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Outline

• Patera morphologies as motivation
• Model:

– Application of analytical treatments of magma 
convection and transport

– Convection in asthenosphere
– Magma rise through lithosphere via diapirs or 

dikes
– Collapse over high-level magma chamber to form 

patera
– Evolution of patera



∗ Formation process must lead to the 
morphologies we observe



I. Heating and convection in the 
asthenosphere lead to transport of 
hot material to the base of the 
lithosphere.

• Asthenosphere: Dense, partially molten 
region above mantle

• Patera distribution1 fit by model results2

for asthenospheric heating and 
convection

1Lopes et al. 1999; Schenk et al 2001; Radebaugh et 
al. 2001

2Tackley et al. 2001; Tackley 2001



a = 30 km 
Lithosphere

b =100 km 
Asthenosphere

Turcotte and Schubert, 2002



a = 30 km 
Lithosphere

b =100 km 
Asthenosphere

λ/2~100 km

ν= 109 - 1012 Pa s 
ρ=3270 kg m-3

Ra = 1012 - 1015

v = 150 - 5000 m y-1

ν= 1018 - 1019 Pa s 
ρ=2730 kg m-3

Turcotte and Schubert, 2002

Velocities consistent with those from numerical models by Tackley et 
al. 2001; Tackley 2001



II.  Magma rises through the lithosphere

a. Diapir -or- -or-b. Dike c. Magma 
chambers



a. Diapir

Diapiric Rise
Stokes’ flow of buoyant fluid

– Modified to include thermal 
considerations via the Peclét 
number (measure of heat 
transfer)



Stokes’ flow of buoyant fluid
– Modified to include thermal 

considerations via the Peclet 
number (measure of heat 
transfer)

– Assume thermally softened 
layer around diapir

• Reduces effective viscosity

a. Diapir
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a. Diapir



Stokes’ flow of buoyant fluid
– Modified to include thermal 

considerations via the Peclet 
number (measure of heat 
transfer)

– Assume thermally softened 
layer around diapir

• Reduces effective viscosity

– Obtain magma (40% partial 
melt) from lens at base of 
lithosphere ~ 0.5 km - 2 km 
thick for diapir diameter 
d = 5 km - 40 km

a. Diapir

Diapiric Rise

a. Diapir
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• Mafic to ultramafic, low-
viscosity material typically 
rises in dikes (sheet-like 
injection through brittle 
crust)

Rise via Dikes



• Mafic to ultramafic, low-
viscosity material typically 
rises in dikes (sheet-like 
injection through brittle 
crust)

• Dike can extend height of 
Io’s lithosphere (~30 km)

• Rise speeds high: Tvashtar 
fissure eruption ascent 
velocity v = 2 – 6 m s-1

Wilson and Head, 2001

Rise via Dikes



Series of Magma 
Chambers
• Neutral buoyancy zone at 12 

km depth for 40% melt 
diapir
– For lithosphere 75% silicates, 

15% SO2 frost, 10% void space 
(Leone and Wilson 2001)

– Depth reduced for smaller void 
space/ SO2 frost percentage 
OR more partial melt



Series of Magma 
Chambers
• Neutral buoyancy zone at 12 

km depth for 40% melt 
diapir
– For lithosphere 75% silicates, 

15% SO2 frost, 10% void space 
(Leone and Wilson 2001)

– Depth reduced for smaller void 
space/ SO2 frost percentage 
OR more partial melt

• Connection to source 
ensures replenishment of 
magma chambers



III. Magma finds a high-level zone of neutral 
buoyancy.  Then it:

a) Spreads laterally to form a chamber of 5-40 km 
in diameter, a few kilometers below the surface.

b) Erupts in a lava flow field.



IV. The overlying crust, thermally weakened 
by the underlying magma chamber, 
collapses.

• Often happens when there is an associated 
eruption



V. Patera evolution:
a) Lava emerges at margins, flows across its floor, 

lateral growth and enlargement

b) Lava fills the patera, erupts as a lava lake

a. b.







Conclusions
• Heating and rapid convection (V = 150 – 5000 

m y-1) in asthenosphere leads to magma rise 
through lithosphere 
– Diapiric rise can occur for sufficiently large diapirs 

(d = 20 - 40 km) and thermal softening of wall rock 
(effective ν= 1014 Pa s)

– Dikes can extend height of lithosphere; rapid magma 
rise (v = 2 – 6 m s-1) brings asthenospheric material 
up with little differentiation

– Based on resurfacing rates and diapiric d and v, only 
10% of magma flux from diapirs

• High-level magma chambers form if high melt 
percentages and dense lithosphere

• Collapse over chamber, subsequent filling and 
lateral evolution leads to patera morphologies 



Extra slides



Properties of Io’s Asthenosphere and Lithosphere

Parameter Symbol Value Units
Asthenosphere:
     Thickness b 100 km
     Density ρ 3260 kg m-3

     Viscosity νasth 109 – 1012 Pa s
Lithosphere:
     Thickness a 30 km
     Density (subsurface,
10% void, 15% SO2)

ρ 2730 kg m-3

     Viscosity νlith 1018 – 1019 Pa s
Gravitational acceleration g 1.8 m s-2

Segatz et al. 1988; Ross et al. 1990; Tackley et al. 2001; Leone and Wilson 
2001; Jaeger et al. 2003



Resurfacing Rates
• Global heat flow can be related to resurfacing rate 

(Reynolds et al. 1980).
• Current estimate of heat flow ~ 2 W/m2 leads to 

resurfacing rate of 1.06 - 0.55 cm/y (McEwen et al. 
Jupiter book) so 4.16 x 1011 m3/y on Io’s surface

• Single diapir d = 40 km rising v = 50 cm/y provides 6.3 
x 108 m3/y

• ~100 volcanic centers: 6.3 x 1010 m3/y
– Still one order of magnitude short

• ~500 volcanic centers: 3.1 x 1011 m3/y



Magma supply
• Tvashtar fire fountain eruption estimated at 2 x 104 – 2 

x 105 m3 s-1 (Wilson and Head 2001)
– Single diapir d = 40 km, h = 5 - 15 km can feed this eruption for 

1 - 30 years
– Magma chamber d = 5 km, h = 1 km for less than 5 days

• Pele mass eruption rate estimated at 248 – 341 m3 s-1

(Davies et al. 2001)
– Diapir d = 20 km h = 5 km, feeds this for 150 years
– Diapir d = 5 km, h = 1 km, for 2 years



Asthenospheric convection

• Steady-state boundary layer theory (Turcotte and 
Schubert, 2002) to a fluid layer heated from within (due 
to friction, related to tidal forces) and cooled from 
above.  Very large Prandtl number: ignore inertia terms 
in momentum equation



More parameters

Thermal diffusivity κ 10-6 m2 s-1

Thermal expansivity α 3x10-5 K-1

Heat capacity cp 1200 J kg-1 K-1

Average tidal dissipation Q 1.4023x10-9 W kg-1

Latent heat of fusion L 400 kJ kg-1
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