ Gy, respectively; Table 1})\). By comparing their colors with the \(8.3 \pm 0.5\) My old Veritas family, the effects of space weathering can be best identified. Because the Themis and Hygiea families have nearly identical colors, we concentrate on the comparison between the Veritas and Themis families (Fig. 13).

Figure 13 illustrates the spectral difference between the two families. The spectral slope of the Veritas family is on average steeper than that of the Themis family. No counterpart exists among the Themis family members for the steep spectral slope at short wavelengths that is typical for the Veritas family members. Other young C-complex families (such as, e.g., the (1128) Astrid family) have spectral slopes that are similar to that of the Veritas family. We believe that these facts may indicate that the space weathering processes modify colors of the C-complex asteroids over time. We cannot exclude that compositional differences
between the C-complex families cause these spectral variations. If the Veritas, Themis and Hygiea families are removed from Fig. 11, evidence for the age-color correlation among the C-complex families becomes statistically insignificant.

6. Summary and Discussion

Our work provides new evidence for space weathering effects. Using a novel method, we found that the reflectance spectra of the S-complex asteroids become redder and that the broad absorption band at 1-μm becomes shallower over time. We measured the rate of these spectral changes. We estimated that the mean spectral slope between 0.35 and 0.9 μm increases with time \(t \) (given in My) as \(\approx 0.01 \mu m^{-1} \times \log_{10} t \). This empirical fit is valid only for \(2.5 \lesssim t \lesssim 3,000 \) My and cannot be easily extrapolated to arbitrarily small or large \(t \). We also found that Gy-old terrains of S-type asteroids reflect about 15% more light at \(\sim 1-\mu m \) wavelengths than an \(\sim 5-\)My-old S-type asteroid surface when the flux is normalized by the reflected light at 0.55 μm. These spectral changes were determined from the wide-wavelength filter photometry obtained by the Sloan Digital Sky Survey. Because the SDSS filters integrate the spectral reflectance over their 0.1-0.3μm widths (issue discussed in section 2), caution is required to compare the determined spectral changes with other recent studies of the space weathering effects that used a higher-resolution spectroscopy (e.g., Clark et al. 2001, 2002a,b; Murchie et al. 2002, Chapman 2004, Binzel et al. 2004).

The S-complex families with <10 My ages (832 Karin and 4652 Iannini) are important in establishing the age-color correlation for the S-complex families. Unfortunately, only one such recent C-complex family is known (490 Veritas). This makes it more difficult to obtain conclusive evidence for the space weathering processes on the C-complex asteroids. Nevertheless, we found a correlation between ages and colors for the C-complex families. If real, this result suggests that the C-complex asteroids show spectral alterations by space weathering effects that decrease their mean spectral slope over time. This result needs verification. When a new young C-complex family is identified in the main belt we predict that its members will show spectral slopes similar to those of the Veritas family members.
Our work has important implications for the origin of ordinary-chondrite (OC) meteorites which are the most abundant class of meteorites found on the Earth. The reflectance spectra of OC meteorites that are obtained in laboratories show a shallow spectral slope and a very deep olivine/pyroxene absorption bands, which are uncommon spectral features among the main-belt asteroids. This is surprising because meteorites are fragments of the main-belt asteroids (e.g., McSween 1999); the spectral characteristics of the OC meteorites and many main-belt asteroids should thus be similar.

To resolve this apparent paradox, Chapman and Salisbury (1973) proposed a number of processes that may account for the observed difference. More recently, color variations on surfaces of S-type asteroids observed by the Galileo and NEAR spacecrafts ((243) Ida, (951) Gaspra, (433) Eros) provided strong evidence for the space weathering hypothesis because older surface terrains were found to be darker and redder in appearance (Veverka et al. 2000, Clark et al. 2001, 2002a,b, Murchie et al. 2002, Chapman 2004) than some geologically recent surface markings. Micro-meteorite impacts and/or solar wind irradiation that produces nanophase iron particles on asteroid regolith grains is thought to be responsible for these spectral alterations (Cassidy and Hapke 1975, Hapke 2001, Pieters et al. 2000, Sasaki et al. 2001).

While our classification of our families as members of the S-complex is well determined we do not distinguish between their taxonomic sub-categories. In particular, a classification scheme based on mineralogical absorption features (Gaffey et al. 1993) in the infra-red suggests that only one sub-category (SIV) is mineralogically consistent with OC meteorites. It would therefore seem that our analysis should be restricted only to those families of the S(IV) type. There are two problems with this option (see also Jedicke et al. 2004): 1) the mineralogical classification scheme has only been applied to 39 asteroids and only two of those objects are among the thousands of our family member asteroids, and 2) that classification scheme ignored the possibility of space weathering, assigning all the variability within the S-complex to mineralogical diversification. Similarly, the (221) Eos family contains many K-type (taxonomic sub-category within the S-complex) asteroids that are thought to be related to the CO3 and CV3 chondrites rather than the OC meteorites (Doressoundiram et
Our study shows that there is an age-dependent component to asteroid colors along with mineralogical differences. Since we have no a priori means of disentangling these effects we make no distinction between families of different types within the S-complex (and C-complex) families. Furthermore, in the wavelength range of the SDSS filters there are few features available to quantitatively distinguish between S-complex asteroids. By comparing colors of the S-type Koronis and Karin families we found that compositional differences can not account (entirely) for the SDSS color differences. The Koronis family originated from a compositionally homogeneous (probably non-differentiated) parent asteroid because its member asteroids show homogeneous colors. The Karin cluster formed as a result of breakup of a ~20-km-diameter Koronis family member. The asteroids in the Karin cluster must be compositionally similar to the Koronis family members. Yet the colors differ (Fig. 9). It is also difficult to explain how compositional differences could produce the trends shown in Fig. 11.

Because we were able to measure the space weathering rate for S-complex asteroids we can draw several important conclusions for the origin of OC meteorites and for the surface geology of asteroids. According to our results, the reflectance spectrum of the S-complex asteroids with a few-million-year surface age (such as members of the Karin or Iannini families) appears to be verging to that of OC meteorites. This result presents strong support for earlier speculations that many S-complex asteroids could be OC meteorite parent bodies.

The Azzurra impact crater, its ejecta, and some small, morphologically fresh craters imaged by the Galileo spacecraft at (243) Ida (a member of the Koronis family) show bluer-than-average colors and the 1-μm absorption band that is ~10-15% deeper (flux normalized at ~0.55 μm.) than the same spectral band observed on Ida’s weathered terrains (e.g., Veverka et al. 1996, Sullivan et al. 1996). Comparing these values with the ones found in our study (e.g., Fig. 12), we find that the youngest studied surface features on Ida have ages that are comparable to or somewhat larger than that of the Karin cluster (i.e., \(\geq 6 \) My). This result has important implications for the geology of (243) Ida. In principle, the
morphologically fresh craters on Ida could be given absolute dates by carefully sorting their spectra and by using the space weathering rate that we have determined.

The Near-Earth Objects (NEOs) show an abundance of so-called Q-type asteroids (about 20% of ≈300 surveyed NEOs are Q-types; see Binzel et al. 2002 for a recent review), which are direct spectrophotometric analogs for the ordinary chondritic material. In contrast, no Q-type asteroid has been found to date among the ∼2000 surveyed main belt asteroids (MBAs; e.g., Bus & Binzel 2002a,b). This lack of spectrophotometric main-belt analogs for the OC meteorites is a long-debated and fundamental problem. It is now generally accepted that space weathering processes similar to those acting on the Moon (Gold 1955, Pieters et al. 2000, see Hapke 2001 for a review) can darken and redden the initially OC-like (Q-type) spectrum of a fresh asteroid surface, giving it an S-type appearance (see Clark et al. 2001, 2002a,b; and Chapman 2004 for direct evidence for space weathering processes from the NEAR-Shoemaker and Galileo spacecrafts, and Bus & Binzel 2002b for a definition of Q-type spectra).

The canonical interpretation of these results is that the lack of Q-type asteroids among the observationally sampled MBAs is related to asteroid-size-dependent effects on surface regolith or to the shorter collisional lifetimes of smaller asteroids (e.g., Johnson & Fanale 1973, Binzel et al. 1998, 2001, 2002, 2004, Rabinowitz et al. 1998, Whiteley 2001). Indeed, current spectrophotometric surveys of MBAs are largely incomplete in the size range of typical NEOs (≲5-km diameters).

Researchers hypothesize that: (i) Survival lifetimes against catastrophic disruption (see Davis et al. 2002) decrease with decreasing size. Thus, on average, as we examine smaller and smaller objects, we should see younger and younger surfaces. (ii) Surfaces showing Q-type spectral properties should thus exist, on average, only among the smallest asteroids, which become easy spectroscopic targets only when enter into NEO space. (iii) Large, OC-like asteroids in the main belt should show, on average, ‘space-weathered’ spectral properties, explaining why they are taxonomically classified as S-type asteroids.

There are several problems with this “standard scenario”. For example, many km-sized and larger Q-type NEOs can be found that have collisional lifetimes ≳100 My (a recent study
by Bottke et al. (2004) suggests their $\gg 100$ My collisional lifetimes). Yet, our measurements of the space weathering rate (see also Jedidie et al. 2004, Yoshida et al. 2004, Sasaki et al. 2004) suggest that space weathering processes operate on shorter timescales ($\lesssim 10$ My) to modify the Q-type spectrum into the S-type spectrum (i.e., produce a steeper spectral slope, suppress 1 and 2 μm absorption bands; e.g., Hapke 2001). If so, we require that the observed Q-type NEOs have surface ages that are $\lesssim 10$ My. This implication of the standard scenario is at odds with the collisional and dynamical models of the NEOs' origin because it requires that $\gtrsim 20\%$ of NEOs were produced by collisional breakups of large bodies within the past $\lesssim 10$ My. In contrast, models predict much longer durations for processes like the Yarkovsky effect and small resonances to insert collisional fragments into the planet-crossing space (e.g., Migliorini et al. 1998, Bottke et al. 2002, Morbidelli & Vokrouhlický 2003, Binzel et al. 2004). Whiteley (2001) and Binzel et al. (2002) discuss other objections to the standard scenario.

To resolve these problems, we propose a new scenario for the origin of Q-type NEOs that assumes that surfaces of Q-type NEOs have been recently (i.e., within the past $\lesssim 10$ My) reset by tidal effects. To show that this scenario is plausible, we estimate that a typical NEO suffers on average about one encounter to within 2 Roche radii (R_{Roche}) from the Earth every ≈ 10 My. This time interval between encounters is comparable with the average orbital lifetime of NEOs (≈ 5 My according to Bottke et al. 2002) and is also comparable with the range of space weathering timescales that we determine here. Consequently, if tidal encounters at $2R_{\text{Roche}}$ can reset the surface, Q-type NEOs could be as numerous as S-type NEOs. Perhaps only closer encounters matter. For comparison, encounters up to five planet radii (this limit depends on shape and spin rate) can produce strong distortions of a rubble-pile NEO and material stripping that accounts up to 10% of the pre-encounter NEO's mass (Richardson et al. 1998). If our scenario is correct, Q-type asteroids must be rare among the MBAs.

We were not able to identify any significant change as a function of time in the SIMPS (Tedesco et al. 2002) albedo and 2MASS (Sykes et al. 2000) J/H and K/H IR band ratios for the S-complex families. This might be due to a lack of sensitivity of our technique (e.g.,
space weathering occurring too fast) and could indicate that different processes act at varying
time scales to create the overall space weathering phenomenon.

The 5-color photometry obtained by the Sloan Digital Sky Survey is the only current
source that provides enough spectral information on small asteroid families. For example,
none of the Karin and Iannini cluster members have been observed by SMASS (Bus and
Binzel 2002a). These families are essential to determine the rate of space weathering on My
time scales. To verify our results it is thus crucial to obtain good visible and near infra-red
spectroscopic data on a representative number of members of the Karin and Iannini families,

as well as of any other recently-formed families that may be discovered in the future.

We thank Bill Bottke, Beth Clark, Clark Chapman and Jeff Taylor for their suggestions
to this work. D.N.’s work was supported by the internal grant no. R9361 of the Southwest
Research Institute and by the NASA’s Planetary Geology and Geophysics program, contract
no. NAG513038. Funding for the creation and distribution of the SDSS Archive has been
provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National
Aeronautics and Space Administration, the National Science Foundation, the U.S. Depart-
ment of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS
Web site is http://www.sdss.org/.

REFERENCES

Bell, J. F., and 20 colleagues 2002. Near-IR Reflectance Spectroscopy of 433 Eros from the
NIS Instrument on the NEAR Mission. I. Low Phase Angle Observations. Icarus 155,
119–144.

Bottke, A. Cellino, P. Paolicchi, and R. Binzel, Eds.). Univ. of Arizona Press, Tucson,
pp. 613–618.

drite Meteorites: The New Big Picture. BAAS 30, 1041.

Table Captions

TABLE 1. List of selected, statistically robust asteroid families with SDSS color data. The columns are: lowest numbered asteroid family member; cutoff limit used \((d_{\text{cutoff}}) \); number of family members determined at this cutoff; number of family members in the SDSS MOC (for small families we list \(N_1/N_2 \); where \(N_1 \) is the number of family members with 0.1 or smaller errors in PC\(_1\) and PC\(_2\), and \(N_1 \) is the number of family members with 0.3 or smaller errors PC\(_1\) and PC\(_2\)); common taxonomic-complex types among the family members as suggested by PC\(_1\) and PC\(_2\) (not listed if ambiguous or listed, e.g., as C/X if both C- and X-types are common); the mean PC\(_1\) and PC\(_2\) values; and the age of the family, when available. Sources for family ages are: (a) Marzari et al. (1995, 1999), (b) Durda & Dermott (1997), (c) Bottke et al. (2001), (d) Nesvorný et al. (2002a,b, 2003), (e) Carruba et al. (2003), (f) Vokrouhlický et al. (2004), (g) http://www.boulder.swri.edu/~bottke/Yarkovsky, and this work if no label appears in the last column.
<table>
<thead>
<tr>
<th>Family</th>
<th>d_{cutoff} (m/s)</th>
<th># of mem.</th>
<th># in SDSS</th>
<th>Tax. Type</th>
<th>PC$_1$</th>
<th>PC$_2$</th>
<th>Age (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Juno</td>
<td>50</td>
<td>74</td>
<td>2/11</td>
<td>S</td>
<td>0.523</td>
<td>-0.150</td>
<td>-</td>
</tr>
<tr>
<td>4 Vesta</td>
<td>70</td>
<td>5575</td>
<td>372</td>
<td>V</td>
<td>0.491</td>
<td>-0.288</td>
<td>-</td>
</tr>
<tr>
<td>8 Flora</td>
<td>80</td>
<td>5969</td>
<td>404</td>
<td>S/C1</td>
<td>-</td>
<td>-</td>
<td>1.0 ± 0.5d</td>
</tr>
<tr>
<td>10 Hygiea</td>
<td>80</td>
<td>1136</td>
<td>81</td>
<td>C</td>
<td>0.081</td>
<td>-0.170</td>
<td>2.0 ± 1.0g</td>
</tr>
<tr>
<td>15 Eunomia</td>
<td>80</td>
<td>3830</td>
<td>387</td>
<td>S</td>
<td>0.624</td>
<td>-0.156</td>
<td>2.5 ± 0.5g</td>
</tr>
<tr>
<td>20 Massalia</td>
<td>50</td>
<td>966</td>
<td>36</td>
<td>S</td>
<td>0.493</td>
<td>-0.139</td>
<td>0.3 ± 0.1d</td>
</tr>
<tr>
<td>24 Themis</td>
<td>90</td>
<td>2398</td>
<td>208</td>
<td>C</td>
<td>0.092</td>
<td>-0.179</td>
<td>2.5 ± 1.0a,g</td>
</tr>
<tr>
<td>44 Nysa(Polana)</td>
<td>60</td>
<td>4744</td>
<td>229</td>
<td>S/F2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>46 Hestia</td>
<td>80</td>
<td>154</td>
<td>11</td>
<td>S</td>
<td>0.624</td>
<td>-0.151</td>
<td>-</td>
</tr>
<tr>
<td>87 Sylvia</td>
<td>60</td>
<td>19</td>
<td>1/2</td>
<td>-</td>
<td>0.137</td>
<td>0.033</td>
<td>-</td>
</tr>
<tr>
<td>128 Nemesis</td>
<td>70</td>
<td>133</td>
<td>12</td>
<td>C</td>
<td>0.189</td>
<td>-0.196</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>137 Meliboea</td>
<td>120</td>
<td>57</td>
<td>12</td>
<td>C</td>
<td>0.185</td>
<td>-0.161</td>
<td>-</td>
</tr>
<tr>
<td>145 Adeona</td>
<td>60</td>
<td>533</td>
<td>68</td>
<td>C</td>
<td>0.112</td>
<td>-0.189</td>
<td>0.7 ± 0.5e,g</td>
</tr>
<tr>
<td>158 Koronis3</td>
<td>70</td>
<td>2304</td>
<td>174</td>
<td>S</td>
<td>0.522</td>
<td>-0.111</td>
<td>2.5 ± 1.0a,c</td>
</tr>
<tr>
<td>163 Erigone</td>
<td>80</td>
<td>410</td>
<td>22</td>
<td>C/X</td>
<td>0.138</td>
<td>-0.131</td>
<td>-</td>
</tr>
<tr>
<td>170 Maria</td>
<td>100</td>
<td>1621</td>
<td>155</td>
<td>S</td>
<td>0.578</td>
<td>-0.107</td>
<td>3.0 ± 1.0g</td>
</tr>
<tr>
<td>221 Eos</td>
<td>80</td>
<td>4412</td>
<td>457</td>
<td>S</td>
<td>0.466</td>
<td>-0.104</td>
<td>2.0 ± 0.5f</td>
</tr>
<tr>
<td>283 Emma</td>
<td>40</td>
<td>76</td>
<td>8/12</td>
<td>-</td>
<td>0.129</td>
<td>-0.053</td>
<td>-</td>
</tr>
<tr>
<td>293 Brasiliad</td>
<td>80</td>
<td>95</td>
<td>7/15</td>
<td>C/X</td>
<td>0.222</td>
<td>-0.076</td>
<td>0.05 ± 0.04</td>
</tr>
<tr>
<td>363 Padua</td>
<td>70</td>
<td>303</td>
<td>22</td>
<td>C/X</td>
<td>0.273</td>
<td>-0.122</td>
<td>0.3 ± 0.2</td>
</tr>
<tr>
<td>396 Aeolia</td>
<td>20</td>
<td>28</td>
<td>2/3</td>
<td>-</td>
<td>0.270</td>
<td>-0.187</td>
<td>-</td>
</tr>
<tr>
<td>410 Chloris</td>
<td>120</td>
<td>135</td>
<td>10</td>
<td>C/X</td>
<td>0.241</td>
<td>-0.093</td>
<td>0.7 ± 0.4</td>
</tr>
<tr>
<td>490 Veritas</td>
<td>50</td>
<td>284</td>
<td>35</td>
<td>C</td>
<td>0.212</td>
<td>-0.230</td>
<td>8.3 ± 0.5 Myd</td>
</tr>
<tr>
<td>Family</td>
<td>d_{cutoff} (m/s)</td>
<td># of mem.</td>
<td># in SDSS</td>
<td>Tax. Type</td>
<td>PC<sub>1</sub></td>
<td>PC<sub>2</sub></td>
<td>Age (Gy)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>569 Misa</td>
<td>80</td>
<td>119</td>
<td>8/15</td>
<td>C</td>
<td>0.154</td>
<td>-0.185</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>606 Brangane</td>
<td>30</td>
<td>30</td>
<td>3/5</td>
<td>S</td>
<td>0.441</td>
<td>0.061</td>
<td>0.5 ± 0.04</td>
</tr>
<tr>
<td>668 Dora</td>
<td>70</td>
<td>404</td>
<td>35</td>
<td>C</td>
<td>0.091</td>
<td>-0.190</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>808 Merxia</td>
<td>100</td>
<td>271</td>
<td>16</td>
<td>S</td>
<td>0.455</td>
<td>-0.115</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>832 Karin</td>
<td>10</td>
<td>84</td>
<td>3/6</td>
<td>S</td>
<td>0.387</td>
<td>-0.228</td>
<td>$5.8 ± 0.2$ My<sup>d</sup></td>
</tr>
<tr>
<td>845 Naema</td>
<td>40</td>
<td>64</td>
<td>8/13</td>
<td>C</td>
<td>0.135</td>
<td>-0.178</td>
<td>0.1 ± 0.05</td>
</tr>
<tr>
<td>847 Agnia</td>
<td>40</td>
<td>252</td>
<td>18</td>
<td>S</td>
<td>0.435</td>
<td>-0.169</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>1128 Astrid</td>
<td>50</td>
<td>65</td>
<td>6/7</td>
<td>C</td>
<td>0.221</td>
<td>-0.210</td>
<td>0.1 ± 0.05</td>
</tr>
<tr>
<td>1272 Gefion</td>
<td>80</td>
<td>973</td>
<td>85</td>
<td>S</td>
<td>0.544</td>
<td>-0.123</td>
<td>1.2 ± 0.4<sup>c</sup></td>
</tr>
<tr>
<td>1400 Tirela</td>
<td>70</td>
<td>212</td>
<td>13</td>
<td>–</td>
<td>0.714</td>
<td>-0.128</td>
<td>–</td>
</tr>
<tr>
<td>1639 Bower<sup>5</sup></td>
<td>100</td>
<td>82</td>
<td>5/10</td>
<td>–</td>
<td>0.528</td>
<td>0.026</td>
<td>–</td>
</tr>
<tr>
<td>1644 Rafita</td>
<td>100</td>
<td>382</td>
<td>19</td>
<td>S</td>
<td>0.538</td>
<td>-0.127</td>
<td>1.5 ± 0.5</td>
</tr>
<tr>
<td>1726 Hoffmeister</td>
<td>50</td>
<td>235</td>
<td>22</td>
<td>C/X</td>
<td>0.058</td>
<td>-0.115</td>
<td>0.3 ± 0.2<sup>d</sup></td>
</tr>
<tr>
<td>2980 Cameron</td>
<td>60</td>
<td>162</td>
<td>12</td>
<td>S</td>
<td>0.518</td>
<td>-0.116</td>
<td>–</td>
</tr>
<tr>
<td>3556 Lixiaohua</td>
<td>50</td>
<td>97</td>
<td>7/13</td>
<td>C/X</td>
<td>0.170</td>
<td>-0.080</td>
<td>0.3 ± 0.2</td>
</tr>
<tr>
<td>4652 Iannini</td>
<td>30</td>
<td>18</td>
<td>0/3</td>
<td>S<sup>6</sup></td>
<td>0.324</td>
<td>-0.109</td>
<td><5 My<sup>d</sup></td>
</tr>
<tr>
<td>9506 Telramund</td>
<td>60</td>
<td>70</td>
<td>3/9</td>
<td>S</td>
<td>0.502</td>
<td>-0.166</td>
<td>–</td>
</tr>
<tr>
<td>18405 FY12</td>
<td>50</td>
<td>11</td>
<td>3/3</td>
<td>X</td>
<td>0.214</td>
<td>0.001</td>
<td>–</td>
</tr>
</tbody>
</table>

1 Dynamical family shows a complex mixture of taxonomic types.
2 Nysa (S-type) and Polana (F-type; Cellino et al. 2002) families listed together.
3 The Karin cluster is excluded.
4 (293) Brasilia is probably an interloper (Nesvorný et al. 2003).
5 (1639) Bower is probably an interloper (Nesvorný et al. 2003).
6 Taxonomic type was determined for members with δPC₁ < 0.3 and δPC₂ < 0.3.
Fig. 1.— Absolute magnitude (H) histograms of main-belt asteroids observed by the SDSS and SMASH. Number of observed asteroids in 0.5 magnitude bins is shown. The SDSS magnitude distribution is peaked at 14.0-15.0, where very few SMASH spectra are available. On the other hand, SMASH observed many asteroids with $H < 10.0$. For this reason, the overlap between both datasets is small.
Fig. 2.— Comparison between the SDSS fluxes and the SMASS reflectance spectra for selected S-, C- and V-type asteroids. We subtracted the solar analog from the photometric-calibrated SDSS magnitudes and converted the magnitudes into fluxes. The fluxes were then normalized to 1 at 5500 Å, and offset by 0 or ±0.5. Vertical segments at 3557, 4825, 6261, 7672, and 9097 Å show 1-σ error bars for the SDSS reflectances. (1854) Skvortsov (S-type), (474) Prudentia (C-type), and (3869) Norton (V-type) are shown as examples, where the agreement between the SDSS colors and SMASS spectra was good.
Fig. 3.— SDSS asteroids with known taxonomic types shown in the Principal Component Plane. This plot shows PC$_1$ and PC$_2$ (Eq. 1) of ~100 asteroids detected by the SDSS that have 0.1 mag or smaller errors in PC$_1$ and PC$_2$ and that have been taxonomically classified by Bus & Binzel (2002b). We see that members of taxonomic complexes S, C, and X are located in three different regions (dashed lines schematically delimit these regions). R, K, T, D, L, Ld, A, Sa, Sl, Sq, Sr types are sub-categories of the S complex. Similarly, B, Ch, Cb and Xc, Xk, Xe are sub-categories of the C and X complexes, respectively (Bus & Binzel 2002b).
Fig. 4.— The dynamical structure of the asteroid belt represented in the ‘stalactite diagram’. Each stalactite represents an asteroid family and is labeled by the member asteroid that has the lowest designation number. The width of a stalactite at cutoff d shows the number of family members that were identified with d. Large families, such as those associated with (158) Koronis, (24) Themis, (15) Eunomia, (221) Eos, (4) Vesta, and (44) Nysa, appear as thick stalactites that persist over a large range of d_{cutoff}. Smaller families are represented by thin stalactites that are often (but not always, see, e.g., (490) Veritas) vertically short meaning that their determination requires a specific narrow range of d_{cutoff}. About fifty asteroid families are shown in this figure.
Fig. 5.— From top to bottom, the panels show the logarithm of the total number of the Koronis family members $\log_{10}(N)$, the first derivative dN/dd_{cutoff}, and $(dN/dd_{\text{cutoff}})/N$ to enhance features for small N. The vertical dashed lines indicate d_{cutoff} that correspond to important changes in the slope of $N(d_{\text{cutoff}})$.
Fig. 6.— Decomposition of the asteroid belt into family and background asteroids. From top to bottom, the panels show all main-belt asteroids, the family members, and the background asteroids, respectively.
Fig. 7.— Absolute magnitudes (H) and proper semimajor axes (a_p) of the Themis (a) and Massalia (b) family members (dots). The V-shaped lines indicate positions of Yarkovsky-drifting bodies evolved from the center of the families over the indicated time intervals, assuming maximum theoretical drift rates inward and outward. The drift rates were computed analytically using linearized approximations of the Yarkovsky effect (Vokrouhlický 1999). Assuming a tight initial orbital distribution of a newly born family, the family members are expected to be localized within one of the V-shaped contours. In (a), the distribution in a_p of the Themis family members with $H \gtrsim 12.5$ is cut by the chaotic 11:5 and 2:1 mean motion resonances with Jupiter. Using members with $H \lesssim 12.5$, we estimate that the Themis family is 2.5 ± 1.0 Gy old. From (b), the Massalia family is 300 ± 100 My old. These estimates are robust over a wide range of the physical parameters compatible with the family’s taxonomic type (Themis is C, Massalia is S) and with asteroidal surfaces covered by regolith. The outliers shown in the figure are probably interlopers. Figure from Nesvorný et al. (2003).
Fig. 8.— Principal color components PC$_1$ and PC$_2$ of the main-belt asteroids observed by the SDSS. We show only those data points that have δPC$_1 < 0.1$ and δPC$_2 < 0.1$. From the total of 7,593 main-belt asteroids, 3,026 are family members (right panel), and 4,567 are background main-belt objects (left panel). Vertical dashed line shows an approximate boundary between areas populated by the S- and C-complex asteroids. We study the color variations within these categories separately for family members.
Fig. 9.— Principal color components PC₁ and PC₂ for asteroid families. The bars show 1-σ errors of mean PC₁ and PC₂ calculated over all family members with δPC₁ < 0.1 and δPC₂ < 0.1. Only families with at least two members matching this criterion are shown. We also do not show families with ambiguous taxonomic types such as the Flora and Erigone families (see Table 1). The C- (blue) and S-complex (red) families clearly segregate in PC₁ by the vertical dashed line at PC₁ = 0.35. The dashed polygon delimits the group of C-complex families that have similar colors. Six C- and X-complex families appear outside the limit of this region, have larger PC₂, and span large color range. The recently-formed (490) Veritas and (832) Karin families are denoted in black. Their colors are located at a periphery of well defined regions in (PC₁, PC₂) plane that are populated by the “blue” and “red” families, respectively. Note the large color difference between the (832) Karin and (158) Koronis families. The Vesta family (green) has the smallest mean PC₂ value among the identified families; the (606) Bragagne family has the largest mean PC₂ value.
Fig. 10.— Relation between PC$_1$ and the average spectral slope measured between 0.35 and 0.9 μm. The average slopes have been calculated from five colors listed in the SDSS MOC for those measurements that have δPC$_1 < 0.1$ and δPC$_2 < 0.1$. PC$_1$ is a strong function of the spectral slope. The dashed line is the best linear fit with average slope $\propto 0.165 \times$ PC$_1$.
Fig. 11.— Principal color component PC$_1$ as a function of age for the S- (left panel) and C-complex asteroid families (right panel). We plot here only those C-complex families that appear in the polygon area in Fig. 9. Each family is denoted by its lowest numbered member asteroid. For example, 832 and 158 in the left panel denote the Karin and Koronis families, respectively; 490 and 24 in the right panel denote the Veritas and Themis families, respectively. The horizontal bars show errors of family age estimates. The thin vertical bars show RMS variations of PC$_1$ within each family and represent true color variations among family members. The standard errors of mean PC$_1$ are denoted by shorter, bold vertical bars. Both S- and C-complex families show correlations between PC$_1$ and age. These correlations (denoted by dashed lines) are statistically significant. The trends are opposite. Young S-complex families generally have smaller PC$_1$ than old S-complex families, while young C-complex families tend to have larger PC$_1$ than old C-complex families. The dashed lines show our best log-linear fits to these trends.
Fig. 12.— SDSS spectrophotometric data for the S-complex Koronis and Karin families. Using the same method as in Fig. 2, we plot the mean reflectance of Koronis family members that have $\delta PC_1 < 0.1$ and $\delta PC_2 < 0.1$ (dashed line), and the RMS variation of the reflectance within the Koronis family (shaded area around the dashed line). The mean spectral reflectances for the Karin cluster (solid line with RMS bars at effective wavelengths of the SDSS filters) were calculated with the same criteria. The Karin cluster shows a shallower spectral slope and deeper 1-μm absorption band than the Koronis family.
Fig. 13.—SDSS spectrophotometric data for the C-complex Themis and Veritas families. We plot the mean reflectance of Themis family members that have δPC$_1 < 0.1$ and δPC$_2 < 0.1$ (dashed line), and its standard error (shaded area around the dashed line). The mean spectral reflectances for the Veritas family (solid line with error bars) were calculated with the same criteria. The mean spectral slope of the Veritas family is steeper than the mean spectral slope of the Themis family.