A Model for Patera Formation on Io

Jani Radebaugh University of Arizona

Many thanks to Alfred McEwen, Jay Melosh, Zibi Turtle, David Kring, and Adam Showman

Outline

- Patera morphologies as motivation
- Model:
 - Application of analytical treatments of magma convection and transport
 - Convection in asthenosphere
 - Magma rise through lithosphere via diapirs or dikes
 - Collapse over high-level magma chamber to form patera
 - Evolution of patera

* Formation process must lead to the morphologies we observe

- I. Heating and convection in the asthenosphere lead to transport of hot material to the base of the lithosphere.
 - Asthenosphere: Dense, partially molten region above mantle
 - Patera distribution¹ fit by model results² for asthenospheric heating and convection

 ¹Lopes et al. 1999; Schenk et al 2001; Radebaugh et al. 2001
²Tackley et al. 2001; Tackley 2001

a = 30 kmLithosphere

Turcotte and Schubert, 2002

a = 30 kmLithosphere

$v = 10^{18} - 10^{19} \text{ Pa s}$ $\rho = 2730 \text{ kg m}^{-3}$

Turcotte and Schubert, 2002

Velocities consistent with those from numerical models by Tackley et al. 2001; Tackley 2001

II. Magma rises through the lithosphere

Diapiric Rise

Stokes' flow of buoyant fluid – Modified to include thermal considerations via the Peclét number (measure of heat transfer)

a. Diapir

Diapiric Rise

Stokes' flow of buoyant fluid – Modified to include thermal considerations via the Peclet number (measure of heat transfer)

Assume thermally softened layer around diapir

• Reduces effective viscosity

a. Diapir

Diapiric Rise

Stokes' flow of buoyant fluid – Modified to include thermal considerations via the Peclet number (measure of heat transfer)

Assume thermally softened layer around diapir

• Reduces effective viscosity

- Obtain magma (40% partial melt) from lens at base of lithosphere ~ 0.5 km - 2 km thick for diapir diameter d = 5 km - 40 km

wall rock viscosity (Pa s)

wall rock viscosity (Pa s)

Rise via Dikes

 Mafic to ultramafic, lowviscosity material typically rises in dikes (sheet-like injection through brittle crust)

Rise via Dikes

- Mafic to ultramafic, lowviscosity material typically rises in dikes (sheet-like injection through brittle crust)
- Dike can extend height of Io's lithosphere (~30 km)
- Rise speeds high: Tvashtar fissure eruption ascent velocity $v = 2 6 \text{ m s}^{-1}$

Wilson and Head, 2001

Series of Magma Chambers

- Neutral buoyancy zone at 12 km depth for 40% melt diapir
 - For lithosphere 75% silicates, 15% SO_2 frost, 10% void space (Leone and Wilson 2001)
 - Depth reduced for smaller void space/SO₂ frost percentage OR more partial melt

Series of Magma Chambers

- Neutral buoyancy zone at 12 km depth for 40% melt diapir
 - For lithosphere 75% silicates, 15% SO_2 frost, 10% void space (Leone and Wilson 2001)
 - Depth reduced for smaller void space/SO₂ frost percentage OR more partial melt
- Connection to source ensures replenishment of magma chambers

III. Magma finds a high-level zone of neutral buoyancy. Then it:

- a) Spreads laterally to form a chamber of 5-40 km in diameter, a few kilometers below the surface.
- b) Erupts in a lava flow field.

- IV. The overlying crust, thermally weakened by the underlying magma chamber, collapses.
 - Often happens when there is an associated eruption

V. Patera evolution:

a) Lava emerges at margins, flows across its floor, lateral growth and enlargement

b) Lava fills the patera, erupts as a lava lake

Conclusions

- Heating and rapid convection (V = 150 5000 m y⁻¹) in asthenosphere leads to magma rise through lithosphere
 - Diapiric rise can occur for sufficiently large diapirs (d = 20 - 40 km) and thermal softening of wall rock (effective $v=10^{14}$ Pa s)
 - Dikes can extend height of lithosphere; rapid magma rise ($v = 2 6 \text{ m s}^{-1}$) brings asthenospheric material up with little differentiation
 - Based on resurfacing rates and diapiric *d* and *v*, only 10% of magma flux from diapirs
- High-level magma chambers form if high melt percentages and dense lithosphere
- Collapse over chamber, subsequent filling and lateral evolution leads to patera morphologies

Extra slides

Properties of Io's Asthenosphere and Lithosphere

Parameter	Symbol	Value	Units
Asthenosphere:			
Thickness	b	100	km
Density	ρ	3260	kg m ⁻³
Viscosity	V_{asth}	$10^9 - 10^{12}$	Pa s
Lithosphere:			
Thickness	a	30	km
Density (subsurface,	ρ	2730	kg m ⁻³
10% void, 15% SO2)			
Viscosity	V_{lith}	$10^{18} - 10^{19}$	Pa s
Gravitational acceleration	8	1.8	$\mathrm{m}\mathrm{s}^{-2}$

Segatz et al. 1988; Ross et al. 1990; Tackley et al. 2001; Leone and Wilson 2001; Jaeger et al. 2003

Resurfacing Rates

- Global heat flow can be related to resurfacing rate (Reynolds et al. 1980).
- Current estimate of heat flow ~ 2 W/m^2 leads to resurfacing rate of 1.06 0.55 cm/y (McEwen et al. Jupiter book) so 4.16 x 10¹¹ m³/y on Io's surface
- Single diapir d = 40 km rising v = 50 cm/y provides 6.3 x 10^8 m³/y
- ~100 volcanic centers: $6.3 \times 10^{10} \text{ m}^3/\text{y}$
 - Still one order of magnitude short
- ~500 volcanic centers: $3.1 \times 10^{11} \text{ m}^3/\text{y}$

Magma supply

- Tvashtar fire fountain eruption estimated at $2 \times 10^4 2 \times 10^5 \text{ m}^3 \text{ s}^{-1}$ (Wilson and Head 2001)
 - Single diapir d = 40 km, h = 5 15 km can feed this eruption for 1 30 years
 - Magma chamber d = 5 km, h = 1 km for less than 5 days
- Pele mass eruption rate estimated at 248 341 m³ s⁻¹ (Davies et al. 2001)
 - Diapir d = 20 km h = 5 km, feeds this for 150 years
 - Diapir d = 5 km, h = 1 km, for 2 years

Asthenospheric convection

• Steady-state boundary layer theory (Turcotte and Schubert, 2002) to a fluid layer heated from within (due to friction, related to tidal forces) and cooled from above. Very large Prandtl number: ignore inertia terms in momentum equation

More parameters

Thermal diffusivity	K	10-6	$m^2 s^{-1}$
Thermal expansivity	α	3x10 ⁻⁵	K ⁻¹
Heat capacity	C _p	1200	J kg ⁻¹ K ⁻¹
Average tidal dissipation	Q	1.4023x10 ⁻⁹	W kg ⁻¹
Latent heat of fusion	L	400	kJ kg ⁻¹