Limits on Pluto Rings from the June 12 2006 Stellar Occultation

Henry Throop, R. G. French, K. Shoemaker, C. R. Ruhland, L. A. Young, C. B. Olkin

Pluto System on The Eve of New Horizons - APL, July 2013

Two ways to Search for Pluto's Rings Remotely 1. Direct Imaging

- Diffraction limit of telescope: r = 1500 km (HST)
- Sensitive to broad, dusty rings
- Limiting factor is stray light from Pluto / Charon
- Yields 2D imaging of system

2. Stellar Occultations

- Fresnel limit: $\mathbf{r} = \sqrt{30 \text{ AU } \lambda/2} = 2 \text{ km}$
- Ideal for detection of narrow and/or dense rings
- Gives 1D cut across system
- Can detect debris arcs and individual bodies that

Anglo-Australian Telescope 3.9 m

2006 Jun 12 Pluto Occultation

- Pluto system occulted 15.5 mag star, P384.2
- Shadow velocity = 27 km/sec
- AAT 3.9 m, observed by R. French & K. Shoemaker.

Observation Details

- Data taken at 10 Hz for 2.5 hours.
 - 64 x 64 pixels, binned on-chip
 - Low readnoise CCD
- 85,800 frames total.
- SNR ~ 300 per scale height

High frame rate, long time base, and low noise data make this a great dataset for searching for rings!

ie made with GeoViz, <u>http://soc.boulder.swri.edu/nhgv</u>

Analysis Pipeline

- Aperture photometry on all 85,800 individual frames
- Adjusted for frame-to-frame variation using flux from two reference stars in field
- High-pass filter used to flatten final curve, remove slow sky variations
- Used SPICE and post-occultation corrections to determine orbit crossing times.

Central hour of data

2006 12 Jun AAT Pluto occultation

Central hour of data

Smoothed, 500 km

2006 12 Jun AAT Pluto occultation

No evidence for any rings or debris at any binning size

Optical Depth Limits

Throop et al 2013 (this talk)

	Upper limit on 2 km rings:	$\tau < 0.07$	(all 4 σ)
•	Upper limit on 50 km rings:	au < 0.015	
	Upper limit on 1500 km rings:	$\tau < 0.007$	
►	Individual bodies:	None occulted with r > 200 m	
Steffl & Stern 2007 (HST)			
	Upper limit on 1500 km rings:	$ au < 10^{-5}$ -10-6	
Showalter 2012 (HST)			

Upper limit on 1500 km rings: $\tau < 3 \ge 10^{-7}$ Pasachoff & McKay 2006 (AAT)

 $\tau < 0.1$

Boissel et al 2013 (2006-2007 occultations, Chile)

Individual bodies:

None occulted with r > 250 m

All the new satellites are great, but satellites systems are often accompanied by rings, so...

New Horizons spacecraft can be disabled by direct hits from dust grains of critical mass $m_c = 10^{-4}$ g (~0.2 mm)

Mission requirement: N < 0.1 impacts of size m_c during encounter

Mission "desirement": N < 0.01 impacts of size m_c during encounter

November 2011

- Most conservative case:
 - We assume that 100% of the unseen ring mass (as constrained by the ring searches) is in grains of size r_c

Conclusion: N ~ 500 hits during encounter

Not a Useful Result!!!

We know that particles in real rings are not single-sized, but have a size distribution, usually a power law.

So, we consider a range of power laws:

$$n(r) \sim r^{-q}$$
 $q = \{2, 2.5, \dots 6.5, 7\}$

- Rings observations reduced impact risk, but could not put us entirely out of danger zone as of 2012.
- Subsequent s/c damage susceptibility testing has increased r_c from 0.25 mm to 0.5 mm, decreasing danger zone
- Subsequent dynamical modeling has also put much tighter constraints on N (Pires dos Santos, Kaufmann, etc.)

NH's high-phase rings observations will search 10⁴x deeper than current observational limits!

- From our observations and our knowledge of rings, we can't rule out n_crit < ~ 10 hits
- n_crit has been reduced from this value substantially by dynamical modeling. Grains in the Pluto-Charon region have short lifetimes due to unstable orbits.
- n_crit

Search for broad rings: 1500 km

Searching for narrow rings: 50 km OLD

2006 Pluto Occultation

- Occultation star: P384.2, R=14.8.
- Motion of Pluto against stars: 27 km/sec
- Star P384.2 was observed for ~3 hours total surrounding occultation.
- Occultation was observed by 10 groups in southern hemisphere.AAT 3.9m was the largest aperture and highestquality data.

Occultations

- High resolution.
 - Fresnel limit = sqrt(30 au / 500 nm) = 2 km.
 - We sample at 20 km
- Assuming large grains, tau = 2 x opacity
- Equivalent Width
- Motivated by discovery of Nix, Hydra, and P4 in Pluto system.

Central 90 Minutes of Occultation

Smoothed, 7 km

Smoothed, 5 km

2006 12 Jun AAT Pluto occultation

Smoothed, 50 km

2006 12 Jun AAT Pluto occultation

Smoothed, I 500 km

