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ABSTRACT
We summarize recent improvements to a version of the Wilson-Devinney program that is widely used

for the analysis of eclipsing binary data, and we describe the new WD95 program. WD95 contains the
University of Calgary version of the Wilson-Devinney code, which supports the use of the Kurucz atmo-
sphere models ; it provides options to use multiple epoch data and multiwavelength synoptic passbands.
The WD95 program contains an improved input/output interface, simplex algorithms for initial searches
and tests, and versions of Wilson-Devinney DC and LC programs and options to switch to automatic
di†erential corrections or a damped least-squares solver using normal equations that are modiÐed as per
the Levenberg-Marquardt scheme. This paper describes some tests of the damped least-squares solver
with simulated data.
Subject headings : binaries : eclipsing È methods : numerical

1. INTRODUCTION

Now a quarter-century old, the Wilson-Devinney
program is the most widely used general light-curve model-
ing code (McNally 1991).

Starting around 1990, several improvements were made
to the original Wilson-Devinney program by a group
organized by Milone and centered at the University of
Calgary and by Kallrath at the University of Bonn, ultima-
tely embodied in the software codes WD93K93 and
LC93KS, respectively. The successor to these programs is
WD95, described in of this paper.° 5

When a light-curve model is used to analyze eclipsing-
binary data, the goal is the solution of the ““ inverse
problem,ÏÏ viz., the determination of a set of elements (in
light-curve parlance, parameters) that describe and deÐne a
light curve. The inverse problem leads to a nonlinear least-
squares problem that is very often solved by di†erential
corrections. This method was Ðrst used to determine the
parameters of eclipsing binary systems by andWyse (1939)

Many authors & BiermannKopal (1943). (Wilson 1976 ;
among others) show that the method of dif-Kallrath 1993,

ferential corrections faces all the problems that usually
occur in nonlinear multiparameter Ðtting : parameter corre-
lation, ill-conditioned normal equations, divergence due to
nonlinearities in the underlying light-curve model and the
uniqueness problem; i.e., several local minima may exist in
parameter space (see & Milone Some prob-Kallrath 1998).
lems (e.g., Ðnite-di†erence approximations to the partial
derivatives or divergence problems caused by bad initial-
parameter guesses) can be overcome by gradient-free opti-
mization methods utilizing direct search algorithms (see, for
instance, An efficient repre-Murray 1972 ; Lootsma 1972).
sentative of such procedures is the simplex algorithm

Hext, & Himsworth & Mead(Spendley, 1962 ; Nelder 1965),
which was Ðrst used for light-curve analysis by &Kallrath
Linnell Since then, several authors have successfully(1987).
applied this method to light-curve analysis ; see Kallrath

for a review of the topic and the literature.(1993)
The ideal light-curve modeling software would combine

the simplex algorithm for initial parameter search with a
stable local derivative based procedure for accurate and
efficient determination of the solution. The development
and implementation of a damped di†erential-correction
method into the WD program can be seen as a step in this
direction. The Levenberg-Marquardt algorithmÈ
sometimes also called Marquardt algorithm, since it was
proposed independently by andLevenberg (1944)

such a method. It has already beenMarquardt (1963)Èis
used in light-curve analysis by in his programsHill (1979)
LIGHT and LIGHT2, and Wilson (1997, private
communication), although not using it as an automated
routine, reports positive experience with this technique as
well.

2. MODEL ATMOSPHERES

Our version of the WD code, WD93K93, which was
developed at the University of Calgary and has been used
for light-curve modeling of eclipsing-binary star systems for
the past several years, makes use of KuruczÏs (1993, private
communication) stellar-atmosphere models contained on a
CD-ROM kindly provided by R. Kurucz.

The Kurucz models have been integrated over a number
of passbands : the and ubvy optical pass-UBV R

J
I
J
, R

C
I
C
,

bands ; the JHKL MN and a set of pass-Johnson (1966)
bands that have far less sensitivity to water vapor (and that
should be far more transformable between local systems),
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namely, iz, iJ, iH, iK, iL , iL @, iM, iN, in, and iQ, in the
infrared ; and, over a series of ranges of wavelength in the far
ultraviolet that are appropriate for IUE, Hubble Space
Telescope, or other rocket-ultraviolet passbands. The
details of the improved infrared passbands may be found in

et al. The integration is carried out across theYoung (1991).
full range of Kurucz atmosphere models for a given chemi-
cal composition, resulting in tables of T versus log g of
atmospheric Ñux divided by blackbody Ñux.

The programs WD93K93 and LC93KS require the log g
input values and lists of the passband tables of Ñux ratios in
which the input (and adjusted) temperatures and logT1,2are interpolated. These additional input variables areg1, g2also required in WD95.

Further code improvements were discussed at a work-
shop held in Calgary in 1995 July, directed primarily at
improving program efficiency and solution determination.
The basic improvement was the use of damped least
squares, described in the next section. Since we are not the
Ðrst to use the Levenberg-Marquardt algorithm for light-
curve modeling work (see, e.g., & Rucinski whoHill 1993,
describe the usage of the algorithm as it was applied in the
program LIGHT2), only a brief review of the properties of
this algorithm is necessary here.

3. A DAMPED LEAST-SQUARES ALGORITHM

3.1. Determination of Eclipsing-Binary Parameters
The determination of physical parameters from eclipsing-

binary light curves or radial velocity curves is called the
““ inverse problem,ÏÏ which can be formulated as a nonlinear
least-squares problem. The aim is to minimize the devi-
ations between the theoretical or calculated curve and the
observations. The parameter vector x that produces
minimum deviation is the system solution ; the correspond-
ing calculated light curve is said to be the best Ðt to the data.
A measure of the deviation is the sum of the squared
residuals and may be taken either weighted (indicating the
true e†ect on the light-curve solution) or unweighted (to
indicate the quality of the data). To have a measure that is
independent of the number m of free parameters or the
number n of data points, the standard deviation of the Ðt,

the standard error of a single observation of unit weightpfit,derived from the Ðt, should be used. For the mathematical
formalism of the inverse problem the reader is referred to

& MiloneKallrath (1998).

3.2. Damped Di†erential Corrections
The damped least-squares (DLS) algorithm now imple-

mented in WD95 is based on the normal equations and
modiÐcation of the matrix C in and it is almostequation (1),
identical to the Levenberg-Marquardt scheme described in

et al.Press (1992).
The basic idea is to replace the normal equations (eq. [1])

of the linear least-squares problem

C*x
k
\ [A(x

k
)Wd(x

k
) , C4 A(x

k
)WAT(x

k
) , (1)

where is the initial solution present at the beginning ofx
kthe kth iteration, is the correction vector deÐned in such*x

ka way that gives the vector in the next iteration, Ax
k
] *x

kis the Jacobi matrix of the least-squares function f (x), W are
weights, and is the current residual vector, byd(x

k
)

[C] D]*x
k
\ [A(x

k
)Wd(x

k
) , (2)

where D is a diagonal matrix.
Obviously, this is equivalent to adding a set of obser-

vations of the form

D*x
k
\ 0 (3)

to our original system, bringing the correction vector *x
ktoward zero. The damped solution augments the func-*x

ktion to be minimized, f (x), by the squared length of the*x
k
,

components of which are weighted by the elements of D.
For a Ðxed step length the damped solution gives theo*x

k
o,

lowest possible value of f (x) on a sphere with radius *x
kand center if D\ j1. As the damping becomes larger,x

k
,

the solution vector approaches the gradient at$
x
[ f (x)] x

k
.

The damped least-squares method interpolates between the
search direction determined as the gradient or the Gauss-
Newton direction. Thus it combines the stability of gradient
methods far from the solution with the convergence of
Newton methods near the end, if the damping is properly
changed during the iterations. The crucial part of the
method is to choose the damping properly. The most suc-
cessful damping schemes normalize C and then look for
the minimum of the one-dimensional function /(d) 4

at each iteration.f [x
k
] *x

k
(j)]

Both linear and nonlinear problem approaches are in
trouble when f (x) has long, narrow valleys. Nonlinearity
bends the valleys ; collinearity makes them elongated. In
such cases, the path of the solution vector tends to runx

k
(j)

obliquely into the valley wall instead of down its center.
Thus we want to eliminate such features if we can. Corre-
lations between parameters x cause diagonal valleys in f (x)
and can only be eliminated by changing variables to rotate
axes in parameter space. However, valleys parallel to the
axes can be made circular by rescaling the variables. This
need not be done explicitly : shows thatMeiron (1965)
multiplying the diagonal elements by (1] j), as orig-c

jjinally suggested by is equivalent toLevenberg (1944),
scaling the variables by adding j to the scaled diago-(c

jj
)1@2,

nal elements (which are all unity), and transforming the
scaled back to the original system.*x

kThus, multiplicative damping automatically eliminates
elongations of the surfaces f (x) \ const parallel to the x
axes of parameter space. Since the axial ratios of these
(hyperellipsoidal) surfaces are the ratios of the square roots
of the eigenvalues of C, the scaling introduced by multi-j

iplicative damping equalizes, as far as possible, the Thus,j
i
.

this method improves the conditioning of the scaled matrix
C. That can also be seen from the following argument :
Ill-conditioning of a matrix is equivalent to the presence of
small eigenvalues close to zero, which in the case of the
normal equations would generate large parameter correc-
tions. These are rejected when the value of the damping
constant j is increased. Sometimes the numerical computa-
tion of the derivative even leads to negative eigenvalues in
the matrix C. For sufficiently large j, the modiÐed matrix
C + D is positive deÐnite, and very small eigenvalues are
cut-o†.

Although there are analytical considerations for the
optimum selection of the damping constant, DLS algo-
rithms usually involve heuristic processes. Many problems
that require damping, and light-curve analysis can be con-
sidered one of them, converge for one or two undamped
iterations before diverging. Therefore, as suggested by Press
et al. we have developed the following procedure for(1992),
WD95:
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1. For the initial value of the damping constant j, pick a
reasonable value, say, something between andj0\ 10~4

and setj0\ 10~8 j \ j0.2. For given compute f (x) and establish the normalx
k
,

equations ; in particular, compute C.
3. Modify the diagonal elements c

jj
] (1 ] j)c

jj
.

4. Solve the modiÐed normal to get andequation (2) *x
kcompute x@\ x

k
] *x

k
.

5. Compute f (x@).
6. Apply an acceptance test : if f (x@) ¹ f (x

k
)F x

k`1\ x@
and j ] 0.1j, then go to step 2, or

7. if k \ 1, set j \ 1 and then go to step 2, and
8. if k º 2, set j ] 3j and go to step 2.

The scheme proves to be robust. Performance of the algo-
rithm does not change too much if in step 8 the factor 3 is
replaced by 5 or 10. As expressed also by Wilson (1997,
private communication), accepted parameter corrections do
not depend too critically on j if j stays in a certain region of
moderate damping, say, 10~4 to 10~6. If j º 0.01, the steps

become smaller than 10~4.*x
kIn WD95 all of the termination criteria described in

& Milone are implemented. Any of the cri-Kallrath (1998)
teria can be activated in the control Ðle (\.inf) with a soft-
ware on-o† switch. If any of the activated criteria are met in
an iteration, the run is halted and the output Ðle (\.log)
indicates which criterion triggered the halt.

Unfortunately, in many cases the residuals are not nor-
mally distributed about a zero mean, nor are they sta-
tistically independent, with the consequence that the errors
derived from the covariance matrix lose the clear meaning
they would have in the case of normally distributed
residuals. Moderate deviations from normality can be
handled by robust-estimation techniques, but correlated
residuals represent a loss of e†ective degrees of freedom and
are more difficult to deal with. Consequently, analyses are
incomplete until a plot of the light curve and the residuals
provides evidence of successful Ðtting.

4. TESTS OF THE DAMPED LEAST-SQUARES ALGORITHM

In this section we describe two out of seven tests of the
method and program with well-deÐned test scenarios. In

et al. the method is applied to AI Phoenicis.Milone (1999)
The program was tested by applying it to various types of

synthetic data to which various amounts of Gaussian noise
had been added. After a parameter set x had been chosen,
the LC program was used to generate 200 data points ;
Gaussian noise with a speciÐed standard deviation, p, was
then added to the light values, with no noise added to the
phases. These degraded data were then compared with the
uncontaminated data to determine the true noise level. The
value found was then used as the target noise pN. The tests
covered several cases where both the astrophysical param-
eters and the noise level were varied. In terms of the astro-
physical parameters, the tests included total and partial
eclipses as well as systems of di†erent morphological types
(viz., detached, semidetached, and overcontact). Only raw
data were used in the present series of tests ; i.e., no binned
or normal points were used in the main tests. The Ðrst test,
not reported here in detail, was to reproduce the original
parameters if only uncontaminated data were used. This
test demonstrated that the damping avoids divergence, and
that the algorithm is stable.

FIG. 1.ÈScenario 1, light curve : data points generated for a semi-
detached system with a small amount of Gaussian noise. The Ðtted curve
shows the best WD95 Ðt to these data.

4.1. Scenario 1 : SD Model with L ow Noise Content
In this test, a semidetached binary with a total primary

eclipse was modeled. The system represents a typical Algol-
type binary. In this case it was assumed that the mass ratio
q \ 0.21 was available from, e.g., spectroscopy, and thus it
is not a free parameter. The data had Gaussian noise
p \ pN 4 7.1] 10~3. As for other versions of the WD
program the component-dependent param-(Wilson 1998),
eters are assigned subscripts 1, for the eclipsed star at the
designated primary minimum, and 2, for the eclipsing star
at that minimum. The adjusted parameters were inclination
i, temperature of the secondary in units of 10,000 K, theT2Roche potential and the luminosity of the primary in)1, L 1the units used in the Wilson-Devinney program (Wilson

for completeness we also give the values of1998) ; )2\
2.2725 and for the solution andL 2\ 3.2005 x

*
T1\ 12,500

K. The initial damping constant was set to Thej0 \ 10~8.
results are seen in and the Ðtting inTable 1 Figure 1.

In this test case all parameters are recovered within 2 p.
The deviations for the parameters i, and are slightlyT2, )1larger than in a similar scenario with p \ pN 4 1.4] 10~2.
But the deviation in is decreased by almost a factor 5L 1compared to the larger noise scenario. An inspection of the
correlation matrix displayed in shows strong corre-Table 2
lations among i, and in this, and also in the secondT2, )1 :
scenario, the true parameters are designated x, the starting
parameters the Ðnal values the deviation d \x0, x

*
,

the probable errors of the Ðnal values ep, and 2 po x
*

[ x o,
(where p is the standard deviation, more properly called the
““ mean standard error ÏÏ or m.s.e.) of the parameters. The ep

TABLE 1

RESULTS OF THE SEMIDETACHED SCENARIO WITH LOW

NOISE CONTENT

i T2 )1 L 1
x . . . . . . . . 89¡.083 0.6238 7.4858 8.5000
x0 . . . . . . . 87¡.000 0.6400 8.4858 8.2331
x
*

. . . . . . 89¡.682 0.6294 7.3670 8.4876
d . . . . . . . . 0¡.599 0.0056 0.1178 0.0124
ep . . . . . . . 0¡.969 0.0020 0.0488 0.0101
2 p . . . . . . 1¡.797 0.0168 0.1464 0.0303

d \ eP d \ 2 p d \ 2 p d \ 2 p
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TABLE 2

CORRELATION BETWEEN PARAMETERS

i T2 )1 L 1
i . . . . . . . . 1.0000000 0.8715275 Ô0.8393344 0.2214933
T2 . . . . . . 0.8715275 1.0000000 Ô0.9665731 0.1993583
)1 . . . . . . Ô0.8393344 Ô0.9665731 1.0000000 [0.4164473
L 1 . . . . . . 0.2214933 0.1993583 [0.4164473 1.0000000

values were derived from C~1 computed in the WD95
undamped di†erential corrections subroutine. Here, the
inclination i is recovered within the probable error, while
the probable errors for and underestimate theT2, )1, L 1true errors. However, recalling that we note thatep\ 23p,
the Ðnal values of these parameters are less than 2 p from
the true values of these parameters. ConÐdence limits based
on rigorous statistical analysis may help to overcome this
problem; the use of such limits is planned for future ver-
sions of WD95.

But let us try to interpret the result. Have we stopped the
iterations too early? In terms of certainly not. Anpfit,inspection of the correlations between the parameters
shows that and are strongly correlated to each other.T2 )1So, each di†erential change in can be mimicked by aT2di†erential change in There is no chance of overcoming)1.this problem. What this scenario can demonstrate is that
the damping avoids divergence and overcomes problems
associated with correlations and that the algorithm is
stable.

4.2. Scenario 2 : Detached Model Including Radial
Velocity Data

This test modeled a detached system (mode\ 2) with a
period of 5.4592 days, a total secondary eclipse, and low-
noise observations, p \ 5 ] 10~5 in the photometric data
in the V band. Radial velocity curves of both components
were included in the analyses with pN 4 5 km s~1. Each
curve contained 200 data points at equidistant phases.
When computing for the exact parameter set, we gotpfit

FIG. 2.ÈScenario 2, light curve : data points generated for a detached
system, with no noise added to the data. The Ðtted curve shows the best
WD95 Ðt to these data.

Note that this accuracy greatlypfit(x) \ 8.13 ] 10~5.
exceeds that obtainable at present telescopes. Among the
Ðxed parameters we mention q \ 0.83, K, andT1\ 6500

In the set of adjustable parameters we have theL 2\ 4.8156.
semimajor axis, a, in units of solar radii, the eccentricity, e,
the longitude of the periastron, u, and the systemÏs velocity,
c ; for the unit convention of c see The successWilson (1998).
of the light curve and radial velocity Ðttings are seen in
Figures and respectively.2 3,

and show the results and the correlationsTable 3 4
between parameters.

The solution was essentially reached after 10 iterations,
yielding a standard deviation of 10~3. The iterations 11È37
with large damping did not change the parameters by more
than 10~3. The standard deviation ispfit(x*

)\ 8.13] 10~4
much larger than and most deviations d are largerpfit(x),
than 2 p. Many other test runs produced similar results. The
Levenberg-Marquardt scheme always ended up with very
high values for j ; usually, 0.01\ j \ 1. This behavior, even

TABLE 3

DETACHED MODEL WITH RADIAL VELOCITY DATA

a e u c i T2 )1 )2 L 1
x . . . . . . . . 10.7560 0.18 65¡.00 0.0583 88¡.000 0.6266 9.5858 9.67990 8.0000
x0 . . . . . . . 13.7560 0.19 64¡.00 0.0883 86¡.000 0.6000 7.5858 7.67990 9.0000
x
*

. . . . . . 10.7898 0.1734 63¡.90 0.0584 87¡.943 0.6265 9.57771 9.57000 7.9289
d . . . . . . . . 0.0338 0.0066 1¡.10 0.0001 0¡.057 0.0001 0.02862 0.04262 0.0711
ep . . . . . . . 0.0065 0.00011 0¡.00034 0.0002 0¡.006 0.00003 0.00556 0.00750 0.0093
2 p . . . . . . 0.0440 0.00033 0¡.00102 0.0006 0¡.018 0.00009 0.01668 0.02250 0.0279

d \ 2 p d [ 2 p d [ 2 p d\ep d [ 2 p d B 2 p d [ 2 p d [ 2 p d [ 2 p

TABLE 4

CORRELATION BETWEEN PARAMETERS

a e u c i T2 )1 )2 L 1
a . . . . . . . 1.000 [0.008 [0.010 0.004 [0.011 0.002 0.009 [0.012 [0.011
e . . . . . . . . [0.008 1.000 0.968 [0.004 [0.015 [0.090 0.154 0.081 [0.014
u . . . . . . . [0.010 0.968 1.000 [0.002 0.189 [0.040 [0.017 0.287 0.180
c . . . . . . . . 0.004 [0.004 [0.002 1.000 0.009 [0.000 [0.009 0.008 0.009
i . . . . . . . . [0.011 [0.015 0.189 0.009 1.000 [0.093 Ô0.887 0.980 0.979
T2 . . . . . . 0.002 [0.090 [0.040 [0.000 [0.093 1.000 0.092 [0.076 [0.149
)1 . . . . . . 0.009 0.154 [0.017 [0.009 Ô0.887 0.092 1.000 Ô0.840 Ô0.944
)2 . . . . . . [0.011 0.081 0.287 0.008 0.980 [0.076 Ô0.840 1.000 0.968
L 1 . . . . . . [0.011 [0.014 0.180 0.009 0.979 [0.149 Ô0.944 0.968 1.000
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FIG. 3.ÈScenario 2, radial velocity curves : data points for this double-
lined spectroscopic binary generated for a detached system, but, again,
without the addition of noise. The Ðtted curve shows the best WD95 Ðt to
these data.

with the very accurate given data, can be explained as
resulting from two reasons. First, at the exact parameter set
x, there are strong correlations among certain parameters,
such as between e and u, and, even more strongly, among i
and and The correlations require largeT2, )1, )2, L 1.
damping because otherwise the parameter corrections *x
would be too large. A second reason is the limiting Ðnite
accuracy of the derivatives.

In addition to these scenarios, we have run Ðve more,
covering semidetached and overcontact models with
various levels of Gaussian noise and the real binary case of
AI Phoenicis. In all synthetic cases the initial parameters
were satisfactorily recovered, and the AI Phoenicis case
tested gave recovered results previously obtained with our
WD code, WD93K93.

4.3. Results and Interpretations of the Tests
The tests show that the iterated damped least-squares

method is capable of producing converged solutions, given
well-conditioned data with varying amounts of Gaussian
noise p. Each solution produced a standard deviation, pfit,which was smaller than a speciÐed amount of noise, pN, in
the data. This is all that one could expect, and it produced
quite satisfactory Ðts. The di†erences between the true and
derived values of the parameters were typically within
about 2 p (in terms of the uncertainties in the parameters).
In some cases that were started with initial parameter
guesses very far from the solution, the damped least-squares
approach failed. In such cases we did an initial search with
the simplex algorithm and then continued from the best
vertex with damped least squares.

Thus far, no comment has been made about the CPU
time needed for the iterations. All calculations were per-
formed on a Pentium laptop and took many hours, typical
of multiple-iteration procedures with many parameters. To
make comparisons with noniterative versions of the WD
di†erential corrections program, one would need to con-
sider the time taken to (a) review the parameter adjustments
and their probable errors, (b) decide on the subset to be
adjusted, (c) apply the adjustments to the selected param-
eters in a new input Ðle, and (d) resubmit. While some of
these procedures can be and have been automated, the
selection process needs to be reviewed at least occasionally ;

the timing of such a reviewing process must vary from run
to run. Consequently, it is impossible to generalize, espe-
cially since one usually has other things to do between run
submissions, making dead time the most likely sink of time
for single iteration operations.

The important point to be made, however, is not that the
present procedure is intrinsically speedier ; computational
time per se is not the critical issue. What counts most is
having a stable procedure that can iterate automatically.
This we now claim to have provided. Nevertheless, a word
of warning is appropriate at this point. The algorithm is not
an infallible black box with which one can produce auto-
matic and necessarily correct solutions. Setting the stopping
criteria requires experience on the part of the user so that
the convergence process is not terminated too early. It is
difficult to fully automate this procedure to meet all contin-
gencies.

We have also conducted preliminary tests that included
spot parameters. For the purpose of automatic iterations,
the accuracy of spot modeling is not high enough in the
current Wilson-Devinney program (Wilson 1995, private
communication) ; however, further testing is planned in the
near future.

5. FEATURES OF THE WD95 PROGRAM

The current capabilities of WD95 are summarized in the
following :

Full functionality of the WD program, extended to
double precision.

Kurucz atmospheres for a large group of passbands.
Automatic changing of limb-darkening as temperature

changes.
Recalculation of log g for interpolation in the atmo-

spheres tables when radial velocity data are present.
Parameter space searches with the simplex algorithm.
Manual and automatic di†erential correction options.
Levenberg-Marquardt algorithm.
Shell-based input/output interface.
A regularly updated log Ðle with progress reports on

convergence.

The program can emulate the original subroutines LC
and DC. In particular, it is possible to use the method of
di†erential corrections as in the original Wilson-Devinney
program. Although the damped least-squares solver in
WD95 is less dependent on the quality of guessed initial
parameters than the stand-alone version of the WD
program, WD93K93, we recommend that the initial param-
eters be chosen carefully and the simplex option be used in
initial searches. Once a parameter set is close to that of the
solution, a switch to the Levenberg-Marquardt algorithm
accelerates the rate of convergence. A Ðnal, undamped run
will provide the probable errors of the parameters. We
recommend this procedure generally as an efficient way to
Ðnd the likely minimum in parameter space and to achieve
a successfully converged light-curve solution.

6. CONCLUSIONS

We have implemented and tested the Levenberg-
Marquardt algorithm in the Wilson-Devinney program and
applied it to several astrophysically relevant scenarios. The
method is much less dependent on the accuracy of the initial
parameter guesses than is the undamped di†erential correc-
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tion method. Nevertheless, it helps if the initial parameters
are as accurate as possible or taken from initial searches
with the simplex algorithm. In our test scenarios with
varying data quality, we started from bad initial guesses and
recovered the original parameters almost always. So even in
such cases we have a stable procedure that can iterate auto-
matically and put the solutions of light-curve analyses on a
more objective basis.
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Sciences and Engineering Research Council and the Uni-
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