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Orion Protoplanetary Discs Obser

● Discs seen in silhouette against bright backgrou

● Variety of sizes, inclinations  (a = 50–1000 AU,θ = 0

● Stellar ages ~ 106 yr; θ1C UV photoionization age 

● Central star visible in face-on discs

● Disc image illuminated by HII-region background

● Peak optical depth   100

● 70+ silhouettes found in Orion proplyds; surroun
O’Dell & Wen 1994, McCaughrean & O’Dell 1
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● Observed disc size, shape is function of intrinsic
particle scattering properties.
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Current Analysis:
     29 images, 3 discs,λ = 0.25 – 2µm, FOC / WFPC
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I. Particle Size Observations

We have obtained lower limits for the particle sizes in the prop
length-dependence of the silhouette sizes. Radial brightness
ing median brightness levels along concentric isophotes.  Th
modeled with multiple scattering Mie calculations to constrain

wavelengths probe larger particle sizes, as Qsca ~ (r/λ)4.

We find:

● Disc sizes, profiles show no wavelength trend;i.e., no measurab

R = Av/E(B-V) ~ 50;   color indexβabs  0.1

● Disc achromaticity at edge requires <r> 10µm;

Lack of color is consistent with large <r>, cm-km.

● Local, unevolved Orion region has primordial particle size ~µ
Particles have grown to 105x original mass in ~ 106 y

● Accretion timescale is consistent with inner disc evolution m
Ruden & Pollack 1991: tcoll ~ 1 y
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II. Disc Structural Modeling

We use a 3D 7-parameter model to simulate the ob

disk, a Monte Carlo code generates N~105 model ima
parameter space.  These model images are PSF-

directly with the data images.  Regions of good fitχ2 
solution are shown for each disc.

Disk model: 3D cylindrically-symmetric disks proje
with single-scattering, large-particle model applied

Σ(r) ~ r-k (r1 < r < r 2)
Σ(r) = 0    (r < r 1;  r > r 2)
ρ(z) ~ |1-z/z2|  > 0



 Mgas/Mdust = 150.

iscs are self-termi-
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ng that termination is
.  Thek are generally
,e.g., Beckwithet

n
 Edge-on

optical depth
τmax

Inferred
disk lower-
limit mass

(Msolar)  (d)

150 +- 100 5  e-4

60   +-  40 2  e-3

150 +- 100 1.3e-2
Structural Modeling Results

a,b,c: Parameter pairs vary together; see plots for relationships
d: Extreme lower limit: assumes no macroscopic (> 10µm) particles; 

Disc radial exponents are steep enough (k = 3-5) s.t. d
nating.  Discs which are not UV-illuminated (i.e., not s
evaporation) are still opacity-terminated, suggesti
due to transport, grain growth, or initial conditions
higher than that measured in inner disc regions (k=1-2
al 1990).

Disc
Inner disc cutoff

r1 [AU @ d=450 pc]
Outer disc cutoff

r2 [AU]
Vertical half-height

z2 [AU]

Power law
exponent

k

Inclinatio
 θ [deg]

HST10 27+- 27 95   +- 5 20 +- 7 (a) 3.5 +- 2.5 82+-  7 (a)

HST16 54 +- 36 202 +- 45  (b) 45 +- 22 4.9 +- 1.3 (b) 45 +- 5

114-426 13+- 13 720 +- 45 99 +- 45  (c) 2.9 +- 1.1 79 +- 8  (c)
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III. Disc Evolution

UV photoevaporation of disks may play a strong r
The photosputtering timescale for ice dusttsputter (1µm)

grain collision timetcoll (Ruden & Pollack 1991) are
t ~ 1-10 yr. Both processes are fast, and the slight
the other may have significant implications for pla
tics.  If the Trapezium is typical of star-forming reg
seen here are likely to be highly relevant to planet
where.

The competition between photoevaporation and co
examined previously.  We are currently implement
model which will track the size distribution and opt
at the outer disc edge.  Processes modeled includ
of gas and dust, coagulation, and inward radial tra
young circumstellar disk.
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Conclusions / Future Work

● First visible-light observation and measurement 
particles in young circumstellar discs

● Particle growth is fast, even at outer disc edge

● Observations needed at longerλ to probe larger pa

● Discs are self-terminated, independent of UV ph

● UV photoevaporation / photosputtering could inh
depending on balance between processes.

● Modeling of UV-influenced disc evolution in prog
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