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Io is the most dynamic body in the Solar 
System:
Io is the most dynamic body in the Solar Io is the most dynamic body in the Solar 
System:System:

The only place beyond Earth where we can watch large-scale geology in action

Extremely rich array of Extremely rich array of 
interconnected orbital, geophysical, interconnected orbital, geophysical, 
geological, atmospheric, and geological, atmospheric, and 
plasma phenomenaplasma phenomena



3

Io’s dynamism, contd.Io’s dynamism, contd.Io’s dynamism, contd.
• One of the most spectacular places in the 

solar system: unique E/PO appeal
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Tidal Heating, Magnetospheric InfluenceTidal Heating, Magnetospheric InfluenceTidal Heating, Magnetospheric Influence
Io is the best place to study tidal heating
• Fundamental planetary process: important for the evolution of many 

planetary satellites
• Greatly expands the potential habitability zone for extraterrestrial life
• Extreme magnitude of tidal heating on Io makes it easy to study there-

can be measured directly
• Tidal Insights into Europa:

• Orbital eccentricities and tidal heating of Io and Europa are coupled by 
the Laplace resonance, but Io’s tidal heating is much easier to study

Io’s current tidal heating ≥ 2x equilibrium value ?

o May result from oscillations in Io’s Q and eccentricity

o Oscillations would also involve Europa

o Must be understood if we are to understand tidal heating 
of Europa, stability of its possible ocean

Io plays a fundamental role in the Jovian magnetosphere
• Iogenic plasma dominates the magnetosphere
• Magnetospheric sputtering and implantation by Io-derived material is 

a major modification process on the icy Galileans, especially Europa
• Might be a source of chemical energy for Europan life

Enceladus
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Io provides a unique insight into Earth historyIo provides a unique insight into Earth historyIo provides a unique insight into Earth history
Io’s heat flow: 40x terrestrial
• Similar to terrestrial heat flow when life began?  Illuminates the effects of high heat 

flow on:
• Style, composition of volcanism
• Volatile delivery to the surface
• Volcanic burial of volatiles
• Tectonic response to very high heat flow: no plate tectonics?
• Crustal differentiation processes

• Despite differences in volatile inventory, the analogy already seems useful
• Evidence for komatiitic volcanism on Io: only common on earth in the Precambrian
• Earth’s upper mantle now too cool for komatiite production

Provides analogs for large Phanerozoic eruptions 
• Many terrestrial eruption styles have never been witnessed by humans

• Flood basalts
• Large explosive eruptions

• Such eruptions may have global consequences for the 
biosphere

• Also are a hazard to human civilization
• Io gives a chance to watch these processes in action!
Add Moon…
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Io is a unique laboratory for atmospheric and plasma 
physics
Io is a unique laboratory for atmospheric and plasma Io is a unique laboratory for atmospheric and plasma 
physicsphysics
Atmosphere:
• Unique P,T regime not accessible elsewhere
• Both volcanic and sublimation components
• Again, dynamism allows to watch processes in action

and thus understand them
• Mass loss provides analogs for comets, early evolution

of planetary atmospheres
• Studies are currently data-starved
Plasma:
• Extreme examples of common processes

• Mass loading of plasma
• Alfven waves
• Coupling of distinct plasma populations

(torus, ionosphere)
• Auroral activity

• Exoplanet magnetospheres may be observable
• Distinctive emissions
• Large emitting area



7

Unanswered questions: 1Unanswered questions: 1Unanswered questions: 1

Interior composition and structure
• Core size/composition?
• Why no magnetic field?
• Mantle composition
• Is there a differentiated crust, or is everything recycled?
• Was Io formed anhydrous, and if not, how did it loose its water?
Heat Flow
• Magnitude?
• Spatial variations across Io?
• If not in equilibrium, why not?
• How does it vary with time?
• Site of dissipation?
Surface Chemistry
• What’s there apart from S, O?
• Where does the sodium, chlorine come from?
• Why is the surface so colorful?
• Latitudinal compositional gradients: why no polar caps?
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Unanswered questions: 2Unanswered questions: 2Unanswered questions: 2
Tectonic and Surface Processes
• Erosion on an airless body

• Origin of “sapping” features?
• Gullies, “dunes”?

• Tectonism:
• Crustal thickness?
• Why no plate tectonics?
• Origin of mountains: crustal compression

due to resurfacing?
• Are some calderas tectonic?

Volcanism
• How do very large volcanos behave?

• Can test volcano models under extreme conditions
• Applicable to large-scale volcanism on Earth, Venus, 

Moon, etc.
• What’s the magma composition, and its range?
• If not ultramafic, why are the magmas so hot?
• Do silicic or sulfur flows exist?
• Plume generation mechanisms:

• Why are some plumes so long-lived?
• What’s the mass and composition of the plume dust?

475 K

975 K

1825 K
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Unanswered questions: 3Unanswered questions: 3Unanswered questions: 3
Surface age, cratering timescales
• How old is the surface, on average?

• Galileo evidence shows much resurfacing is localised
• Relative importance of effusive, pyroclastic, resurfacing
• Are there any impact craters on Io?

• If so, can we use them to calibrate cratering timescales in the Jovian system?
Atmosphere
• The “missing link” between the surface and magnetosphere: not well understood due to 

observational difficulties
• Importance, magnitude, variability of volcanic source?
• Importance of sublimation: diurnal variations?
• What happens to the SO2 that should freeze out at high latitudes?
• Chemistry: what’s there apart from SO2, SO, S2?  How do species interact?
• Heating/expansion of upper atmosphere by plasma?
• How are the various UV, visible, emissions excited?
• Is the ionosphere global?  How is it maintained?
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Unanswered questions: 4Unanswered questions: 4Unanswered questions: 4

Mass loss, plasma interaction
• Loss mechanisms

• Direct ionization by impacting plasma?
• Stripping of an ionosphere?
• Io-local vs. extended source of plasma?

• How are Na, Cl, lost?
• What stabilizes the plasma source?
• Role of plumes

• Direct plume/magnetosphere interaction?
• Supply of dust to the magnetosphere?

Magnetosphere
• Energy path between Jupiter’s rotation and the terawatts of EUV emission?

• Ionization?
• Charge exchange?
• Wave/particle interactions?
• Global electric fields?

• Radial transport of the plasma?
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Galileo’s LimitationsGalileo’s LimitationsGalileo’s Limitations
• 1980-vintage instrumentation

• Small, radiation-sensitive CCD, no UV imaging
• Limited UV spectroscopy (very low spatial, spectral, resolution)
• 17-element InSb array, no hi-res Io spectra due to grating problems
• Primitive (single-aperture) mid-IR instrument

• Very low data rate (~ 0.08 kbps)
• Result: very limited spatial, temporal coverage

• Does not allow exploitation of Io’s unique time-variability
Things we will never know about the volcanos from Galileo Data
• Full range of eruption styles (insufficient spatial, temporal coverage)
• Lava composition (no spectra of fresh lava, only lower limits to magma temperatures)
• Eruption volumes (flow thicknesses not well constrained)
• Time evolution of the magma output (insufficient time coverage, inadequate mid-IR 

capability for mapping old warm flows)
• Gas and pyroclastic composition of plume eruptions, and its time evolution. 

(inadequate UV instrumentation, insufficient time coverage)
• Eruption effects on the atmosphere (inadequate UV instrumentation, insufficient time 

coverage)
• Eruption effects on the torus (insufficient time coverage)
Insufficient data to fully understand the eruption, draw analogies with the Earth
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The Future: The Need for Long-Term 
Monitoring
The Future: The Need for LongThe Future: The Need for Long--Term Term 
MonitoringMonitoring
We learn a lot 
about Io by 
simply watching 
it until it does 
something 
spectacular

No “snapshot” 
shows the full 
range of 
important 
phenomena

Cartoon by Tyler Nordgren
Tyler_Nordgren@redlands.edu
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Future Spacecraft ExplorationFuture Spacecraft ExplorationFuture Spacecraft Exploration
Io Orbiter?
• Proposed in previous roadmaps, probably not realistic in the next decade, given EO 

experience (radiation, delta-V)
Flyby Mission ?
• Doesn’t investigate, exploit, Io’s unique time variability
Jovicentric Orbiter: Most realistic, useful
• Readily combined with magnetospheric and Jupiter studies (“Jupiter Polar Orbiter”) or 

studies of the other Galileans: “Tidal Heating Explorer” 
• Despite similar orbit and targets, could make great strides beyond Galileo for less cost

• Multiple flybys of same hemisphere, 1 month(?) spacing.
Watch evolution of individual volcanic centers

• Galileo has survived 7 Io flybys: radiation dose  ~ 40 krad each 

• Half EO hardness (2 Mrad) allows 50 Io flybys

• Use remainder of orbit for playback, distant monitoring

• Data return per Io flyby @ 12 Kb/s: 10 – 30 Gbits (Galileo ~ 0.2 Gbits!) 

• Scan platform or simple mirror would allow monitoring during downlink

• 2 penetrators to determine composition, interior structure?
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Io Mission Measurement Requirements: Io Mission Measurement Requirements: Io Mission Measurement Requirements: 

• Repeated < 100 m resolution multicolor 
imaging of wide areas

• Smaller coverage at higher resolution
• Topographic mapping (laser or stereo), 2 

m relative precision
• 0.5 – 5 micron spectroscopy with < 1 km 

spatial resolution.  Provides:
• Compositional constraints on fresh lavas
• Temperature information- constrains 

composition and eruption style
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Io Mission Measurement Requirements: contd.Io Mission Measurement Requirements: contd.Io Mission Measurement Requirements: contd.
• 10, 20 micron thermal mapping, 10 km resolution

• Measures heat flow, total lava output
• 0.20 – 0.32 micron UV spectroscopy, 20  km 

resolution, for detailed spatial mapping of atmosphere 
and plumes
• Solar occultation capability for high S/N

Geophysical measurements:
• Tidal flexing amplitude constrains 

asthenospheric viscosity, dissipation mechanisms 
• Passive optical techniques?
• Laser altimetry?
• Difficult from Jovicentric orbit, but perhaps 

possible, given multiple flybys with similar 
geometry

• Penetrator?
• Gravity during close passes for internal structure, 

crustal density (via topography/gravity correlations)
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Io Mission Measurement Requirements, contd.Io Mission Measurement Requirements, contd.Io Mission Measurement Requirements, contd.
• Plasma instruments capable of mapping 3-D velocity velocity distributions of 

electrons and individual ion species 
• Need ability to separate O+ from S++, so not just M/Q

• Neutral mass spectrometer for close flybys?
• Penetrators:

Retro-rockets needed- non-trivial.  
Short lifetime may be OK:  Io probably extremely seismic
• Seismometers for internal structure measurements using probable abundant natural 

seismicity
o Need two simultaneous stations
o Determine tidal flexing from low-frequency seismometers

• Atmospheric mass-spec for compositional measurements on entry
• In-situ surface composition?

o alpha proton x-ray spectrometer?
o mini-thermal emission spectrometer?, 
o gamma-ray spectrometer?



17

Space-Based TelescopesSpaceSpace--Based TelescopesBased Telescopes
Ultraviolet capability is key
• SO2, S2, SO absorptions 2000 - 3000 A
• Atomic emissions 1000 – 2000 A
• Ly-alpha absorption imaging of atmosphere
BUT no advances in space-based UV telescopes are 

currently planned.
• HST UV instruments have limited sensitivity 

• Mapping Io’s atmosphere is very difficult due to low S/N
• HST due for retirement in 2010
• NGST has no UV capability
Much could be accomplished with improved-sensitivity detectors, 

diffraction-limited UV imaging
There is a clear need for a UV-optimized successor to HST, dedicated 

to or at least optimized for solar system work
A dedicated Io/Jupiter UV telescope could provide  synoptic monitoring
• Necessary to understand the time variability that reveals physical mechanisms, in 

the atmosphere and torus
• A general-purpose UV telescope could not provide sufficient monitoring time
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The Future of Groundbased ObservationsThe Future of The Future of GroundbasedGroundbased ObservationsObservations
• Need telescopes that can conduct long-term, multi-wavelength, 

monitoring
• Queue scheduling can help if well implemented: frequent brief 

observations are key
• Dedicated facilities would be even better

o Future Io missions should have ground-based support facilities in 
their budgets

• 8-10 m telescopes, AO, allow detailed disk-resolved studies of Io.
• Routine mapping of Io’s atmosphere in mid-IR
• Mapping of heat flow distribution?
• Hot spot distribution, temperatures, evolution

• Small telescopes are also important
• Better temporal, poorer spatial resolution

Tvashtar eruption from 
Keck

Loki 
time 
history, 
IRTF

Io’s SO2 atmosphere at 18.9 microns, 
IRTF/TEXES, Spencer, Richter, Lellouch, et al. 
Nov. 2001
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ConclusionsConclusionsConclusions
• Io is one of the most exciting targets for future solar system exploration, with much to 

teach us about fundamental problems in planetary science and the Jupiter system in 
particular

• Io is the only place beyond Earth where we can watch geology as it happens
• Phenomena occur unpredictably and are seen over a huge range of wavelengths: need 

synoptic monitoring using multiple techniques simultaneously
• The next Io mission should be a Jovicentric orbiter, perhaps with penetrators

• High inclination orbit: could be part of a Jupiter Polar Orbiter with magnetospheric, auroral
exploration as an additional goal

• Low inclination orbit: could be part of a mission to all the Galilean satellites: “Tidal Heating 
Explorer”

• A UV- and planetary-optimized space telescope is needed to replace and extend HST’s
capabilities

• In addition, a Jupiter/Io dedicated telescope could provide crucial temporal coverage
• Ground-based facilities provide essential support for missions, with better temporal 

coverage for a fraction of the cost
• Groundbased support should be part of future missions
• Large telescopes with AO provide HST-like spatial resolution in the near-IR: NASA should 

make more time available on such facilities
• Small telescopes provide the best temporal coverage and should also be supported
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