Planetesimal Formation in Dense Star Clusters: Hazard or Haven?

Henry Throop
Department of Space Studies
Southwest Research Institute (SwRI)
Boulder, Colorado

John Bally
University of Colorado

Portugal, 20-Sep-2006
Where Do Most Stars Form?

- Mass range of molecular clouds: few $M_\odot - 10^6 \, M_\odot$
- Mass spectrum of molecular clouds: $dn/dM \sim M^{-1.6}$

⇒ Most of the mass is in the largest GMCs
Regions of Star Formation

<table>
<thead>
<tr>
<th></th>
<th>Open Clusters</th>
<th>Dense Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td># of stars</td>
<td>$10^1 - 10^3$</td>
<td>$10^3 - 10^4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10⁴ stars in last 10 Myr (Orion)</td>
</tr>
<tr>
<td>OB stars</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Distance</td>
<td>140 pc (Taurus)</td>
<td>450 pc (Orion)</td>
</tr>
<tr>
<td>Fraction of local stars which form here</td>
<td>10-30%</td>
<td>70-90%? (Lada and Lada 2003)</td>
</tr>
<tr>
<td>Dispersal lifetime</td>
<td></td>
<td>10 Myr (SN)</td>
</tr>
<tr>
<td>% of stars with disks</td>
<td></td>
<td>80%? (Smith et al. 2005)</td>
</tr>
</tbody>
</table>
How does Cluster Environment affect Disk Evolution?

- Photoevaporation from external, massive stars:
 - $10^5 \, L_{\text{sun}}$ from O stars at cluster core
 - $F \sim 10^4 - 10^6 \, G_0$
 - Truncates disks on Myr timescales

- Close stellar encounters:
 - 2,000 stars in 0.5 pc3
 - Mean stellar separations $\sim 10,000$ AU

- Interaction with GMC gas:
 - Bondi-Hoyle accretion onto stars?

- UV, X ray chemistry:
 - Total UV dose is thousands of ionizing photons per (dust) molecule, in first 10 Myr.
Photo-Evaporation (PE)

- FUV/EUV flux from O stars heats and removes H_2 / H from disks.
 - Small dust grains can be entrained in outflow and removed.

- Mass loss rates:
 $$\frac{dM}{dt} \sim 10^{-6} - 10^{-8} \ M_\odot/\text{yr}.$$
 (Johnstone et al 1998)

- Mass loss rate depends on disk size, distance from external O star.

- MMSN disks surrounding most Orion stars can be truncated to a few AU in Myr.
 - Dust in disks can be retained: sharp outer edge with large grains (Throop et al 2001)

- If you want to build Jupiter in Orion, you must make it fast! (e.g., Boss)
Photo-evaporation is a major hazard to planet formation...

... but all hope is not yet lost!
Gravitational collapse of dust in disk can occur if sufficiently low gas:dust ratio (Sekiya 1997; Youdin & Shu 2004)

- $\Sigma_g / \Sigma_d < 10$
 - (i.e., reduction by 10x of original gas mass)

- PE removes gas and leaves most dust
 - Grain growth and settling promote this further

- Dust disk collapse provides a rapid path to planetesimal formation, without requiring particle sticking.
Close Approaches

- Typical distances today ~ 10,000 AU
- C/A strips disks to 1/3 the closest-approach distances (Hall et al 1996)
- Question: What is the minimum C/A distance a disk encounters as it moves through the cluster for several Myr?
N-Body Dense-Cluster Simulations

NBODY6 code (Aarseth 2003)

Stars:
• N=1000
• $M_{\text{star}} = 500 M_{\text{sun}}$
• Salpeter IMF
• $R_0 = 0.5 \text{ pc}$
• O6 star fixed at center

Gas:
• $M_{\text{gas}} = 500 M_{\text{sun}}$
• $R_0 = 0.5 \text{ pc}$
• Disperses with timescale 2 Myr
Star has 5 close approaches at < 2000 AU.

Closest encounter is 300 AU at 8 Myr

- Too late to do any damage
• Typical minimum C/A distance is 1100 AU in 10 Myr
• Significant disk truncation in dense clusters is rare!
 – Only 1% of disks are truncated to 30 AU, inhibiting planet formation

Throop & Bally 2006, in prep
Flux History, Typical 1 M_{Sun} Star

- Flux received by disk varies by 1000x as it moves through the GMC.
- Peak flux approaches $10^7 G_0$.
- Most of the flux is deposited during brief but intense close encounters with core.
- There is no `typical UV flux.'
- Disk evolution models assume steady, uniform grain growth, PE, viscous spreading. But if PE is not steady, then other processes dominate and may dramatically change the disk.
What do we know?

- Large fraction of stars forming today are near OB associations, not in open clusters
- PE can rapidly destroy disks
 - Hard to make Jovian planets
- PE can also trigger rapid planetesimal formation
 - Easy to make planetary cores
- Close encounters are unimportant

Where do we go?

- Need better understanding of effect of time-variable PE on disk evolution
- Need better understanding of role of gravitational instabilities: how frequent is it?
- UV, X-ray chemistry in dense clusters unexplored