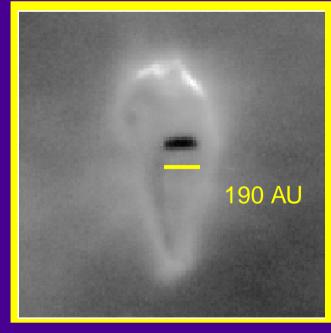

Sandcastles in the Wind: Frustrated Accretion in Circumstellar Disks


Henry Throop (Colorado / LASP)
John Bally (Colorado / CASA)
Larry Esposito (Colorado / LASP)

20-Oct-1999

Observations

HST PC Images in Orion

- Majority of circumstellar disks in Orion are observed to be photoevaporating
- Majority of stars form in Orion-like regions, in intense UV environments
- Disk evolution models have not considered UV photoevaporation effects
- Q: Can we evolve from disk to planets in presence of a strong UV field?

Model Assumptions (I)

We model evolution of grain size distribution in large, young circumstellar disks in Orion under processes of:

Grain Growth

- Grain coagulation with collisional velocities of Mizuno et al 1988
 - Velocities determined by turbulent convection
 - Fully-sticking particles

Grain Loss

- Photosputtering
 - UV photons eject ice molecules, (dr/dt)_{ice} ~ μm/year
- Photoevaporation (Johnstone Hollenbach Bally 1998)
 - Heated 10³ K gas Jeans-escapes disk, entraining small particles in outflow
 - Large particles are safe against entrainment
 - r_{entrain} = 100 μm at 100 AU

$$\Sigma \sim R^{-2}$$
 $R = 10 - 400 \text{ AU}$ $L_{UV} = 10^5 L_{sun}$ $\alpha = 10^{-2}$ $T \sim R^{-3/2}$ $n(t=0) = n(ISM)$ $D_{UV} = 2 \cdot 10^4 \text{ AU}$

Model Assumptions (II)

- Three-component disk compostion
 - \bullet H₂ + silicate + ices; $m_{gas} / m_{dust} = 100$
- Disk is vertically, azimuthally homogeneous
- Turbulence maintained by vertical thermal gradient; shuts off for thermal opacity < 1

- Observed age of disks ~ 10⁵⁻⁶ yr
- Observed age of UV source $\Theta_{1c} \sim 10^{4-5}$
- Integrate n(r, R, t) numerically
- Turn on UV source after delay time t_{UV}

Results of Numerical Models

- Outer edges are truncated by loss processes
 - Consistent with steep mass distributions ($\Sigma \sim R^{4-5}$) observed at outer edge
 - Particle growth is slower at outer edge, r_{peak} ~ t² R^{1/2}
- Entire gas disk blown away in t ~ 10⁶ yr
- lces are depleted at outer edge
- Disk must have 'head start' time of ~ 10⁴ years to inhibit significant loss at outer edges
- Particles inward of 100 AU grow to > 0.1 mm in 10⁴ years and are safe against loss
- High optical depth, fast evolution protects particles inward of 100 AU
- Simultaneous formation of O stars, disk-bearing stars is inconsistent with planet formation in outer edges

Conclusions

- Disks evolution cannot be considered only in isolated environments
 - 90% of stars form in Orion-like environments (i.e., hot O stars nearby)
- UV processes significantly affect disk evolution, and make growth of large particles in large disks difficult
- Steeply-terminated $\tau(R)$ slopes at outer edges are consistent with observations of Orion disks
- Timescales are consistent with observations of small particles in Orion disks (Throop et al 1998)
- Timing between the start of coagulation and the onset of photoevaporation is critical to disk survival & evolution